mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 02:33:33 +00:00
846781235d
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207714 91177308-0d34-0410-b5e6-96231b3b80d8
632 lines
21 KiB
C++
632 lines
21 KiB
C++
//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
|
|
// register allocator for LLVM. This allocator works by constructing a PBQP
|
|
// problem representing the register allocation problem under consideration,
|
|
// solving this using a PBQP solver, and mapping the solution back to a
|
|
// register assignment. If any variables are selected for spilling then spill
|
|
// code is inserted and the process repeated.
|
|
//
|
|
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
|
|
// for register allocation. For more information on PBQP for register
|
|
// allocation, see the following papers:
|
|
//
|
|
// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
|
|
// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
|
|
// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
|
|
//
|
|
// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
|
|
// architectures. In Proceedings of the Joint Conference on Languages,
|
|
// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
|
|
// NY, USA, 139-148.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/RegAllocPBQP.h"
|
|
#include "RegisterCoalescer.h"
|
|
#include "Spiller.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveRangeEdit.h"
|
|
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
|
|
static RegisterRegAlloc
|
|
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
|
|
createDefaultPBQPRegisterAllocator);
|
|
|
|
static cl::opt<bool>
|
|
pbqpCoalescing("pbqp-coalescing",
|
|
cl::desc("Attempt coalescing during PBQP register allocation."),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool>
|
|
pbqpDumpGraphs("pbqp-dump-graphs",
|
|
cl::desc("Dump graphs for each function/round in the compilation unit."),
|
|
cl::init(false), cl::Hidden);
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
///
|
|
/// PBQP based allocators solve the register allocation problem by mapping
|
|
/// register allocation problems to Partitioned Boolean Quadratic
|
|
/// Programming problems.
|
|
class RegAllocPBQP : public MachineFunctionPass {
|
|
public:
|
|
|
|
static char ID;
|
|
|
|
/// Construct a PBQP register allocator.
|
|
RegAllocPBQP(std::unique_ptr<PBQPBuilder> &b, char *cPassID=nullptr)
|
|
: MachineFunctionPass(ID), builder(b.release()), customPassID(cPassID) {
|
|
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
|
|
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
|
|
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
|
|
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
/// Return the pass name.
|
|
const char* getPassName() const override {
|
|
return "PBQP Register Allocator";
|
|
}
|
|
|
|
/// PBQP analysis usage.
|
|
void getAnalysisUsage(AnalysisUsage &au) const override;
|
|
|
|
/// Perform register allocation
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
|
|
typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
|
|
typedef std::vector<const LiveInterval*> Node2LIMap;
|
|
typedef std::vector<unsigned> AllowedSet;
|
|
typedef std::vector<AllowedSet> AllowedSetMap;
|
|
typedef std::pair<unsigned, unsigned> RegPair;
|
|
typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
|
|
typedef std::set<unsigned> RegSet;
|
|
|
|
std::unique_ptr<PBQPBuilder> builder;
|
|
|
|
char *customPassID;
|
|
|
|
MachineFunction *mf;
|
|
const TargetMachine *tm;
|
|
const TargetRegisterInfo *tri;
|
|
const TargetInstrInfo *tii;
|
|
MachineRegisterInfo *mri;
|
|
const MachineBlockFrequencyInfo *mbfi;
|
|
|
|
std::unique_ptr<Spiller> spiller;
|
|
LiveIntervals *lis;
|
|
LiveStacks *lss;
|
|
VirtRegMap *vrm;
|
|
|
|
RegSet vregsToAlloc, emptyIntervalVRegs;
|
|
|
|
/// \brief Finds the initial set of vreg intervals to allocate.
|
|
void findVRegIntervalsToAlloc();
|
|
|
|
/// \brief Given a solved PBQP problem maps this solution back to a register
|
|
/// assignment.
|
|
bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
|
|
const PBQP::Solution &solution);
|
|
|
|
/// \brief Postprocessing before final spilling. Sets basic block "live in"
|
|
/// variables.
|
|
void finalizeAlloc() const;
|
|
|
|
};
|
|
|
|
char RegAllocPBQP::ID = 0;
|
|
|
|
} // End anonymous namespace.
|
|
|
|
unsigned PBQPRAProblem::getVRegForNode(PBQPRAGraph::NodeId node) const {
|
|
Node2VReg::const_iterator vregItr = node2VReg.find(node);
|
|
assert(vregItr != node2VReg.end() && "No vreg for node.");
|
|
return vregItr->second;
|
|
}
|
|
|
|
PBQPRAGraph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
|
|
VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
|
|
assert(nodeItr != vreg2Node.end() && "No node for vreg.");
|
|
return nodeItr->second;
|
|
|
|
}
|
|
|
|
const PBQPRAProblem::AllowedSet&
|
|
PBQPRAProblem::getAllowedSet(unsigned vreg) const {
|
|
AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
|
|
assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
|
|
const AllowedSet &allowedSet = allowedSetItr->second;
|
|
return allowedSet;
|
|
}
|
|
|
|
unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
|
|
assert(isPRegOption(vreg, option) && "Not a preg option.");
|
|
|
|
const AllowedSet& allowedSet = getAllowedSet(vreg);
|
|
assert(option <= allowedSet.size() && "Option outside allowed set.");
|
|
return allowedSet[option - 1];
|
|
}
|
|
|
|
PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
|
|
const MachineBlockFrequencyInfo *mbfi,
|
|
const RegSet &vregs) {
|
|
|
|
LiveIntervals *LIS = const_cast<LiveIntervals*>(lis);
|
|
MachineRegisterInfo *mri = &mf->getRegInfo();
|
|
const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
|
|
|
|
std::unique_ptr<PBQPRAProblem> p(new PBQPRAProblem());
|
|
PBQPRAGraph &g = p->getGraph();
|
|
RegSet pregs;
|
|
|
|
// Collect the set of preg intervals, record that they're used in the MF.
|
|
for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) {
|
|
if (mri->def_empty(Reg))
|
|
continue;
|
|
pregs.insert(Reg);
|
|
mri->setPhysRegUsed(Reg);
|
|
}
|
|
|
|
// Iterate over vregs.
|
|
for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
|
|
vregItr != vregEnd; ++vregItr) {
|
|
unsigned vreg = *vregItr;
|
|
const TargetRegisterClass *trc = mri->getRegClass(vreg);
|
|
LiveInterval *vregLI = &LIS->getInterval(vreg);
|
|
|
|
// Record any overlaps with regmask operands.
|
|
BitVector regMaskOverlaps;
|
|
LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps);
|
|
|
|
// Compute an initial allowed set for the current vreg.
|
|
typedef std::vector<unsigned> VRAllowed;
|
|
VRAllowed vrAllowed;
|
|
ArrayRef<MCPhysReg> rawOrder = trc->getRawAllocationOrder(*mf);
|
|
for (unsigned i = 0; i != rawOrder.size(); ++i) {
|
|
unsigned preg = rawOrder[i];
|
|
if (mri->isReserved(preg))
|
|
continue;
|
|
|
|
// vregLI crosses a regmask operand that clobbers preg.
|
|
if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg))
|
|
continue;
|
|
|
|
// vregLI overlaps fixed regunit interference.
|
|
bool Interference = false;
|
|
for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) {
|
|
if (vregLI->overlaps(LIS->getRegUnit(*Units))) {
|
|
Interference = true;
|
|
break;
|
|
}
|
|
}
|
|
if (Interference)
|
|
continue;
|
|
|
|
// preg is usable for this virtual register.
|
|
vrAllowed.push_back(preg);
|
|
}
|
|
|
|
PBQP::Vector nodeCosts(vrAllowed.size() + 1, 0);
|
|
|
|
PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
|
|
vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
|
|
|
|
addSpillCosts(nodeCosts, spillCost);
|
|
|
|
// Construct the node.
|
|
PBQPRAGraph::NodeId nId = g.addNode(std::move(nodeCosts));
|
|
|
|
// Record the mapping and allowed set in the problem.
|
|
p->recordVReg(vreg, nId, vrAllowed.begin(), vrAllowed.end());
|
|
|
|
}
|
|
|
|
for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
|
|
vr1Itr != vrEnd; ++vr1Itr) {
|
|
unsigned vr1 = *vr1Itr;
|
|
const LiveInterval &l1 = lis->getInterval(vr1);
|
|
const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
|
|
|
|
for (RegSet::const_iterator vr2Itr = std::next(vr1Itr); vr2Itr != vrEnd;
|
|
++vr2Itr) {
|
|
unsigned vr2 = *vr2Itr;
|
|
const LiveInterval &l2 = lis->getInterval(vr2);
|
|
const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
|
|
|
|
assert(!l2.empty() && "Empty interval in vreg set?");
|
|
if (l1.overlaps(l2)) {
|
|
PBQP::Matrix edgeCosts(vr1Allowed.size()+1, vr2Allowed.size()+1, 0);
|
|
addInterferenceCosts(edgeCosts, vr1Allowed, vr2Allowed, tri);
|
|
|
|
g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
|
|
std::move(edgeCosts));
|
|
}
|
|
}
|
|
}
|
|
|
|
return p.release();
|
|
}
|
|
|
|
void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
|
|
PBQP::PBQPNum spillCost) {
|
|
costVec[0] = spillCost;
|
|
}
|
|
|
|
void PBQPBuilder::addInterferenceCosts(
|
|
PBQP::Matrix &costMat,
|
|
const PBQPRAProblem::AllowedSet &vr1Allowed,
|
|
const PBQPRAProblem::AllowedSet &vr2Allowed,
|
|
const TargetRegisterInfo *tri) {
|
|
assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
|
|
assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
|
|
|
|
for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
|
|
unsigned preg1 = vr1Allowed[i];
|
|
|
|
for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
|
|
unsigned preg2 = vr2Allowed[j];
|
|
|
|
if (tri->regsOverlap(preg1, preg2)) {
|
|
costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
|
|
const LiveIntervals *lis,
|
|
const MachineBlockFrequencyInfo *mbfi,
|
|
const RegSet &vregs) {
|
|
|
|
std::unique_ptr<PBQPRAProblem> p(PBQPBuilder::build(mf, lis, mbfi, vregs));
|
|
PBQPRAGraph &g = p->getGraph();
|
|
|
|
const TargetMachine &tm = mf->getTarget();
|
|
CoalescerPair cp(*tm.getRegisterInfo());
|
|
|
|
// Scan the machine function and add a coalescing cost whenever CoalescerPair
|
|
// gives the Ok.
|
|
for (const auto &mbb : *mf) {
|
|
for (const auto &mi : mbb) {
|
|
if (!cp.setRegisters(&mi)) {
|
|
continue; // Not coalescable.
|
|
}
|
|
|
|
if (cp.getSrcReg() == cp.getDstReg()) {
|
|
continue; // Already coalesced.
|
|
}
|
|
|
|
unsigned dst = cp.getDstReg(),
|
|
src = cp.getSrcReg();
|
|
|
|
const float copyFactor = 0.5; // Cost of copy relative to load. Current
|
|
// value plucked randomly out of the air.
|
|
|
|
PBQP::PBQPNum cBenefit =
|
|
copyFactor * LiveIntervals::getSpillWeight(false, true, mbfi, &mi);
|
|
|
|
if (cp.isPhys()) {
|
|
if (!mf->getRegInfo().isAllocatable(dst)) {
|
|
continue;
|
|
}
|
|
|
|
const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
|
|
unsigned pregOpt = 0;
|
|
while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
|
|
++pregOpt;
|
|
}
|
|
if (pregOpt < allowed.size()) {
|
|
++pregOpt; // +1 to account for spill option.
|
|
PBQPRAGraph::NodeId node = p->getNodeForVReg(src);
|
|
llvm::dbgs() << "Reading node costs for node " << node << "\n";
|
|
llvm::dbgs() << "Source node: " << &g.getNodeCosts(node) << "\n";
|
|
PBQP::Vector newCosts(g.getNodeCosts(node));
|
|
addPhysRegCoalesce(newCosts, pregOpt, cBenefit);
|
|
g.setNodeCosts(node, newCosts);
|
|
}
|
|
} else {
|
|
const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
|
|
const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
|
|
PBQPRAGraph::NodeId node1 = p->getNodeForVReg(dst);
|
|
PBQPRAGraph::NodeId node2 = p->getNodeForVReg(src);
|
|
PBQPRAGraph::EdgeId edge = g.findEdge(node1, node2);
|
|
if (edge == g.invalidEdgeId()) {
|
|
PBQP::Matrix costs(allowed1->size() + 1, allowed2->size() + 1, 0);
|
|
addVirtRegCoalesce(costs, *allowed1, *allowed2, cBenefit);
|
|
g.addEdge(node1, node2, costs);
|
|
} else {
|
|
if (g.getEdgeNode1Id(edge) == node2) {
|
|
std::swap(node1, node2);
|
|
std::swap(allowed1, allowed2);
|
|
}
|
|
PBQP::Matrix costs(g.getEdgeCosts(edge));
|
|
addVirtRegCoalesce(costs, *allowed1, *allowed2, cBenefit);
|
|
g.setEdgeCosts(edge, costs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return p.release();
|
|
}
|
|
|
|
void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
|
|
unsigned pregOption,
|
|
PBQP::PBQPNum benefit) {
|
|
costVec[pregOption] += -benefit;
|
|
}
|
|
|
|
void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
|
|
PBQP::Matrix &costMat,
|
|
const PBQPRAProblem::AllowedSet &vr1Allowed,
|
|
const PBQPRAProblem::AllowedSet &vr2Allowed,
|
|
PBQP::PBQPNum benefit) {
|
|
|
|
assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
|
|
assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
|
|
|
|
for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
|
|
unsigned preg1 = vr1Allowed[i];
|
|
for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
|
|
unsigned preg2 = vr2Allowed[j];
|
|
|
|
if (preg1 == preg2) {
|
|
costMat[i + 1][j + 1] += -benefit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
|
|
au.setPreservesCFG();
|
|
au.addRequired<AliasAnalysis>();
|
|
au.addPreserved<AliasAnalysis>();
|
|
au.addRequired<SlotIndexes>();
|
|
au.addPreserved<SlotIndexes>();
|
|
au.addRequired<LiveIntervals>();
|
|
au.addPreserved<LiveIntervals>();
|
|
//au.addRequiredID(SplitCriticalEdgesID);
|
|
if (customPassID)
|
|
au.addRequiredID(*customPassID);
|
|
au.addRequired<LiveStacks>();
|
|
au.addPreserved<LiveStacks>();
|
|
au.addRequired<MachineBlockFrequencyInfo>();
|
|
au.addPreserved<MachineBlockFrequencyInfo>();
|
|
au.addRequired<MachineLoopInfo>();
|
|
au.addPreserved<MachineLoopInfo>();
|
|
au.addRequired<MachineDominatorTree>();
|
|
au.addPreserved<MachineDominatorTree>();
|
|
au.addRequired<VirtRegMap>();
|
|
au.addPreserved<VirtRegMap>();
|
|
MachineFunctionPass::getAnalysisUsage(au);
|
|
}
|
|
|
|
void RegAllocPBQP::findVRegIntervalsToAlloc() {
|
|
|
|
// Iterate over all live ranges.
|
|
for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
|
|
if (mri->reg_nodbg_empty(Reg))
|
|
continue;
|
|
LiveInterval *li = &lis->getInterval(Reg);
|
|
|
|
// If this live interval is non-empty we will use pbqp to allocate it.
|
|
// Empty intervals we allocate in a simple post-processing stage in
|
|
// finalizeAlloc.
|
|
if (!li->empty()) {
|
|
vregsToAlloc.insert(li->reg);
|
|
} else {
|
|
emptyIntervalVRegs.insert(li->reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
|
|
const PBQP::Solution &solution) {
|
|
// Set to true if we have any spills
|
|
bool anotherRoundNeeded = false;
|
|
|
|
// Clear the existing allocation.
|
|
vrm->clearAllVirt();
|
|
|
|
const PBQPRAGraph &g = problem.getGraph();
|
|
// Iterate over the nodes mapping the PBQP solution to a register
|
|
// assignment.
|
|
for (auto NId : g.nodeIds()) {
|
|
unsigned vreg = problem.getVRegForNode(NId);
|
|
unsigned alloc = solution.getSelection(NId);
|
|
|
|
if (problem.isPRegOption(vreg, alloc)) {
|
|
unsigned preg = problem.getPRegForOption(vreg, alloc);
|
|
DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> "
|
|
<< tri->getName(preg) << "\n");
|
|
assert(preg != 0 && "Invalid preg selected.");
|
|
vrm->assignVirt2Phys(vreg, preg);
|
|
} else if (problem.isSpillOption(vreg, alloc)) {
|
|
vregsToAlloc.erase(vreg);
|
|
SmallVector<unsigned, 8> newSpills;
|
|
LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
|
|
spiller->spill(LRE);
|
|
|
|
DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: "
|
|
<< LRE.getParent().weight << ", New vregs: ");
|
|
|
|
// Copy any newly inserted live intervals into the list of regs to
|
|
// allocate.
|
|
for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
|
|
itr != end; ++itr) {
|
|
LiveInterval &li = lis->getInterval(*itr);
|
|
assert(!li.empty() && "Empty spill range.");
|
|
DEBUG(dbgs() << PrintReg(li.reg, tri) << " ");
|
|
vregsToAlloc.insert(li.reg);
|
|
}
|
|
|
|
DEBUG(dbgs() << ")\n");
|
|
|
|
// We need another round if spill intervals were added.
|
|
anotherRoundNeeded |= !LRE.empty();
|
|
} else {
|
|
llvm_unreachable("Unknown allocation option.");
|
|
}
|
|
}
|
|
|
|
return !anotherRoundNeeded;
|
|
}
|
|
|
|
|
|
void RegAllocPBQP::finalizeAlloc() const {
|
|
// First allocate registers for the empty intervals.
|
|
for (RegSet::const_iterator
|
|
itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
|
|
itr != end; ++itr) {
|
|
LiveInterval *li = &lis->getInterval(*itr);
|
|
|
|
unsigned physReg = mri->getSimpleHint(li->reg);
|
|
|
|
if (physReg == 0) {
|
|
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
|
|
physReg = liRC->getRawAllocationOrder(*mf).front();
|
|
}
|
|
|
|
vrm->assignVirt2Phys(li->reg, physReg);
|
|
}
|
|
}
|
|
|
|
bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
|
|
|
|
mf = &MF;
|
|
tm = &mf->getTarget();
|
|
tri = tm->getRegisterInfo();
|
|
tii = tm->getInstrInfo();
|
|
mri = &mf->getRegInfo();
|
|
|
|
lis = &getAnalysis<LiveIntervals>();
|
|
lss = &getAnalysis<LiveStacks>();
|
|
mbfi = &getAnalysis<MachineBlockFrequencyInfo>();
|
|
|
|
calculateSpillWeightsAndHints(*lis, MF, getAnalysis<MachineLoopInfo>(),
|
|
*mbfi);
|
|
|
|
vrm = &getAnalysis<VirtRegMap>();
|
|
spiller.reset(createInlineSpiller(*this, MF, *vrm));
|
|
|
|
mri->freezeReservedRegs(MF);
|
|
|
|
DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n");
|
|
|
|
// Allocator main loop:
|
|
//
|
|
// * Map current regalloc problem to a PBQP problem
|
|
// * Solve the PBQP problem
|
|
// * Map the solution back to a register allocation
|
|
// * Spill if necessary
|
|
//
|
|
// This process is continued till no more spills are generated.
|
|
|
|
// Find the vreg intervals in need of allocation.
|
|
findVRegIntervalsToAlloc();
|
|
|
|
#ifndef NDEBUG
|
|
const Function* func = mf->getFunction();
|
|
std::string fqn =
|
|
func->getParent()->getModuleIdentifier() + "." +
|
|
func->getName().str();
|
|
#endif
|
|
|
|
// If there are non-empty intervals allocate them using pbqp.
|
|
if (!vregsToAlloc.empty()) {
|
|
|
|
bool pbqpAllocComplete = false;
|
|
unsigned round = 0;
|
|
|
|
while (!pbqpAllocComplete) {
|
|
DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
|
|
|
|
std::unique_ptr<PBQPRAProblem> problem(
|
|
builder->build(mf, lis, mbfi, vregsToAlloc));
|
|
|
|
#ifndef NDEBUG
|
|
if (pbqpDumpGraphs) {
|
|
std::ostringstream rs;
|
|
rs << round;
|
|
std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph");
|
|
std::string tmp;
|
|
raw_fd_ostream os(graphFileName.c_str(), tmp, sys::fs::F_Text);
|
|
DEBUG(dbgs() << "Dumping graph for round " << round << " to \""
|
|
<< graphFileName << "\"\n");
|
|
problem->getGraph().dump(os);
|
|
}
|
|
#endif
|
|
|
|
PBQP::Solution solution =
|
|
PBQP::RegAlloc::solve(problem->getGraph());
|
|
|
|
pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
|
|
|
|
++round;
|
|
}
|
|
}
|
|
|
|
// Finalise allocation, allocate empty ranges.
|
|
finalizeAlloc();
|
|
vregsToAlloc.clear();
|
|
emptyIntervalVRegs.clear();
|
|
|
|
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
FunctionPass *
|
|
llvm::createPBQPRegisterAllocator(std::unique_ptr<PBQPBuilder> &builder,
|
|
char *customPassID) {
|
|
return new RegAllocPBQP(builder, customPassID);
|
|
}
|
|
|
|
FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
|
|
std::unique_ptr<PBQPBuilder> Builder;
|
|
if (pbqpCoalescing)
|
|
Builder.reset(new PBQPBuilderWithCoalescing());
|
|
else
|
|
Builder.reset(new PBQPBuilder());
|
|
return createPBQPRegisterAllocator(Builder);
|
|
}
|
|
|
|
#undef DEBUG_TYPE
|