llvm-6502/lib/Analysis/DataStructure/DataStructure.cpp
Chris Lattner 7541b89092 Changes to be GCC3.1 friendly
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3186 91177308-0d34-0410-b5e6-96231b3b80d8
2002-07-31 19:32:12 +00:00

762 lines
28 KiB
C++

//===- DataStructure.cpp - Implement the core data structure analysis -----===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "Support/STLExtras.h"
#include "Support/StatisticReporter.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include "llvm/Analysis/DataStructure.h"
using std::vector;
//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//
DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) {
// If this node has any fields, allocate them now, but leave them null.
switch (T->getPrimitiveID()) {
case Type::PointerTyID: Links.resize(1); break;
case Type::ArrayTyID: Links.resize(1); break;
case Type::StructTyID:
Links.resize(cast<StructType>(T)->getNumContainedTypes());
break;
default: break;
}
}
// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
: Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) {
}
void DSNode::removeReferrer(DSNodeHandle *H) {
// Search backwards, because we depopulate the list from the back for
// efficiency (because it's a vector).
vector<DSNodeHandle*>::reverse_iterator I =
std::find(Referrers.rbegin(), Referrers.rend(), H);
assert(I != Referrers.rend() && "Referrer not pointing to node!");
Referrers.erase(I.base()-1);
}
// addGlobal - Add an entry for a global value to the Globals list. This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
// Keep the list sorted.
vector<GlobalValue*>::iterator I =
std::lower_bound(Globals.begin(), Globals.end(), GV);
if (I == Globals.end() || *I != GV) {
assert(GV->getType()->getElementType() == Ty);
Globals.insert(I, GV);
NodeType |= GlobalNode;
}
}
// addEdgeTo - Add an edge from the current node to the specified node. This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned LinkNo, DSNode *N) {
assert(LinkNo < Links.size() && "LinkNo out of range!");
if (N == 0 || Links[LinkNo] == N) return; // Nothing to do
if (Links[LinkNo] == 0) { // No merging to perform
Links[LinkNo] = N;
return;
}
// Merge the two nodes...
Links[LinkNo]->mergeWith(N);
}
// mergeWith - Merge this node into the specified node, moving all links to and
// from the argument node into the current node. The specified node may be a
// null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(DSNode *N) {
if (N == 0 || N == this) return; // Noop
assert(N->Ty == Ty && N->Links.size() == Links.size() &&
"Cannot merge nodes of two different types!");
// Remove all edges pointing at N, causing them to point to 'this' instead.
while (!N->Referrers.empty())
*N->Referrers.back() = this;
// Make all of the outgoing links of N now be outgoing links of this. This
// can cause recursive merging!
//
for (unsigned i = 0, e = Links.size(); i != e; ++i) {
addEdgeTo(i, N->Links[i]);
N->Links[i] = 0; // Reduce unneccesary edges in graph. N is dead
}
// Merge the node types
NodeType |= N->NodeType;
N->NodeType = 0; // N is now a dead node.
// Merge the globals list...
if (!N->Globals.empty()) {
// Save the current globals off to the side...
vector<GlobalValue*> OldGlobals(Globals);
// Resize the globals vector to be big enough to hold both of them...
Globals.resize(Globals.size()+N->Globals.size());
// Merge the two sorted globals lists together...
std::merge(OldGlobals.begin(), OldGlobals.end(),
N->Globals.begin(), N->Globals.end(), Globals.begin());
// Erase duplicate entries from the globals list...
Globals.erase(std::unique(Globals.begin(), Globals.end()), Globals.end());
// Delete the globals from the old node...
N->Globals.clear();
}
}
//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//
DSGraph::DSGraph(const DSGraph &G) : Func(G.Func), GlobalsGraph(G.GlobalsGraph){
GlobalsGraph->addReference(this);
std::map<const DSNode*, DSNode*> NodeMap; // ignored
RetNode = cloneInto(G, ValueMap, NodeMap);
}
DSGraph::~DSGraph() {
GlobalsGraph->removeReference(this);
FunctionCalls.clear();
OrigFunctionCalls.clear();
ValueMap.clear();
RetNode = 0;
#ifndef NDEBUG
// Drop all intra-node references, so that assertions don't fail...
std::for_each(Nodes.begin(), Nodes.end(),
std::mem_fun(&DSNode::dropAllReferences));
#endif
// Delete all of the nodes themselves...
std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
}
// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }
// Helper function used to clone a function list.
// Each call really shd have an explicit representation as a separate class.
void
CopyFunctionCallsList(const std::vector<std::vector<DSNodeHandle> >& fromCalls,
std::vector<std::vector<DSNodeHandle> >& toCalls,
std::map<const DSNode*, DSNode*>& NodeMap) {
unsigned FC = toCalls.size(); // FirstCall
toCalls.reserve(FC+fromCalls.size());
for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) {
toCalls.push_back(std::vector<DSNodeHandle>());
toCalls[FC+i].reserve(fromCalls[i].size());
for (unsigned j = 0, ej = fromCalls[i].size(); j != ej; ++j)
toCalls[FC+i].push_back(NodeMap[fromCalls[i][j]]);
}
}
// cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph. The translated ValueMap for the old function is
// filled into the OldValMap member. If StripLocals is set to true, Scalar and
// Alloca markers are removed from the graph, as the graph is being cloned into
// a calling function's graph.
//
DSNode *DSGraph::cloneInto(const DSGraph &G,
std::map<Value*, DSNodeHandle> &OldValMap,
std::map<const DSNode*, DSNode*> &OldNodeMap,
bool StripScalars, bool StripAllocas,
bool CopyCallers, bool CopyOrigCalls) {
assert(OldNodeMap.size()==0 && "Return arg. OldNodeMap shd be empty");
OldNodeMap[0] = 0; // Null pointer maps to null
unsigned FN = Nodes.size(); // First new node...
// Duplicate all of the nodes, populating the node map...
Nodes.reserve(FN+G.Nodes.size());
for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
DSNode *Old = G.Nodes[i], *New = new DSNode(*Old);
Nodes.push_back(New);
OldNodeMap[Old] = New;
}
// Rewrite the links in the new nodes to point into the current graph now.
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
for (unsigned j = 0, e = Nodes[i]->getNumLinks(); j != e; ++j)
Nodes[i]->setLink(j, OldNodeMap.find(Nodes[i]->getLink(j))->second);
// Remove local markers as specified
if (StripScalars || StripAllocas) {
char keepBits = ~((StripScalars? DSNode::ScalarNode : 0) |
(StripAllocas? DSNode::AllocaNode : 0));
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= keepBits;
}
// Copy the value map...
for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(),
E = G.ValueMap.end(); I != E; ++I)
OldValMap[I->first] = OldNodeMap[I->second];
// Copy the function calls list...
CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap);
if (CopyOrigCalls)
CopyFunctionCallsList(G.OrigFunctionCalls, OrigFunctionCalls, OldNodeMap);
// Copy the list of unresolved callers
if (CopyCallers)
PendingCallers.insert(G.PendingCallers.begin(), G.PendingCallers.end());
// Return the returned node pointer...
return OldNodeMap[G.RetNode];
}
// cloneGlobalInto - Clone the given global node and all its target links
// (and all their llinks, recursively).
//
DSNode* DSGraph::cloneGlobalInto(const DSNode* GNode) {
if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;
// If a clone has already been created for GNode, return it.
DSNodeHandle& ValMapEntry = ValueMap[GNode->getGlobals()[0]];
if (ValMapEntry != 0)
return ValMapEntry;
// Clone the node and update the ValMap.
DSNode* NewNode = new DSNode(*GNode);
ValMapEntry = NewNode; // j=0 case of loop below!
Nodes.push_back(NewNode);
for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j)
ValueMap[NewNode->getGlobals()[j]] = NewNode;
// Rewrite the links in the new node to point into the current graph.
for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j)
NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j)));
return NewNode;
}
// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed. Because a node makes all
// of the nodes it can reach imcomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
// Stop recursion if no node, or if node already marked...
if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;
// Actually mark the node
N->NodeType |= DSNode::Incomplete;
// Recusively process children...
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
markIncompleteNode(N->getLink(i));
}
// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet. This marks
// nodes that are reachable through three sources of "unknownness":
//
// Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes(bool markFormalArgs) {
// Mark any incoming arguments as incomplete...
if (markFormalArgs)
for (Function::aiterator I = Func.abegin(), E = Func.aend(); I != E; ++I)
if (isa<PointerType>(I->getType()))
markIncompleteNode(ValueMap[I]->getLink(0));
// Mark stuff passed into functions calls as being incomplete...
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
vector<DSNodeHandle> &Args = FunctionCalls[i];
// Then the return value is certainly incomplete!
markIncompleteNode(Args[0]);
// The call does not make the function argument incomplete...
// All arguments to the function call are incomplete though!
for (unsigned i = 2, e = Args.size(); i != e; ++i)
markIncompleteNode(Args[i]);
}
// Mark all of the nodes pointed to by global or cast nodes as incomplete...
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & (DSNode::GlobalNode | DSNode::CastNode)) {
DSNode *N = Nodes[i];
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
markIncompleteNode(N->getLink(i));
}
}
// removeRefsToGlobal - Helper function that removes globals from the
// ValueMap so that the referrer count will go down to zero.
static void
removeRefsToGlobal(DSNode* N, std::map<Value*, DSNodeHandle>& ValueMap) {
while (!N->getGlobals().empty()) {
GlobalValue *GV = N->getGlobals().back();
N->getGlobals().pop_back();
ValueMap.erase(GV);
}
}
// isNodeDead - This method checks to see if a node is dead, and if it isn't, it
// checks to see if there are simple transformations that it can do to make it
// dead.
//
bool DSGraph::isNodeDead(DSNode *N) {
// Is it a trivially dead shadow node...
if (N->getReferrers().empty() && N->NodeType == 0)
return true;
// Is it a function node or some other trivially unused global?
if (N->NodeType != 0 &&
(N->NodeType & ~DSNode::GlobalNode) == 0 &&
N->getNumLinks() == 0 &&
N->getReferrers().size() == N->getGlobals().size()) {
// Remove the globals from the valuemap, so that the referrer count will go
// down to zero.
removeRefsToGlobal(N, ValueMap);
assert(N->getReferrers().empty() && "Referrers should all be gone now!");
return true;
}
return false;
}
static void removeIdenticalCalls(std::vector<std::vector<DSNodeHandle> > &Calls,
const std::string &where) {
// Remove trivially identical function calls
unsigned NumFns = Calls.size();
std::sort(Calls.begin(), Calls.end());
Calls.erase(std::unique(Calls.begin(), Calls.end()),
Calls.end());
DEBUG(if (NumFns != Calls.size())
std::cerr << "Merged " << (NumFns-Calls.size())
<< " call nodes in " << where << "\n";);
}
// removeTriviallyDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged with
// other nodes in the graph. These nodes will all be trivially unreachable, so
// we don't have to perform any non-trivial analysis here.
//
void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) {
for (unsigned i = 0; i != Nodes.size(); ++i)
if (! KeepAllGlobals || ! (Nodes[i]->NodeType & DSNode::GlobalNode))
if (isNodeDead(Nodes[i])) { // This node is dead!
delete Nodes[i]; // Free memory...
Nodes.erase(Nodes.begin()+i--); // Remove from node list...
}
removeIdenticalCalls(FunctionCalls, Func.getName());
}
// markAlive - Simple graph traverser that recursively walks the graph marking
// stuff to be alive.
//
static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
if (N == 0) return;
Alive.insert(N);
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
if (N->getLink(i) && !Alive.count(N->getLink(i)))
markAlive(N->getLink(i), Alive);
}
static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
std::set<DSNode*> &Visiting) {
if (N == 0) return false;
if (Visiting.count(N) > 0) return false; // terminate recursion on a cycle
Visiting.insert(N);
// If any immediate successor is alive, N is alive
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
if (N->getLink(i) && Alive.count(N->getLink(i)))
{ Visiting.erase(N); return true; }
// Else if any successor reaches a live node, N is alive
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
if (N->getLink(i) && checkGlobalAlive(N->getLink(i), Alive, Visiting))
{ Visiting.erase(N); return true; }
Visiting.erase(N);
return false;
}
// markGlobalsIteration - Recursive helper function for markGlobalsAlive().
// This would be unnecessary if function calls were real nodes! In that case,
// the simple iterative loop in the first few lines below suffice.
//
static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
std::vector<std::vector<DSNodeHandle> > &Calls,
std::set<DSNode*> &Alive,
bool FilterCalls) {
// Iterate, marking globals or cast nodes alive until no new live nodes
// are added to Alive
std::set<DSNode*> Visiting; // Used to identify cycles
std::set<DSNode*>::iterator I=GlobalNodes.begin(), E=GlobalNodes.end();
for (size_t liveCount = 0; liveCount < Alive.size(); ) {
liveCount = Alive.size();
for ( ; I != E; ++I)
if (Alive.count(*I) == 0) {
Visiting.clear();
if (checkGlobalAlive(*I, Alive, Visiting))
markAlive(*I, Alive);
}
}
// Find function calls with some dead and some live nodes.
// Since all call nodes must be live if any one is live, we have to mark
// all nodes of the call as live and continue the iteration (via recursion).
if (FilterCalls) {
bool recurse = false;
for (int i = 0, ei = Calls.size(); i < ei; ++i) {
bool CallIsDead = true, CallHasDeadArg = false;
for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) {
bool argIsDead = Calls[i][j] == 0 || Alive.count(Calls[i][j]) == 0;
CallHasDeadArg = CallHasDeadArg || (Calls[i][j] != 0 && argIsDead);
CallIsDead = CallIsDead && argIsDead;
}
if (!CallIsDead && CallHasDeadArg) {
// Some node in this call is live and another is dead.
// Mark all nodes of call as live and iterate once more.
recurse = true;
for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j)
markAlive(Calls[i][j], Alive);
}
}
if (recurse)
markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);
}
}
// markGlobalsAlive - Mark global nodes and cast nodes alive if they
// can reach any other live node. Since this can produce new live nodes,
// we use a simple iterative algorithm.
//
static void markGlobalsAlive(DSGraph& G, std::set<DSNode*> &Alive,
bool FilterCalls) {
// Add global and cast nodes to a set so we don't walk all nodes every time
std::set<DSNode*> GlobalNodes;
for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i)
if (G.getNodes()[i]->NodeType & (DSNode::CastNode | DSNode::GlobalNode))
GlobalNodes.insert(G.getNodes()[i]);
// Add all call nodes to the same set
std::vector<std::vector<DSNodeHandle> > &Calls = G.getFunctionCalls();
if (FilterCalls) {
for (unsigned i = 0, e = Calls.size(); i != e; ++i)
for (unsigned j = 0, e = Calls[i].size(); j != e; ++j)
if (Calls[i][j])
GlobalNodes.insert(Calls[i][j]);
}
// Iterate and recurse until no new live node are discovered.
// This would be a simple iterative loop if function calls were real nodes!
markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);
// Free up references to dead globals from the ValueMap
std::set<DSNode*>::iterator I=GlobalNodes.begin(), E=GlobalNodes.end();
for( ; I != E; ++I)
if (Alive.count(*I) == 0)
removeRefsToGlobal(*I, G.getValueMap());
// Delete dead function calls
if (FilterCalls)
for (int ei = Calls.size(), i = ei-1; i >= 0; --i) {
bool CallIsDead = true;
for (unsigned j = 0, ej= Calls[i].size(); CallIsDead && j != ej; ++j)
CallIsDead = (Alive.count(Calls[i][j]) == 0);
if (CallIsDead)
Calls.erase(Calls.begin() + i); // remove the call entirely
}
}
// removeDeadNodes - Use a more powerful reachability analysis to eliminate
// subgraphs that are unreachable. This often occurs because the data
// structure doesn't "escape" into it's caller, and thus should be eliminated
// from the caller's graph entirely. This is only appropriate to use when
// inlining graphs.
//
void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
assert((!KeepAllGlobals || KeepCalls) &&
"KeepAllGlobals without KeepCalls is meaningless");
// Reduce the amount of work we have to do...
removeTriviallyDeadNodes(KeepAllGlobals);
// FIXME: Merge nontrivially identical call nodes...
// Alive - a set that holds all nodes found to be reachable/alive.
std::set<DSNode*> Alive;
// If KeepCalls, mark all nodes reachable by call nodes as alive...
if (KeepCalls)
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j)
markAlive(FunctionCalls[i][j], Alive);
for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i)
for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j)
markAlive(OrigFunctionCalls[i][j], Alive);
// Mark all nodes reachable by scalar nodes (and global nodes, if
// keeping them was specified) as alive...
char keepBits = DSNode::ScalarNode | (KeepAllGlobals? DSNode::GlobalNode : 0);
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & keepBits)
markAlive(Nodes[i], Alive);
// The return value is alive as well...
markAlive(RetNode, Alive);
// Mark all globals or cast nodes that can reach a live node as alive.
// This also marks all nodes reachable from such nodes as alive.
// Of course, if KeepAllGlobals is specified, they would be live already.
if (! KeepAllGlobals)
markGlobalsAlive(*this, Alive, ! KeepCalls);
// Loop over all unreachable nodes, dropping their references...
std::vector<DSNode*> DeadNodes;
DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed.
for (unsigned i = 0; i != Nodes.size(); ++i)
if (!Alive.count(Nodes[i])) {
DSNode *N = Nodes[i];
Nodes.erase(Nodes.begin()+i--); // Erase node from alive list.
DeadNodes.push_back(N); // Add node to our list of dead nodes
N->dropAllReferences(); // Drop all outgoing edges
}
// Delete all dead nodes...
std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>);
}
// maskNodeTypes - Apply a mask to all of the node types in the graph. This
// is useful for clearing out markers like Scalar or Incomplete.
//
void DSGraph::maskNodeTypes(unsigned char Mask) {
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= Mask;
}
//===----------------------------------------------------------------------===//
// GlobalDSGraph Implementation
//===----------------------------------------------------------------------===//
GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) {
}
GlobalDSGraph::~GlobalDSGraph() {
assert(Referrers.size() == 0 &&
"Deleting global graph while references from other graphs exist");
}
void GlobalDSGraph::addReference(const DSGraph* referrer) {
if (referrer != this)
Referrers.insert(referrer);
}
void GlobalDSGraph::removeReference(const DSGraph* referrer) {
if (referrer != this) {
assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!");
Referrers.erase(referrer);
if (Referrers.size() == 0)
delete this;
}
}
// Bits used in the next function
static const char ExternalTypeBits = (DSNode::GlobalNode | DSNode::NewNode |
DSNode::SubElement | DSNode::CastNode);
// GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
// visible target links (and recursively their such links) into this graph.
// NodeCache maps the node being cloned to its clone in the Globals graph,
// in order to track cycles.
// GlobalsAreFinal is a flag that says whether it is safe to assume that
// an existing global node is complete. This is important to avoid
// reinserting all globals when inserting Calls to functions.
// This is a helper function for cloneGlobals and cloneCalls.
//
DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
std::map<const DSNode*, DSNode*> &NodeCache,
bool GlobalsAreFinal) {
if (OldNode == 0) return 0;
// The caller should check this is an external node. Just more efficient...
assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node");
// If a clone has already been created for OldNode, return it.
DSNode*& CacheEntry = NodeCache[OldNode];
if (CacheEntry != 0)
return CacheEntry;
// The result value...
DSNode* NewNode = 0;
// If nodes already exist for any of the globals of OldNode,
// merge all such nodes together since they are merged in OldNode.
// If ValueCacheIsFinal==true, look for an existing node that has
// an identical list of globals and return it if it exists.
//
for (unsigned j = 0, N = OldNode->getGlobals().size(); j < N; ++j)
if (DSNode* PrevNode = ValueMap[OldNode->getGlobals()[j]]) {
if (NewNode == 0) {
NewNode = PrevNode; // first existing node found
if (GlobalsAreFinal && j == 0)
if (OldNode->getGlobals() == PrevNode->getGlobals()) {
CacheEntry = NewNode;
return NewNode;
}
}
else if (NewNode != PrevNode) { // found another, different from prev
// update ValMap *before* merging PrevNode into NewNode
for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k)
ValueMap[PrevNode->getGlobals()[k]] = NewNode;
NewNode->mergeWith(PrevNode);
}
} else if (NewNode != 0) {
ValueMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node
}
// If no existing node was found, clone the node and update the ValMap.
if (NewNode == 0) {
NewNode = new DSNode(*OldNode);
Nodes.push_back(NewNode);
for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j)
NewNode->setLink(j, 0);
for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j)
ValueMap[NewNode->getGlobals()[j]] = NewNode;
}
else
NewNode->NodeType |= OldNode->NodeType; // Markers may be different!
// Add the entry to NodeCache
CacheEntry = NewNode;
// Rewrite the links in the new node to point into the current graph,
// but only for links to external nodes. Set other links to NULL.
for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) {
DSNode* OldTarget = OldNode->getLink(j);
if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) {
DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache);
if (NewNode->getLink(j))
NewNode->getLink(j)->mergeWith(NewLink);
else
NewNode->setLink(j, NewLink);
}
}
// Remove all local markers
NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);
return NewNode;
}
// GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally
// visible target links (and recursively their such links) into this graph.
//
void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
std::map<const DSNode*, DSNode*> NodeCache;
for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i)
if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode)
GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false);
if (CloneCalls)
GlobalsGraph->cloneCalls(Graph);
GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
}
// GlobalDSGraph::cloneCalls - Clone function calls and their visible target
// links (and recursively their such links) into this graph.
//
void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
std::map<const DSNode*, DSNode*> NodeCache;
std::vector<std::vector<DSNodeHandle> >& FromCalls =Graph.FunctionCalls;
FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());
for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
FunctionCalls.push_back(std::vector<DSNodeHandle>());
FunctionCalls.back().reserve(FromCalls[i].size());
for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
FunctionCalls.back().push_back
((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits))
? cloneNodeInto(FromCalls[i][j], NodeCache, true)
: 0);
}
// remove trivially identical function calls
removeIdenticalCalls(FunctionCalls, "Globals Graph");
}
//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void LocalDataStructures::releaseMemory() {
for (std::map<const Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I)
delete I->second;
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
}
bool LocalDataStructures::run(Module &M) {
// Create a globals graph for the module. Deleted when all graphs go away.
GlobalDSGraph* GG = new GlobalDSGraph;
// Calculate all of the graphs...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
DSInfo.insert(std::make_pair(&*I, new DSGraph(*I, GG)));
return false;
}