mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-11 08:07:22 +00:00
40b52bb8f2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189988 91177308-0d34-0410-b5e6-96231b3b80d8
1341 lines
50 KiB
C++
1341 lines
50 KiB
C++
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
|
|
// of MachineInstrs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "misched"
|
|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/RegisterPressure.h"
|
|
#include "llvm/CodeGen/ScheduleDFS.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/MC/MCInstrItineraries.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <queue>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
|
|
cl::ZeroOrMore, cl::init(false),
|
|
cl::desc("Enable use of AA during MI GAD construction"));
|
|
|
|
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
|
|
const MachineLoopInfo &mli,
|
|
const MachineDominatorTree &mdt,
|
|
bool IsPostRAFlag,
|
|
LiveIntervals *lis)
|
|
: ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
|
|
IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
|
|
assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
|
|
DbgValues.clear();
|
|
assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
|
|
"Virtual registers must be removed prior to PostRA scheduling");
|
|
|
|
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
|
|
SchedModel.init(*ST.getSchedModel(), &ST, TII);
|
|
}
|
|
|
|
/// getUnderlyingObjectFromInt - This is the function that does the work of
|
|
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
|
|
static const Value *getUnderlyingObjectFromInt(const Value *V) {
|
|
do {
|
|
if (const Operator *U = dyn_cast<Operator>(V)) {
|
|
// If we find a ptrtoint, we can transfer control back to the
|
|
// regular getUnderlyingObjectFromInt.
|
|
if (U->getOpcode() == Instruction::PtrToInt)
|
|
return U->getOperand(0);
|
|
// If we find an add of a constant, a multiplied value, or a phi, it's
|
|
// likely that the other operand will lead us to the base
|
|
// object. We don't have to worry about the case where the
|
|
// object address is somehow being computed by the multiply,
|
|
// because our callers only care when the result is an
|
|
// identifiable object.
|
|
if (U->getOpcode() != Instruction::Add ||
|
|
(!isa<ConstantInt>(U->getOperand(1)) &&
|
|
Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
|
|
!isa<PHINode>(U->getOperand(1))))
|
|
return V;
|
|
V = U->getOperand(0);
|
|
} else {
|
|
return V;
|
|
}
|
|
assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
|
|
} while (1);
|
|
}
|
|
|
|
/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
|
|
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
|
|
static void getUnderlyingObjects(const Value *V,
|
|
SmallVectorImpl<Value *> &Objects) {
|
|
SmallPtrSet<const Value*, 16> Visited;
|
|
SmallVector<const Value *, 4> Working(1, V);
|
|
do {
|
|
V = Working.pop_back_val();
|
|
|
|
SmallVector<Value *, 4> Objs;
|
|
GetUnderlyingObjects(const_cast<Value *>(V), Objs);
|
|
|
|
for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
|
|
I != IE; ++I) {
|
|
V = *I;
|
|
if (!Visited.insert(V))
|
|
continue;
|
|
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
|
|
const Value *O =
|
|
getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
|
|
if (O->getType()->isPointerTy()) {
|
|
Working.push_back(O);
|
|
continue;
|
|
}
|
|
}
|
|
Objects.push_back(const_cast<Value *>(V));
|
|
}
|
|
} while (!Working.empty());
|
|
}
|
|
|
|
typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4>
|
|
UnderlyingObjectsVector;
|
|
|
|
/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
|
|
/// information and it can be tracked to a normal reference to a known
|
|
/// object, return the Value for that object.
|
|
static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
|
|
const MachineFrameInfo *MFI,
|
|
UnderlyingObjectsVector &Objects) {
|
|
if (!MI->hasOneMemOperand() ||
|
|
!(*MI->memoperands_begin())->getValue() ||
|
|
(*MI->memoperands_begin())->isVolatile())
|
|
return;
|
|
|
|
const Value *V = (*MI->memoperands_begin())->getValue();
|
|
if (!V)
|
|
return;
|
|
|
|
SmallVector<Value *, 4> Objs;
|
|
getUnderlyingObjects(V, Objs);
|
|
|
|
for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
|
|
I != IE; ++I) {
|
|
bool MayAlias = true;
|
|
V = *I;
|
|
|
|
if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
|
|
// For now, ignore PseudoSourceValues which may alias LLVM IR values
|
|
// because the code that uses this function has no way to cope with
|
|
// such aliases.
|
|
|
|
if (PSV->isAliased(MFI)) {
|
|
Objects.clear();
|
|
return;
|
|
}
|
|
|
|
MayAlias = PSV->mayAlias(MFI);
|
|
} else if (!isIdentifiedObject(V)) {
|
|
Objects.clear();
|
|
return;
|
|
}
|
|
|
|
Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias));
|
|
}
|
|
}
|
|
|
|
void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
|
|
BB = bb;
|
|
}
|
|
|
|
void ScheduleDAGInstrs::finishBlock() {
|
|
// Subclasses should no longer refer to the old block.
|
|
BB = 0;
|
|
}
|
|
|
|
/// Initialize the DAG and common scheduler state for the current scheduling
|
|
/// region. This does not actually create the DAG, only clears it. The
|
|
/// scheduling driver may call BuildSchedGraph multiple times per scheduling
|
|
/// region.
|
|
void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
|
|
MachineBasicBlock::iterator begin,
|
|
MachineBasicBlock::iterator end,
|
|
unsigned regioninstrs) {
|
|
assert(bb == BB && "startBlock should set BB");
|
|
RegionBegin = begin;
|
|
RegionEnd = end;
|
|
NumRegionInstrs = regioninstrs;
|
|
}
|
|
|
|
/// Close the current scheduling region. Don't clear any state in case the
|
|
/// driver wants to refer to the previous scheduling region.
|
|
void ScheduleDAGInstrs::exitRegion() {
|
|
// Nothing to do.
|
|
}
|
|
|
|
/// addSchedBarrierDeps - Add dependencies from instructions in the current
|
|
/// list of instructions being scheduled to scheduling barrier by adding
|
|
/// the exit SU to the register defs and use list. This is because we want to
|
|
/// make sure instructions which define registers that are either used by
|
|
/// the terminator or are live-out are properly scheduled. This is
|
|
/// especially important when the definition latency of the return value(s)
|
|
/// are too high to be hidden by the branch or when the liveout registers
|
|
/// used by instructions in the fallthrough block.
|
|
void ScheduleDAGInstrs::addSchedBarrierDeps() {
|
|
MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
|
|
ExitSU.setInstr(ExitMI);
|
|
bool AllDepKnown = ExitMI &&
|
|
(ExitMI->isCall() || ExitMI->isBarrier());
|
|
if (ExitMI && AllDepKnown) {
|
|
// If it's a call or a barrier, add dependencies on the defs and uses of
|
|
// instruction.
|
|
for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = ExitMI->getOperand(i);
|
|
if (!MO.isReg() || MO.isDef()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
|
|
if (TRI->isPhysicalRegister(Reg))
|
|
Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
|
|
else {
|
|
assert(!IsPostRA && "Virtual register encountered after regalloc.");
|
|
if (MO.readsReg()) // ignore undef operands
|
|
addVRegUseDeps(&ExitSU, i);
|
|
}
|
|
}
|
|
} else {
|
|
// For others, e.g. fallthrough, conditional branch, assume the exit
|
|
// uses all the registers that are livein to the successor blocks.
|
|
assert(Uses.empty() && "Uses in set before adding deps?");
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI)
|
|
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
|
|
E = (*SI)->livein_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
if (!Uses.contains(Reg))
|
|
Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// MO is an operand of SU's instruction that defines a physical register. Add
|
|
/// data dependencies from SU to any uses of the physical register.
|
|
void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
|
|
const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
|
|
assert(MO.isDef() && "expect physreg def");
|
|
|
|
// Ask the target if address-backscheduling is desirable, and if so how much.
|
|
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
|
|
|
|
for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
|
|
Alias.isValid(); ++Alias) {
|
|
if (!Uses.contains(*Alias))
|
|
continue;
|
|
for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
|
|
SUnit *UseSU = I->SU;
|
|
if (UseSU == SU)
|
|
continue;
|
|
|
|
// Adjust the dependence latency using operand def/use information,
|
|
// then allow the target to perform its own adjustments.
|
|
int UseOp = I->OpIdx;
|
|
MachineInstr *RegUse = 0;
|
|
SDep Dep;
|
|
if (UseOp < 0)
|
|
Dep = SDep(SU, SDep::Artificial);
|
|
else {
|
|
// Set the hasPhysRegDefs only for physreg defs that have a use within
|
|
// the scheduling region.
|
|
SU->hasPhysRegDefs = true;
|
|
Dep = SDep(SU, SDep::Data, *Alias);
|
|
RegUse = UseSU->getInstr();
|
|
}
|
|
Dep.setLatency(
|
|
SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
|
|
UseOp));
|
|
|
|
ST.adjustSchedDependency(SU, UseSU, Dep);
|
|
UseSU->addPred(Dep);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
|
|
/// this SUnit to following instructions in the same scheduling region that
|
|
/// depend the physical register referenced at OperIdx.
|
|
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
|
|
const MachineInstr *MI = SU->getInstr();
|
|
const MachineOperand &MO = MI->getOperand(OperIdx);
|
|
|
|
// Optionally add output and anti dependencies. For anti
|
|
// dependencies we use a latency of 0 because for a multi-issue
|
|
// target we want to allow the defining instruction to issue
|
|
// in the same cycle as the using instruction.
|
|
// TODO: Using a latency of 1 here for output dependencies assumes
|
|
// there's no cost for reusing registers.
|
|
SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
|
|
for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
|
|
Alias.isValid(); ++Alias) {
|
|
if (!Defs.contains(*Alias))
|
|
continue;
|
|
for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
|
|
SUnit *DefSU = I->SU;
|
|
if (DefSU == &ExitSU)
|
|
continue;
|
|
if (DefSU != SU &&
|
|
(Kind != SDep::Output || !MO.isDead() ||
|
|
!DefSU->getInstr()->registerDefIsDead(*Alias))) {
|
|
if (Kind == SDep::Anti)
|
|
DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
|
|
else {
|
|
SDep Dep(SU, Kind, /*Reg=*/*Alias);
|
|
Dep.setLatency(
|
|
SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
|
|
DefSU->addPred(Dep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MO.isDef()) {
|
|
SU->hasPhysRegUses = true;
|
|
// Either insert a new Reg2SUnits entry with an empty SUnits list, or
|
|
// retrieve the existing SUnits list for this register's uses.
|
|
// Push this SUnit on the use list.
|
|
Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
|
|
}
|
|
else {
|
|
addPhysRegDataDeps(SU, OperIdx);
|
|
unsigned Reg = MO.getReg();
|
|
|
|
// clear this register's use list
|
|
if (Uses.contains(Reg))
|
|
Uses.eraseAll(Reg);
|
|
|
|
if (!MO.isDead()) {
|
|
Defs.eraseAll(Reg);
|
|
} else if (SU->isCall) {
|
|
// Calls will not be reordered because of chain dependencies (see
|
|
// below). Since call operands are dead, calls may continue to be added
|
|
// to the DefList making dependence checking quadratic in the size of
|
|
// the block. Instead, we leave only one call at the back of the
|
|
// DefList.
|
|
Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
|
|
Reg2SUnitsMap::iterator B = P.first;
|
|
Reg2SUnitsMap::iterator I = P.second;
|
|
for (bool isBegin = I == B; !isBegin; /* empty */) {
|
|
isBegin = (--I) == B;
|
|
if (!I->SU->isCall)
|
|
break;
|
|
I = Defs.erase(I);
|
|
}
|
|
}
|
|
|
|
// Defs are pushed in the order they are visited and never reordered.
|
|
Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
|
|
}
|
|
}
|
|
|
|
/// addVRegDefDeps - Add register output and data dependencies from this SUnit
|
|
/// to instructions that occur later in the same scheduling region if they read
|
|
/// from or write to the virtual register defined at OperIdx.
|
|
///
|
|
/// TODO: Hoist loop induction variable increments. This has to be
|
|
/// reevaluated. Generally, IV scheduling should be done before coalescing.
|
|
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
|
|
const MachineInstr *MI = SU->getInstr();
|
|
unsigned Reg = MI->getOperand(OperIdx).getReg();
|
|
|
|
// Singly defined vregs do not have output/anti dependencies.
|
|
// The current operand is a def, so we have at least one.
|
|
// Check here if there are any others...
|
|
if (MRI.hasOneDef(Reg))
|
|
return;
|
|
|
|
// Add output dependence to the next nearest def of this vreg.
|
|
//
|
|
// Unless this definition is dead, the output dependence should be
|
|
// transitively redundant with antidependencies from this definition's
|
|
// uses. We're conservative for now until we have a way to guarantee the uses
|
|
// are not eliminated sometime during scheduling. The output dependence edge
|
|
// is also useful if output latency exceeds def-use latency.
|
|
VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
|
|
if (DefI == VRegDefs.end())
|
|
VRegDefs.insert(VReg2SUnit(Reg, SU));
|
|
else {
|
|
SUnit *DefSU = DefI->SU;
|
|
if (DefSU != SU && DefSU != &ExitSU) {
|
|
SDep Dep(SU, SDep::Output, Reg);
|
|
Dep.setLatency(
|
|
SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
|
|
DefSU->addPred(Dep);
|
|
}
|
|
DefI->SU = SU;
|
|
}
|
|
}
|
|
|
|
/// addVRegUseDeps - Add a register data dependency if the instruction that
|
|
/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
|
|
/// register antidependency from this SUnit to instructions that occur later in
|
|
/// the same scheduling region if they write the virtual register.
|
|
///
|
|
/// TODO: Handle ExitSU "uses" properly.
|
|
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
|
|
MachineInstr *MI = SU->getInstr();
|
|
unsigned Reg = MI->getOperand(OperIdx).getReg();
|
|
|
|
// Record this local VReg use.
|
|
VReg2UseMap::iterator UI = VRegUses.find(Reg);
|
|
for (; UI != VRegUses.end(); ++UI) {
|
|
if (UI->SU == SU)
|
|
break;
|
|
}
|
|
if (UI == VRegUses.end())
|
|
VRegUses.insert(VReg2SUnit(Reg, SU));
|
|
|
|
// Lookup this operand's reaching definition.
|
|
assert(LIS && "vreg dependencies requires LiveIntervals");
|
|
LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
|
|
VNInfo *VNI = LRQ.valueIn();
|
|
|
|
// VNI will be valid because MachineOperand::readsReg() is checked by caller.
|
|
assert(VNI && "No value to read by operand");
|
|
MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
|
|
// Phis and other noninstructions (after coalescing) have a NULL Def.
|
|
if (Def) {
|
|
SUnit *DefSU = getSUnit(Def);
|
|
if (DefSU) {
|
|
// The reaching Def lives within this scheduling region.
|
|
// Create a data dependence.
|
|
SDep dep(DefSU, SDep::Data, Reg);
|
|
// Adjust the dependence latency using operand def/use information, then
|
|
// allow the target to perform its own adjustments.
|
|
int DefOp = Def->findRegisterDefOperandIdx(Reg);
|
|
dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
|
|
|
|
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
|
|
ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
|
|
SU->addPred(dep);
|
|
}
|
|
}
|
|
|
|
// Add antidependence to the following def of the vreg it uses.
|
|
VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
|
|
if (DefI != VRegDefs.end() && DefI->SU != SU)
|
|
DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
|
|
}
|
|
|
|
/// Return true if MI is an instruction we are unable to reason about
|
|
/// (like a call or something with unmodeled side effects).
|
|
static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
|
|
if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
|
|
(MI->hasOrderedMemoryRef() &&
|
|
(!MI->mayLoad() || !MI->isInvariantLoad(AA))))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// This MI might have either incomplete info, or known to be unsafe
|
|
// to deal with (i.e. volatile object).
|
|
static inline bool isUnsafeMemoryObject(MachineInstr *MI,
|
|
const MachineFrameInfo *MFI) {
|
|
if (!MI || MI->memoperands_empty())
|
|
return true;
|
|
// We purposefully do no check for hasOneMemOperand() here
|
|
// in hope to trigger an assert downstream in order to
|
|
// finish implementation.
|
|
if ((*MI->memoperands_begin())->isVolatile() ||
|
|
MI->hasUnmodeledSideEffects())
|
|
return true;
|
|
const Value *V = (*MI->memoperands_begin())->getValue();
|
|
if (!V)
|
|
return true;
|
|
|
|
SmallVector<Value *, 4> Objs;
|
|
getUnderlyingObjects(V, Objs);
|
|
for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
|
|
IE = Objs.end(); I != IE; ++I) {
|
|
V = *I;
|
|
|
|
if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
|
|
// Similarly to getUnderlyingObjectForInstr:
|
|
// For now, ignore PseudoSourceValues which may alias LLVM IR values
|
|
// because the code that uses this function has no way to cope with
|
|
// such aliases.
|
|
if (PSV->isAliased(MFI))
|
|
return true;
|
|
}
|
|
|
|
// Does this pointer refer to a distinct and identifiable object?
|
|
if (!isIdentifiedObject(V))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// This returns true if the two MIs need a chain edge betwee them.
|
|
/// If these are not even memory operations, we still may need
|
|
/// chain deps between them. The question really is - could
|
|
/// these two MIs be reordered during scheduling from memory dependency
|
|
/// point of view.
|
|
static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
|
|
MachineInstr *MIa,
|
|
MachineInstr *MIb) {
|
|
// Cover a trivial case - no edge is need to itself.
|
|
if (MIa == MIb)
|
|
return false;
|
|
|
|
if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
|
|
return true;
|
|
|
|
// If we are dealing with two "normal" loads, we do not need an edge
|
|
// between them - they could be reordered.
|
|
if (!MIa->mayStore() && !MIb->mayStore())
|
|
return false;
|
|
|
|
// To this point analysis is generic. From here on we do need AA.
|
|
if (!AA)
|
|
return true;
|
|
|
|
MachineMemOperand *MMOa = *MIa->memoperands_begin();
|
|
MachineMemOperand *MMOb = *MIb->memoperands_begin();
|
|
|
|
// FIXME: Need to handle multiple memory operands to support all targets.
|
|
if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
|
|
llvm_unreachable("Multiple memory operands.");
|
|
|
|
// The following interface to AA is fashioned after DAGCombiner::isAlias
|
|
// and operates with MachineMemOperand offset with some important
|
|
// assumptions:
|
|
// - LLVM fundamentally assumes flat address spaces.
|
|
// - MachineOperand offset can *only* result from legalization and
|
|
// cannot affect queries other than the trivial case of overlap
|
|
// checking.
|
|
// - These offsets never wrap and never step outside
|
|
// of allocated objects.
|
|
// - There should never be any negative offsets here.
|
|
//
|
|
// FIXME: Modify API to hide this math from "user"
|
|
// FIXME: Even before we go to AA we can reason locally about some
|
|
// memory objects. It can save compile time, and possibly catch some
|
|
// corner cases not currently covered.
|
|
|
|
assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
|
|
assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
|
|
|
|
int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
|
|
int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
|
|
int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
|
|
|
|
AliasAnalysis::AliasResult AAResult = AA->alias(
|
|
AliasAnalysis::Location(MMOa->getValue(), Overlapa,
|
|
MMOa->getTBAAInfo()),
|
|
AliasAnalysis::Location(MMOb->getValue(), Overlapb,
|
|
MMOb->getTBAAInfo()));
|
|
|
|
return (AAResult != AliasAnalysis::NoAlias);
|
|
}
|
|
|
|
/// This recursive function iterates over chain deps of SUb looking for
|
|
/// "latest" node that needs a chain edge to SUa.
|
|
static unsigned
|
|
iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
|
|
SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
|
|
SmallPtrSet<const SUnit*, 16> &Visited) {
|
|
if (!SUa || !SUb || SUb == ExitSU)
|
|
return *Depth;
|
|
|
|
// Remember visited nodes.
|
|
if (!Visited.insert(SUb))
|
|
return *Depth;
|
|
// If there is _some_ dependency already in place, do not
|
|
// descend any further.
|
|
// TODO: Need to make sure that if that dependency got eliminated or ignored
|
|
// for any reason in the future, we would not violate DAG topology.
|
|
// Currently it does not happen, but makes an implicit assumption about
|
|
// future implementation.
|
|
//
|
|
// Independently, if we encounter node that is some sort of global
|
|
// object (like a call) we already have full set of dependencies to it
|
|
// and we can stop descending.
|
|
if (SUa->isSucc(SUb) ||
|
|
isGlobalMemoryObject(AA, SUb->getInstr()))
|
|
return *Depth;
|
|
|
|
// If we do need an edge, or we have exceeded depth budget,
|
|
// add that edge to the predecessors chain of SUb,
|
|
// and stop descending.
|
|
if (*Depth > 200 ||
|
|
MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
|
|
SUb->addPred(SDep(SUa, SDep::MayAliasMem));
|
|
return *Depth;
|
|
}
|
|
// Track current depth.
|
|
(*Depth)++;
|
|
// Iterate over chain dependencies only.
|
|
for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
|
|
I != E; ++I)
|
|
if (I->isCtrl())
|
|
iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
|
|
return *Depth;
|
|
}
|
|
|
|
/// This function assumes that "downward" from SU there exist
|
|
/// tail/leaf of already constructed DAG. It iterates downward and
|
|
/// checks whether SU can be aliasing any node dominated
|
|
/// by it.
|
|
static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
|
|
SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
|
|
unsigned LatencyToLoad) {
|
|
if (!SU)
|
|
return;
|
|
|
|
SmallPtrSet<const SUnit*, 16> Visited;
|
|
unsigned Depth = 0;
|
|
|
|
for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
|
|
I != IE; ++I) {
|
|
if (SU == *I)
|
|
continue;
|
|
if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
|
|
SDep Dep(SU, SDep::MayAliasMem);
|
|
Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
|
|
(*I)->addPred(Dep);
|
|
}
|
|
// Now go through all the chain successors and iterate from them.
|
|
// Keep track of visited nodes.
|
|
for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
|
|
JE = (*I)->Succs.end(); J != JE; ++J)
|
|
if (J->isCtrl())
|
|
iterateChainSucc (AA, MFI, SU, J->getSUnit(),
|
|
ExitSU, &Depth, Visited);
|
|
}
|
|
}
|
|
|
|
/// Check whether two objects need a chain edge, if so, add it
|
|
/// otherwise remember the rejected SU.
|
|
static inline
|
|
void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
|
|
SUnit *SUa, SUnit *SUb,
|
|
std::set<SUnit *> &RejectList,
|
|
unsigned TrueMemOrderLatency = 0,
|
|
bool isNormalMemory = false) {
|
|
// If this is a false dependency,
|
|
// do not add the edge, but rememeber the rejected node.
|
|
if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
|
|
SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
|
|
Dep.setLatency(TrueMemOrderLatency);
|
|
SUb->addPred(Dep);
|
|
}
|
|
else {
|
|
// Duplicate entries should be ignored.
|
|
RejectList.insert(SUb);
|
|
DEBUG(dbgs() << "\tReject chain dep between SU("
|
|
<< SUa->NodeNum << ") and SU("
|
|
<< SUb->NodeNum << ")\n");
|
|
}
|
|
}
|
|
|
|
/// Create an SUnit for each real instruction, numbered in top-down toplological
|
|
/// order. The instruction order A < B, implies that no edge exists from B to A.
|
|
///
|
|
/// Map each real instruction to its SUnit.
|
|
///
|
|
/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
|
|
/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
|
|
/// instead of pointers.
|
|
///
|
|
/// MachineScheduler relies on initSUnits numbering the nodes by their order in
|
|
/// the original instruction list.
|
|
void ScheduleDAGInstrs::initSUnits() {
|
|
// We'll be allocating one SUnit for each real instruction in the region,
|
|
// which is contained within a basic block.
|
|
SUnits.reserve(NumRegionInstrs);
|
|
|
|
for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
|
|
MachineInstr *MI = I;
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
|
|
SUnit *SU = newSUnit(MI);
|
|
MISUnitMap[MI] = SU;
|
|
|
|
SU->isCall = MI->isCall();
|
|
SU->isCommutable = MI->isCommutable();
|
|
|
|
// Assign the Latency field of SU using target-provided information.
|
|
SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
|
|
}
|
|
}
|
|
|
|
/// If RegPressure is non null, compute register pressure as a side effect. The
|
|
/// DAG builder is an efficient place to do it because it already visits
|
|
/// operands.
|
|
void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
|
|
RegPressureTracker *RPTracker,
|
|
PressureDiffs *PDiffs) {
|
|
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
|
|
bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
|
|
: ST.useAA();
|
|
AliasAnalysis *AAForDep = UseAA ? AA : 0;
|
|
|
|
MISUnitMap.clear();
|
|
ScheduleDAG::clearDAG();
|
|
|
|
// Create an SUnit for each real instruction.
|
|
initSUnits();
|
|
|
|
if (PDiffs)
|
|
PDiffs->init(SUnits.size());
|
|
|
|
// We build scheduling units by walking a block's instruction list from bottom
|
|
// to top.
|
|
|
|
// Remember where a generic side-effecting instruction is as we procede.
|
|
SUnit *BarrierChain = 0, *AliasChain = 0;
|
|
|
|
// Memory references to specific known memory locations are tracked
|
|
// so that they can be given more precise dependencies. We track
|
|
// separately the known memory locations that may alias and those
|
|
// that are known not to alias
|
|
MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
|
|
MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
|
|
std::set<SUnit*> RejectMemNodes;
|
|
|
|
// Remove any stale debug info; sometimes BuildSchedGraph is called again
|
|
// without emitting the info from the previous call.
|
|
DbgValues.clear();
|
|
FirstDbgValue = NULL;
|
|
|
|
assert(Defs.empty() && Uses.empty() &&
|
|
"Only BuildGraph should update Defs/Uses");
|
|
Defs.setUniverse(TRI->getNumRegs());
|
|
Uses.setUniverse(TRI->getNumRegs());
|
|
|
|
assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
|
|
VRegUses.clear();
|
|
VRegDefs.setUniverse(MRI.getNumVirtRegs());
|
|
VRegUses.setUniverse(MRI.getNumVirtRegs());
|
|
|
|
// Model data dependencies between instructions being scheduled and the
|
|
// ExitSU.
|
|
addSchedBarrierDeps();
|
|
|
|
// Walk the list of instructions, from bottom moving up.
|
|
MachineInstr *DbgMI = NULL;
|
|
for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
|
|
MII != MIE; --MII) {
|
|
MachineInstr *MI = prior(MII);
|
|
if (MI && DbgMI) {
|
|
DbgValues.push_back(std::make_pair(DbgMI, MI));
|
|
DbgMI = NULL;
|
|
}
|
|
|
|
if (MI->isDebugValue()) {
|
|
DbgMI = MI;
|
|
continue;
|
|
}
|
|
SUnit *SU = MISUnitMap[MI];
|
|
assert(SU && "No SUnit mapped to this MI");
|
|
|
|
if (RPTracker) {
|
|
PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0;
|
|
RPTracker->recede(/*LiveUses=*/0, PDiff);
|
|
assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
|
|
}
|
|
|
|
assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
|
|
"Cannot schedule terminators or labels!");
|
|
|
|
// Add register-based dependencies (data, anti, and output).
|
|
bool HasVRegDef = false;
|
|
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
|
|
const MachineOperand &MO = MI->getOperand(j);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
|
|
if (TRI->isPhysicalRegister(Reg))
|
|
addPhysRegDeps(SU, j);
|
|
else {
|
|
assert(!IsPostRA && "Virtual register encountered!");
|
|
if (MO.isDef()) {
|
|
HasVRegDef = true;
|
|
addVRegDefDeps(SU, j);
|
|
}
|
|
else if (MO.readsReg()) // ignore undef operands
|
|
addVRegUseDeps(SU, j);
|
|
}
|
|
}
|
|
// If we haven't seen any uses in this scheduling region, create a
|
|
// dependence edge to ExitSU to model the live-out latency. This is required
|
|
// for vreg defs with no in-region use, and prefetches with no vreg def.
|
|
//
|
|
// FIXME: NumDataSuccs would be more precise than NumSuccs here. This
|
|
// check currently relies on being called before adding chain deps.
|
|
if (SU->NumSuccs == 0 && SU->Latency > 1
|
|
&& (HasVRegDef || MI->mayLoad())) {
|
|
SDep Dep(SU, SDep::Artificial);
|
|
Dep.setLatency(SU->Latency - 1);
|
|
ExitSU.addPred(Dep);
|
|
}
|
|
|
|
// Add chain dependencies.
|
|
// Chain dependencies used to enforce memory order should have
|
|
// latency of 0 (except for true dependency of Store followed by
|
|
// aliased Load... we estimate that with a single cycle of latency
|
|
// assuming the hardware will bypass)
|
|
// Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
|
|
// after stack slots are lowered to actual addresses.
|
|
// TODO: Use an AliasAnalysis and do real alias-analysis queries, and
|
|
// produce more precise dependence information.
|
|
unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
|
|
if (isGlobalMemoryObject(AA, MI)) {
|
|
// Be conservative with these and add dependencies on all memory
|
|
// references, even those that are known to not alias.
|
|
for (MapVector<const Value *, SUnit *>::iterator I =
|
|
NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
|
|
I->second->addPred(SDep(SU, SDep::Barrier));
|
|
}
|
|
for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
|
|
NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
|
|
for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
|
|
SDep Dep(SU, SDep::Barrier);
|
|
Dep.setLatency(TrueMemOrderLatency);
|
|
I->second[i]->addPred(Dep);
|
|
}
|
|
}
|
|
// Add SU to the barrier chain.
|
|
if (BarrierChain)
|
|
BarrierChain->addPred(SDep(SU, SDep::Barrier));
|
|
BarrierChain = SU;
|
|
// This is a barrier event that acts as a pivotal node in the DAG,
|
|
// so it is safe to clear list of exposed nodes.
|
|
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
|
|
TrueMemOrderLatency);
|
|
RejectMemNodes.clear();
|
|
NonAliasMemDefs.clear();
|
|
NonAliasMemUses.clear();
|
|
|
|
// fall-through
|
|
new_alias_chain:
|
|
// Chain all possibly aliasing memory references though SU.
|
|
if (AliasChain) {
|
|
unsigned ChainLatency = 0;
|
|
if (AliasChain->getInstr()->mayLoad())
|
|
ChainLatency = TrueMemOrderLatency;
|
|
addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
|
|
ChainLatency);
|
|
}
|
|
AliasChain = SU;
|
|
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
|
|
addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
|
|
TrueMemOrderLatency);
|
|
for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
|
|
E = AliasMemDefs.end(); I != E; ++I)
|
|
addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
|
|
for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
|
|
AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
|
|
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
|
|
addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
|
|
TrueMemOrderLatency);
|
|
}
|
|
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
|
|
TrueMemOrderLatency);
|
|
PendingLoads.clear();
|
|
AliasMemDefs.clear();
|
|
AliasMemUses.clear();
|
|
} else if (MI->mayStore()) {
|
|
UnderlyingObjectsVector Objs;
|
|
getUnderlyingObjectsForInstr(MI, MFI, Objs);
|
|
|
|
if (Objs.empty()) {
|
|
// Treat all other stores conservatively.
|
|
goto new_alias_chain;
|
|
}
|
|
|
|
bool MayAlias = false;
|
|
for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
|
|
K != KE; ++K) {
|
|
const Value *V = K->getPointer();
|
|
bool ThisMayAlias = K->getInt();
|
|
if (ThisMayAlias)
|
|
MayAlias = true;
|
|
|
|
// A store to a specific PseudoSourceValue. Add precise dependencies.
|
|
// Record the def in MemDefs, first adding a dep if there is
|
|
// an existing def.
|
|
MapVector<const Value *, SUnit *>::iterator I =
|
|
((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
|
|
MapVector<const Value *, SUnit *>::iterator IE =
|
|
((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
|
|
if (I != IE) {
|
|
addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
|
|
0, true);
|
|
I->second = SU;
|
|
} else {
|
|
if (ThisMayAlias)
|
|
AliasMemDefs[V] = SU;
|
|
else
|
|
NonAliasMemDefs[V] = SU;
|
|
}
|
|
// Handle the uses in MemUses, if there are any.
|
|
MapVector<const Value *, std::vector<SUnit *> >::iterator J =
|
|
((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
|
|
MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
|
|
((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
|
|
if (J != JE) {
|
|
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
|
|
addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
|
|
TrueMemOrderLatency, true);
|
|
J->second.clear();
|
|
}
|
|
}
|
|
if (MayAlias) {
|
|
// Add dependencies from all the PendingLoads, i.e. loads
|
|
// with no underlying object.
|
|
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
|
|
addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
|
|
TrueMemOrderLatency);
|
|
// Add dependence on alias chain, if needed.
|
|
if (AliasChain)
|
|
addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
|
|
// But we also should check dependent instructions for the
|
|
// SU in question.
|
|
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
|
|
TrueMemOrderLatency);
|
|
}
|
|
// Add dependence on barrier chain, if needed.
|
|
// There is no point to check aliasing on barrier event. Even if
|
|
// SU and barrier _could_ be reordered, they should not. In addition,
|
|
// we have lost all RejectMemNodes below barrier.
|
|
if (BarrierChain)
|
|
BarrierChain->addPred(SDep(SU, SDep::Barrier));
|
|
|
|
if (!ExitSU.isPred(SU))
|
|
// Push store's up a bit to avoid them getting in between cmp
|
|
// and branches.
|
|
ExitSU.addPred(SDep(SU, SDep::Artificial));
|
|
} else if (MI->mayLoad()) {
|
|
bool MayAlias = true;
|
|
if (MI->isInvariantLoad(AA)) {
|
|
// Invariant load, no chain dependencies needed!
|
|
} else {
|
|
UnderlyingObjectsVector Objs;
|
|
getUnderlyingObjectsForInstr(MI, MFI, Objs);
|
|
|
|
if (Objs.empty()) {
|
|
// A load with no underlying object. Depend on all
|
|
// potentially aliasing stores.
|
|
for (MapVector<const Value *, SUnit *>::iterator I =
|
|
AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
|
|
addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
|
|
|
|
PendingLoads.push_back(SU);
|
|
MayAlias = true;
|
|
} else {
|
|
MayAlias = false;
|
|
}
|
|
|
|
for (UnderlyingObjectsVector::iterator
|
|
J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
|
|
const Value *V = J->getPointer();
|
|
bool ThisMayAlias = J->getInt();
|
|
|
|
if (ThisMayAlias)
|
|
MayAlias = true;
|
|
|
|
// A load from a specific PseudoSourceValue. Add precise dependencies.
|
|
MapVector<const Value *, SUnit *>::iterator I =
|
|
((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
|
|
MapVector<const Value *, SUnit *>::iterator IE =
|
|
((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
|
|
if (I != IE)
|
|
addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
|
|
0, true);
|
|
if (ThisMayAlias)
|
|
AliasMemUses[V].push_back(SU);
|
|
else
|
|
NonAliasMemUses[V].push_back(SU);
|
|
}
|
|
if (MayAlias)
|
|
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
|
|
// Add dependencies on alias and barrier chains, if needed.
|
|
if (MayAlias && AliasChain)
|
|
addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
|
|
if (BarrierChain)
|
|
BarrierChain->addPred(SDep(SU, SDep::Barrier));
|
|
}
|
|
}
|
|
}
|
|
if (DbgMI)
|
|
FirstDbgValue = DbgMI;
|
|
|
|
Defs.clear();
|
|
Uses.clear();
|
|
VRegDefs.clear();
|
|
PendingLoads.clear();
|
|
}
|
|
|
|
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
SU->getInstr()->dump();
|
|
#endif
|
|
}
|
|
|
|
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
|
|
std::string s;
|
|
raw_string_ostream oss(s);
|
|
if (SU == &EntrySU)
|
|
oss << "<entry>";
|
|
else if (SU == &ExitSU)
|
|
oss << "<exit>";
|
|
else
|
|
SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
|
|
return oss.str();
|
|
}
|
|
|
|
/// Return the basic block label. It is not necessarilly unique because a block
|
|
/// contains multiple scheduling regions. But it is fine for visualization.
|
|
std::string ScheduleDAGInstrs::getDAGName() const {
|
|
return "dag." + BB->getFullName();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SchedDFSResult Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
/// \brief Internal state used to compute SchedDFSResult.
|
|
class SchedDFSImpl {
|
|
SchedDFSResult &R;
|
|
|
|
/// Join DAG nodes into equivalence classes by their subtree.
|
|
IntEqClasses SubtreeClasses;
|
|
/// List PredSU, SuccSU pairs that represent data edges between subtrees.
|
|
std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
|
|
|
|
struct RootData {
|
|
unsigned NodeID;
|
|
unsigned ParentNodeID; // Parent node (member of the parent subtree).
|
|
unsigned SubInstrCount; // Instr count in this tree only, not children.
|
|
|
|
RootData(unsigned id): NodeID(id),
|
|
ParentNodeID(SchedDFSResult::InvalidSubtreeID),
|
|
SubInstrCount(0) {}
|
|
|
|
unsigned getSparseSetIndex() const { return NodeID; }
|
|
};
|
|
|
|
SparseSet<RootData> RootSet;
|
|
|
|
public:
|
|
SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
|
|
RootSet.setUniverse(R.DFSNodeData.size());
|
|
}
|
|
|
|
/// Return true if this node been visited by the DFS traversal.
|
|
///
|
|
/// During visitPostorderNode the Node's SubtreeID is assigned to the Node
|
|
/// ID. Later, SubtreeID is updated but remains valid.
|
|
bool isVisited(const SUnit *SU) const {
|
|
return R.DFSNodeData[SU->NodeNum].SubtreeID
|
|
!= SchedDFSResult::InvalidSubtreeID;
|
|
}
|
|
|
|
/// Initialize this node's instruction count. We don't need to flag the node
|
|
/// visited until visitPostorder because the DAG cannot have cycles.
|
|
void visitPreorder(const SUnit *SU) {
|
|
R.DFSNodeData[SU->NodeNum].InstrCount =
|
|
SU->getInstr()->isTransient() ? 0 : 1;
|
|
}
|
|
|
|
/// Called once for each node after all predecessors are visited. Revisit this
|
|
/// node's predecessors and potentially join them now that we know the ILP of
|
|
/// the other predecessors.
|
|
void visitPostorderNode(const SUnit *SU) {
|
|
// Mark this node as the root of a subtree. It may be joined with its
|
|
// successors later.
|
|
R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
|
|
RootData RData(SU->NodeNum);
|
|
RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
|
|
|
|
// If any predecessors are still in their own subtree, they either cannot be
|
|
// joined or are large enough to remain separate. If this parent node's
|
|
// total instruction count is not greater than a child subtree by at least
|
|
// the subtree limit, then try to join it now since splitting subtrees is
|
|
// only useful if multiple high-pressure paths are possible.
|
|
unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
|
|
for (SUnit::const_pred_iterator
|
|
PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
|
|
if (PI->getKind() != SDep::Data)
|
|
continue;
|
|
unsigned PredNum = PI->getSUnit()->NodeNum;
|
|
if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
|
|
joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
|
|
|
|
// Either link or merge the TreeData entry from the child to the parent.
|
|
if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
|
|
// If the predecessor's parent is invalid, this is a tree edge and the
|
|
// current node is the parent.
|
|
if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
|
|
RootSet[PredNum].ParentNodeID = SU->NodeNum;
|
|
}
|
|
else if (RootSet.count(PredNum)) {
|
|
// The predecessor is not a root, but is still in the root set. This
|
|
// must be the new parent that it was just joined to. Note that
|
|
// RootSet[PredNum].ParentNodeID may either be invalid or may still be
|
|
// set to the original parent.
|
|
RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
|
|
RootSet.erase(PredNum);
|
|
}
|
|
}
|
|
RootSet[SU->NodeNum] = RData;
|
|
}
|
|
|
|
/// Called once for each tree edge after calling visitPostOrderNode on the
|
|
/// predecessor. Increment the parent node's instruction count and
|
|
/// preemptively join this subtree to its parent's if it is small enough.
|
|
void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
|
|
R.DFSNodeData[Succ->NodeNum].InstrCount
|
|
+= R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
|
|
joinPredSubtree(PredDep, Succ);
|
|
}
|
|
|
|
/// Add a connection for cross edges.
|
|
void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
|
|
ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
|
|
}
|
|
|
|
/// Set each node's subtree ID to the representative ID and record connections
|
|
/// between trees.
|
|
void finalize() {
|
|
SubtreeClasses.compress();
|
|
R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
|
|
assert(SubtreeClasses.getNumClasses() == RootSet.size()
|
|
&& "number of roots should match trees");
|
|
for (SparseSet<RootData>::const_iterator
|
|
RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
|
|
unsigned TreeID = SubtreeClasses[RI->NodeID];
|
|
if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
|
|
R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
|
|
R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
|
|
// Note that SubInstrCount may be greater than InstrCount if we joined
|
|
// subtrees across a cross edge. InstrCount will be attributed to the
|
|
// original parent, while SubInstrCount will be attributed to the joined
|
|
// parent.
|
|
}
|
|
R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
|
|
R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
|
|
DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
|
|
for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
|
|
R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
|
|
DEBUG(dbgs() << " SU(" << Idx << ") in tree "
|
|
<< R.DFSNodeData[Idx].SubtreeID << '\n');
|
|
}
|
|
for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
|
|
I = ConnectionPairs.begin(), E = ConnectionPairs.end();
|
|
I != E; ++I) {
|
|
unsigned PredTree = SubtreeClasses[I->first->NodeNum];
|
|
unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
|
|
if (PredTree == SuccTree)
|
|
continue;
|
|
unsigned Depth = I->first->getDepth();
|
|
addConnection(PredTree, SuccTree, Depth);
|
|
addConnection(SuccTree, PredTree, Depth);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
/// Join the predecessor subtree with the successor that is its DFS
|
|
/// parent. Apply some heuristics before joining.
|
|
bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
|
|
bool CheckLimit = true) {
|
|
assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
|
|
|
|
// Check if the predecessor is already joined.
|
|
const SUnit *PredSU = PredDep.getSUnit();
|
|
unsigned PredNum = PredSU->NodeNum;
|
|
if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
|
|
return false;
|
|
|
|
// Four is the magic number of successors before a node is considered a
|
|
// pinch point.
|
|
unsigned NumDataSucs = 0;
|
|
for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
|
|
SE = PredSU->Succs.end(); SI != SE; ++SI) {
|
|
if (SI->getKind() == SDep::Data) {
|
|
if (++NumDataSucs >= 4)
|
|
return false;
|
|
}
|
|
}
|
|
if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
|
|
return false;
|
|
R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
|
|
SubtreeClasses.join(Succ->NodeNum, PredNum);
|
|
return true;
|
|
}
|
|
|
|
/// Called by finalize() to record a connection between trees.
|
|
void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
|
|
if (!Depth)
|
|
return;
|
|
|
|
do {
|
|
SmallVectorImpl<SchedDFSResult::Connection> &Connections =
|
|
R.SubtreeConnections[FromTree];
|
|
for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
|
|
I = Connections.begin(), E = Connections.end(); I != E; ++I) {
|
|
if (I->TreeID == ToTree) {
|
|
I->Level = std::max(I->Level, Depth);
|
|
return;
|
|
}
|
|
}
|
|
Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
|
|
FromTree = R.DFSTreeData[FromTree].ParentTreeID;
|
|
} while (FromTree != SchedDFSResult::InvalidSubtreeID);
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
|
|
namespace {
|
|
/// \brief Manage the stack used by a reverse depth-first search over the DAG.
|
|
class SchedDAGReverseDFS {
|
|
std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
|
|
public:
|
|
bool isComplete() const { return DFSStack.empty(); }
|
|
|
|
void follow(const SUnit *SU) {
|
|
DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
|
|
}
|
|
void advance() { ++DFSStack.back().second; }
|
|
|
|
const SDep *backtrack() {
|
|
DFSStack.pop_back();
|
|
return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
|
|
}
|
|
|
|
const SUnit *getCurr() const { return DFSStack.back().first; }
|
|
|
|
SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
|
|
|
|
SUnit::const_pred_iterator getPredEnd() const {
|
|
return getCurr()->Preds.end();
|
|
}
|
|
};
|
|
} // anonymous
|
|
|
|
static bool hasDataSucc(const SUnit *SU) {
|
|
for (SUnit::const_succ_iterator
|
|
SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
|
|
if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
|
|
/// search from this root.
|
|
void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
|
|
if (!IsBottomUp)
|
|
llvm_unreachable("Top-down ILP metric is unimplemnted");
|
|
|
|
SchedDFSImpl Impl(*this);
|
|
for (ArrayRef<SUnit>::const_iterator
|
|
SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
|
|
const SUnit *SU = &*SI;
|
|
if (Impl.isVisited(SU) || hasDataSucc(SU))
|
|
continue;
|
|
|
|
SchedDAGReverseDFS DFS;
|
|
Impl.visitPreorder(SU);
|
|
DFS.follow(SU);
|
|
for (;;) {
|
|
// Traverse the leftmost path as far as possible.
|
|
while (DFS.getPred() != DFS.getPredEnd()) {
|
|
const SDep &PredDep = *DFS.getPred();
|
|
DFS.advance();
|
|
// Ignore non-data edges.
|
|
if (PredDep.getKind() != SDep::Data
|
|
|| PredDep.getSUnit()->isBoundaryNode()) {
|
|
continue;
|
|
}
|
|
// An already visited edge is a cross edge, assuming an acyclic DAG.
|
|
if (Impl.isVisited(PredDep.getSUnit())) {
|
|
Impl.visitCrossEdge(PredDep, DFS.getCurr());
|
|
continue;
|
|
}
|
|
Impl.visitPreorder(PredDep.getSUnit());
|
|
DFS.follow(PredDep.getSUnit());
|
|
}
|
|
// Visit the top of the stack in postorder and backtrack.
|
|
const SUnit *Child = DFS.getCurr();
|
|
const SDep *PredDep = DFS.backtrack();
|
|
Impl.visitPostorderNode(Child);
|
|
if (PredDep)
|
|
Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
|
|
if (DFS.isComplete())
|
|
break;
|
|
}
|
|
}
|
|
Impl.finalize();
|
|
}
|
|
|
|
/// The root of the given SubtreeID was just scheduled. For all subtrees
|
|
/// connected to this tree, record the depth of the connection so that the
|
|
/// nearest connected subtrees can be prioritized.
|
|
void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
|
|
for (SmallVectorImpl<Connection>::const_iterator
|
|
I = SubtreeConnections[SubtreeID].begin(),
|
|
E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
|
|
SubtreeConnectLevels[I->TreeID] =
|
|
std::max(SubtreeConnectLevels[I->TreeID], I->Level);
|
|
DEBUG(dbgs() << " Tree: " << I->TreeID
|
|
<< " @" << SubtreeConnectLevels[I->TreeID] << '\n');
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void ILPValue::print(raw_ostream &OS) const {
|
|
OS << InstrCount << " / " << Length << " = ";
|
|
if (!Length)
|
|
OS << "BADILP";
|
|
else
|
|
OS << format("%g", ((double)InstrCount / Length));
|
|
}
|
|
|
|
void ILPValue::dump() const {
|
|
dbgs() << *this << '\n';
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
|
|
Val.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // namespace llvm
|
|
#endif // !NDEBUG || LLVM_ENABLE_DUMP
|