mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 17:32:19 +00:00
5c0b16d0c4
a global with that gets printed with the :mem modifier. All operands to lea's should be handled with the lea32mem operand kind, and this allows the TLS stuff to do this. There are several better ways to do this, but I went for the minimal change since I can't really test this (beyond make check). This also makes the use of EBX explicit in the operand list in the 32-bit, instead of implicit in the instruction. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73834 91177308-0d34-0410-b5e6-96231b3b80d8
1755 lines
62 KiB
C++
1755 lines
62 KiB
C++
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a DAG pattern matching instruction selector for X86,
|
|
// converting from a legalized dag to a X86 dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-isel"
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86ISelLowering.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
|
|
|
|
STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern Matcher Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
|
|
/// SDValue's instead of register numbers for the leaves of the matched
|
|
/// tree.
|
|
struct X86ISelAddressMode {
|
|
enum {
|
|
RegBase,
|
|
FrameIndexBase
|
|
} BaseType;
|
|
|
|
struct { // This is really a union, discriminated by BaseType!
|
|
SDValue Reg;
|
|
int FrameIndex;
|
|
} Base;
|
|
|
|
bool isRIPRel; // RIP as base?
|
|
unsigned Scale;
|
|
SDValue IndexReg;
|
|
int32_t Disp;
|
|
SDValue Segment;
|
|
GlobalValue *GV;
|
|
Constant *CP;
|
|
const char *ES;
|
|
int JT;
|
|
unsigned Align; // CP alignment.
|
|
|
|
X86ISelAddressMode()
|
|
: BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
|
|
Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0) {
|
|
}
|
|
|
|
bool hasSymbolicDisplacement() const {
|
|
return GV != 0 || CP != 0 || ES != 0 || JT != -1;
|
|
}
|
|
|
|
void dump() {
|
|
cerr << "X86ISelAddressMode " << this << "\n";
|
|
cerr << "Base.Reg ";
|
|
if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
|
|
else cerr << "nul";
|
|
cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
|
|
cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
|
|
cerr << "IndexReg ";
|
|
if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
|
|
else cerr << "nul";
|
|
cerr << " Disp " << Disp << "\n";
|
|
cerr << "GV "; if (GV) GV->dump();
|
|
else cerr << "nul";
|
|
cerr << " CP "; if (CP) CP->dump();
|
|
else cerr << "nul";
|
|
cerr << "\n";
|
|
cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
|
|
cerr << " JT" << JT << " Align" << Align << "\n";
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISel - X86 specific code to select X86 machine instructions for
|
|
/// SelectionDAG operations.
|
|
///
|
|
class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
|
|
/// X86Lowering - This object fully describes how to lower LLVM code to an
|
|
/// X86-specific SelectionDAG.
|
|
X86TargetLowering &X86Lowering;
|
|
|
|
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const X86Subtarget *Subtarget;
|
|
|
|
/// CurBB - Current BB being isel'd.
|
|
///
|
|
MachineBasicBlock *CurBB;
|
|
|
|
/// OptForSize - If true, selector should try to optimize for code size
|
|
/// instead of performance.
|
|
bool OptForSize;
|
|
|
|
public:
|
|
explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel),
|
|
X86Lowering(*tm.getTargetLowering()),
|
|
Subtarget(&tm.getSubtarget<X86Subtarget>()),
|
|
OptForSize(false) {}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 DAG->DAG Instruction Selection";
|
|
}
|
|
|
|
/// InstructionSelect - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelect();
|
|
|
|
virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
|
|
|
|
virtual
|
|
bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "X86GenDAGISel.inc"
|
|
|
|
private:
|
|
SDNode *Select(SDValue N);
|
|
SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
|
|
|
|
bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
|
|
bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
|
|
bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
|
|
bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
|
|
unsigned Depth = 0);
|
|
bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
|
|
bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment);
|
|
bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp);
|
|
bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp);
|
|
bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
|
|
SDValue N, SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment,
|
|
SDValue &InChain, SDValue &OutChain);
|
|
bool TryFoldLoad(SDValue P, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment);
|
|
void PreprocessForRMW();
|
|
void PreprocessForFPConvert();
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps);
|
|
|
|
void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
|
|
|
|
inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &Segment) {
|
|
Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
|
|
CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
|
|
AM.Base.Reg;
|
|
Scale = getI8Imm(AM.Scale);
|
|
Index = AM.IndexReg;
|
|
// These are 32-bit even in 64-bit mode since RIP relative offset
|
|
// is 32-bit.
|
|
if (AM.GV)
|
|
Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
|
|
else if (AM.CP)
|
|
Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
|
|
AM.Align, AM.Disp);
|
|
else if (AM.ES)
|
|
Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
|
|
else if (AM.JT != -1)
|
|
Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
|
|
else
|
|
Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
|
|
|
|
if (AM.Segment.getNode())
|
|
Segment = AM.Segment;
|
|
else
|
|
Segment = CurDAG->getRegister(0, MVT::i32);
|
|
}
|
|
|
|
/// getI8Imm - Return a target constant with the specified value, of type
|
|
/// i8.
|
|
inline SDValue getI8Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i8);
|
|
}
|
|
|
|
/// getI16Imm - Return a target constant with the specified value, of type
|
|
/// i16.
|
|
inline SDValue getI16Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i16);
|
|
}
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDValue getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
/// getGlobalBaseReg - Return an SDNode that returns the value of
|
|
/// the global base register. Output instructions required to
|
|
/// initialize the global base register, if necessary.
|
|
///
|
|
SDNode *getGlobalBaseReg();
|
|
|
|
/// getTargetMachine - Return a reference to the TargetMachine, casted
|
|
/// to the target-specific type.
|
|
const X86TargetMachine &getTargetMachine() {
|
|
return static_cast<const X86TargetMachine &>(TM);
|
|
}
|
|
|
|
/// getInstrInfo - Return a reference to the TargetInstrInfo, casted
|
|
/// to the target-specific type.
|
|
const X86InstrInfo *getInstrInfo() {
|
|
return getTargetMachine().getInstrInfo();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
unsigned Indent;
|
|
#endif
|
|
};
|
|
}
|
|
|
|
|
|
bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
|
|
SDNode *Root) const {
|
|
if (OptLevel == CodeGenOpt::None) return false;
|
|
|
|
if (U == Root)
|
|
switch (U->getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD:
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
SDValue Op1 = U->getOperand(1);
|
|
|
|
// If the other operand is a 8-bit immediate we should fold the immediate
|
|
// instead. This reduces code size.
|
|
// e.g.
|
|
// movl 4(%esp), %eax
|
|
// addl $4, %eax
|
|
// vs.
|
|
// movl $4, %eax
|
|
// addl 4(%esp), %eax
|
|
// The former is 2 bytes shorter. In case where the increment is 1, then
|
|
// the saving can be 4 bytes (by using incl %eax).
|
|
if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
|
|
if (Imm->getAPIntValue().isSignedIntN(8))
|
|
return false;
|
|
|
|
// If the other operand is a TLS address, we should fold it instead.
|
|
// This produces
|
|
// movl %gs:0, %eax
|
|
// leal i@NTPOFF(%eax), %eax
|
|
// instead of
|
|
// movl $i@NTPOFF, %eax
|
|
// addl %gs:0, %eax
|
|
// if the block also has an access to a second TLS address this will save
|
|
// a load.
|
|
// FIXME: This is probably also true for non TLS addresses.
|
|
if (Op1.getOpcode() == X86ISD::Wrapper) {
|
|
SDValue Val = Op1.getOperand(0);
|
|
if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Proceed to 'generic' cycle finder code
|
|
return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root);
|
|
}
|
|
|
|
/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
|
|
/// and move load below the TokenFactor. Replace store's chain operand with
|
|
/// load's chain result.
|
|
static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
|
|
SDValue Store, SDValue TF) {
|
|
SmallVector<SDValue, 4> Ops;
|
|
for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
|
|
if (Load.getNode() == TF.getOperand(i).getNode())
|
|
Ops.push_back(Load.getOperand(0));
|
|
else
|
|
Ops.push_back(TF.getOperand(i));
|
|
CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
|
|
CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
|
|
CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
|
|
Store.getOperand(2), Store.getOperand(3));
|
|
}
|
|
|
|
/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
|
|
///
|
|
static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
|
|
SDValue &Load) {
|
|
if (N.getOpcode() == ISD::BIT_CONVERT)
|
|
N = N.getOperand(0);
|
|
|
|
LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
|
|
if (!LD || LD->isVolatile())
|
|
return false;
|
|
if (LD->getAddressingMode() != ISD::UNINDEXED)
|
|
return false;
|
|
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
|
|
return false;
|
|
|
|
if (N.hasOneUse() &&
|
|
N.getOperand(1) == Address &&
|
|
N.getNode()->isOperandOf(Chain.getNode())) {
|
|
Load = N;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
|
|
/// operand and move load below the call's chain operand.
|
|
static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
|
|
SDValue Call, SDValue CallSeqStart) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
SDValue Chain = CallSeqStart.getOperand(0);
|
|
if (Chain.getNode() == Load.getNode())
|
|
Ops.push_back(Load.getOperand(0));
|
|
else {
|
|
assert(Chain.getOpcode() == ISD::TokenFactor &&
|
|
"Unexpected CallSeqStart chain operand");
|
|
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
|
|
if (Chain.getOperand(i).getNode() == Load.getNode())
|
|
Ops.push_back(Load.getOperand(0));
|
|
else
|
|
Ops.push_back(Chain.getOperand(i));
|
|
SDValue NewChain =
|
|
CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
|
|
MVT::Other, &Ops[0], Ops.size());
|
|
Ops.clear();
|
|
Ops.push_back(NewChain);
|
|
}
|
|
for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
|
|
Ops.push_back(CallSeqStart.getOperand(i));
|
|
CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
|
|
CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
|
|
Load.getOperand(1), Load.getOperand(2));
|
|
Ops.clear();
|
|
Ops.push_back(SDValue(Load.getNode(), 1));
|
|
for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(Call.getOperand(i));
|
|
CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
|
|
}
|
|
|
|
/// isCalleeLoad - Return true if call address is a load and it can be
|
|
/// moved below CALLSEQ_START and the chains leading up to the call.
|
|
/// Return the CALLSEQ_START by reference as a second output.
|
|
static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
|
|
if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
|
|
return false;
|
|
LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
|
|
if (!LD ||
|
|
LD->isVolatile() ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED ||
|
|
LD->getExtensionType() != ISD::NON_EXTLOAD)
|
|
return false;
|
|
|
|
// Now let's find the callseq_start.
|
|
while (Chain.getOpcode() != ISD::CALLSEQ_START) {
|
|
if (!Chain.hasOneUse())
|
|
return false;
|
|
Chain = Chain.getOperand(0);
|
|
}
|
|
|
|
if (Chain.getOperand(0).getNode() == Callee.getNode())
|
|
return true;
|
|
if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
|
|
Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
|
|
/// This is only run if not in -O0 mode.
|
|
/// This allows the instruction selector to pick more read-modify-write
|
|
/// instructions. This is a common case:
|
|
///
|
|
/// [Load chain]
|
|
/// ^
|
|
/// |
|
|
/// [Load]
|
|
/// ^ ^
|
|
/// | |
|
|
/// / \-
|
|
/// / |
|
|
/// [TokenFactor] [Op]
|
|
/// ^ ^
|
|
/// | |
|
|
/// \ /
|
|
/// \ /
|
|
/// [Store]
|
|
///
|
|
/// The fact the store's chain operand != load's chain will prevent the
|
|
/// (store (op (load))) instruction from being selected. We can transform it to:
|
|
///
|
|
/// [Load chain]
|
|
/// ^
|
|
/// |
|
|
/// [TokenFactor]
|
|
/// ^
|
|
/// |
|
|
/// [Load]
|
|
/// ^ ^
|
|
/// | |
|
|
/// | \-
|
|
/// | |
|
|
/// | [Op]
|
|
/// | ^
|
|
/// | |
|
|
/// \ /
|
|
/// \ /
|
|
/// [Store]
|
|
void X86DAGToDAGISel::PreprocessForRMW() {
|
|
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
|
|
E = CurDAG->allnodes_end(); I != E; ++I) {
|
|
if (I->getOpcode() == X86ISD::CALL) {
|
|
/// Also try moving call address load from outside callseq_start to just
|
|
/// before the call to allow it to be folded.
|
|
///
|
|
/// [Load chain]
|
|
/// ^
|
|
/// |
|
|
/// [Load]
|
|
/// ^ ^
|
|
/// | |
|
|
/// / \--
|
|
/// / |
|
|
///[CALLSEQ_START] |
|
|
/// ^ |
|
|
/// | |
|
|
/// [LOAD/C2Reg] |
|
|
/// | |
|
|
/// \ /
|
|
/// \ /
|
|
/// [CALL]
|
|
SDValue Chain = I->getOperand(0);
|
|
SDValue Load = I->getOperand(1);
|
|
if (!isCalleeLoad(Load, Chain))
|
|
continue;
|
|
MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
|
|
++NumLoadMoved;
|
|
continue;
|
|
}
|
|
|
|
if (!ISD::isNON_TRUNCStore(I))
|
|
continue;
|
|
SDValue Chain = I->getOperand(0);
|
|
|
|
if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
|
|
continue;
|
|
|
|
SDValue N1 = I->getOperand(1);
|
|
SDValue N2 = I->getOperand(2);
|
|
if ((N1.getValueType().isFloatingPoint() &&
|
|
!N1.getValueType().isVector()) ||
|
|
!N1.hasOneUse())
|
|
continue;
|
|
|
|
bool RModW = false;
|
|
SDValue Load;
|
|
unsigned Opcode = N1.getNode()->getOpcode();
|
|
switch (Opcode) {
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
SDValue N10 = N1.getOperand(0);
|
|
SDValue N11 = N1.getOperand(1);
|
|
RModW = isRMWLoad(N10, Chain, N2, Load);
|
|
if (!RModW)
|
|
RModW = isRMWLoad(N11, Chain, N2, Load);
|
|
break;
|
|
}
|
|
case ISD::SUB:
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE:
|
|
case X86ISD::SHLD:
|
|
case X86ISD::SHRD: {
|
|
SDValue N10 = N1.getOperand(0);
|
|
RModW = isRMWLoad(N10, Chain, N2, Load);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (RModW) {
|
|
MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
|
|
++NumLoadMoved;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
|
|
/// nodes that target the FP stack to be store and load to the stack. This is a
|
|
/// gross hack. We would like to simply mark these as being illegal, but when
|
|
/// we do that, legalize produces these when it expands calls, then expands
|
|
/// these in the same legalize pass. We would like dag combine to be able to
|
|
/// hack on these between the call expansion and the node legalization. As such
|
|
/// this pass basically does "really late" legalization of these inline with the
|
|
/// X86 isel pass.
|
|
void X86DAGToDAGISel::PreprocessForFPConvert() {
|
|
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
|
|
E = CurDAG->allnodes_end(); I != E; ) {
|
|
SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
|
|
if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
|
|
continue;
|
|
|
|
// If the source and destination are SSE registers, then this is a legal
|
|
// conversion that should not be lowered.
|
|
MVT SrcVT = N->getOperand(0).getValueType();
|
|
MVT DstVT = N->getValueType(0);
|
|
bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
|
|
bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
|
|
if (SrcIsSSE && DstIsSSE)
|
|
continue;
|
|
|
|
if (!SrcIsSSE && !DstIsSSE) {
|
|
// If this is an FPStack extension, it is a noop.
|
|
if (N->getOpcode() == ISD::FP_EXTEND)
|
|
continue;
|
|
// If this is a value-preserving FPStack truncation, it is a noop.
|
|
if (N->getConstantOperandVal(1))
|
|
continue;
|
|
}
|
|
|
|
// Here we could have an FP stack truncation or an FPStack <-> SSE convert.
|
|
// FPStack has extload and truncstore. SSE can fold direct loads into other
|
|
// operations. Based on this, decide what we want to do.
|
|
MVT MemVT;
|
|
if (N->getOpcode() == ISD::FP_ROUND)
|
|
MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
|
|
else
|
|
MemVT = SrcIsSSE ? SrcVT : DstVT;
|
|
|
|
SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
// FIXME: optimize the case where the src/dest is a load or store?
|
|
SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
|
|
N->getOperand(0),
|
|
MemTmp, NULL, 0, MemVT);
|
|
SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
|
|
NULL, 0, MemVT);
|
|
|
|
// We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
|
|
// extload we created. This will cause general havok on the dag because
|
|
// anything below the conversion could be folded into other existing nodes.
|
|
// To avoid invalidating 'I', back it up to the convert node.
|
|
--I;
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
|
|
|
|
// Now that we did that, the node is dead. Increment the iterator to the
|
|
// next node to process, then delete N.
|
|
++I;
|
|
CurDAG->DeleteNode(N);
|
|
}
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
|
|
/// when it has created a SelectionDAG for us to codegen.
|
|
void X86DAGToDAGISel::InstructionSelect() {
|
|
CurBB = BB; // BB can change as result of isel.
|
|
const Function *F = CurDAG->getMachineFunction().getFunction();
|
|
OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
|
|
|
|
DEBUG(BB->dump());
|
|
if (OptLevel != CodeGenOpt::None)
|
|
PreprocessForRMW();
|
|
|
|
// FIXME: This should only happen when not compiled with -O0.
|
|
PreprocessForFPConvert();
|
|
|
|
// Codegen the basic block.
|
|
#ifndef NDEBUG
|
|
DOUT << "===== Instruction selection begins:\n";
|
|
Indent = 0;
|
|
#endif
|
|
SelectRoot(*CurDAG);
|
|
#ifndef NDEBUG
|
|
DOUT << "===== Instruction selection ends:\n";
|
|
#endif
|
|
|
|
CurDAG->RemoveDeadNodes();
|
|
}
|
|
|
|
/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
|
|
/// the main function.
|
|
void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
|
|
MachineFrameInfo *MFI) {
|
|
const TargetInstrInfo *TII = TM.getInstrInfo();
|
|
if (Subtarget->isTargetCygMing())
|
|
BuildMI(BB, DebugLoc::getUnknownLoc(),
|
|
TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
|
|
}
|
|
|
|
void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
|
|
// If this is main, emit special code for main.
|
|
MachineBasicBlock *BB = MF.begin();
|
|
if (Fn.hasExternalLinkage() && Fn.getName() == "main")
|
|
EmitSpecialCodeForMain(BB, MF.getFrameInfo());
|
|
}
|
|
|
|
|
|
bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
|
|
X86ISelAddressMode &AM) {
|
|
assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
|
|
SDValue Segment = N.getOperand(0);
|
|
|
|
if (AM.Segment.getNode() == 0) {
|
|
AM.Segment = Segment;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
|
|
// This optimization is valid because the GNU TLS model defines that
|
|
// gs:0 (or fs:0 on X86-64) contains its own address.
|
|
// For more information see http://people.redhat.com/drepper/tls.pdf
|
|
|
|
SDValue Address = N.getOperand(1);
|
|
if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
|
|
!MatchSegmentBaseAddress (Address, AM))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
|
|
bool SymbolicAddressesAreRIPRel =
|
|
getTargetMachine().symbolicAddressesAreRIPRel();
|
|
bool is64Bit = Subtarget->is64Bit();
|
|
DOUT << "Wrapper: 64bit " << is64Bit;
|
|
DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
|
|
|
|
// Under X86-64 non-small code model, GV (and friends) are 64-bits.
|
|
if (is64Bit && (TM.getCodeModel() != CodeModel::Small))
|
|
return true;
|
|
|
|
// Base and index reg must be 0 in order to use rip as base.
|
|
bool canUsePICRel = !AM.Base.Reg.getNode() && !AM.IndexReg.getNode();
|
|
if (is64Bit && !canUsePICRel && SymbolicAddressesAreRIPRel)
|
|
return true;
|
|
|
|
if (AM.hasSymbolicDisplacement())
|
|
return true;
|
|
// If value is available in a register both base and index components have
|
|
// been picked, we can't fit the result available in the register in the
|
|
// addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
|
|
|
|
SDValue N0 = N.getOperand(0);
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
|
|
uint64_t Offset = G->getOffset();
|
|
if (!is64Bit || isInt32(AM.Disp + Offset)) {
|
|
GlobalValue *GV = G->getGlobal();
|
|
bool isRIPRel = SymbolicAddressesAreRIPRel;
|
|
if (N0.getOpcode() == llvm::ISD::TargetGlobalTLSAddress) {
|
|
TLSModel::Model model =
|
|
getTLSModel (GV, TM.getRelocationModel());
|
|
if (is64Bit && model == TLSModel::InitialExec)
|
|
isRIPRel = true;
|
|
}
|
|
AM.GV = GV;
|
|
AM.Disp += Offset;
|
|
AM.isRIPRel = isRIPRel;
|
|
return false;
|
|
}
|
|
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
|
|
uint64_t Offset = CP->getOffset();
|
|
if (!is64Bit || isInt32(AM.Disp + Offset)) {
|
|
AM.CP = CP->getConstVal();
|
|
AM.Align = CP->getAlignment();
|
|
AM.Disp += Offset;
|
|
AM.isRIPRel = SymbolicAddressesAreRIPRel;
|
|
return false;
|
|
}
|
|
} else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
|
|
AM.ES = S->getSymbol();
|
|
AM.isRIPRel = SymbolicAddressesAreRIPRel;
|
|
return false;
|
|
} else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
|
|
AM.JT = J->getIndex();
|
|
AM.isRIPRel = SymbolicAddressesAreRIPRel;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// MatchAddress - Add the specified node to the specified addressing mode,
|
|
/// returning true if it cannot be done. This just pattern matches for the
|
|
/// addressing mode.
|
|
bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
|
|
unsigned Depth) {
|
|
bool is64Bit = Subtarget->is64Bit();
|
|
DebugLoc dl = N.getDebugLoc();
|
|
DOUT << "MatchAddress: "; DEBUG(AM.dump());
|
|
// Limit recursion.
|
|
if (Depth > 5)
|
|
return MatchAddressBase(N, AM);
|
|
|
|
// RIP relative addressing: %rip + 32-bit displacement!
|
|
if (AM.isRIPRel) {
|
|
if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
|
|
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
if (!is64Bit || isInt32(AM.Disp + Val)) {
|
|
AM.Disp += Val;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
switch (N.getOpcode()) {
|
|
default: break;
|
|
case ISD::Constant: {
|
|
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
if (!is64Bit || isInt32(AM.Disp + Val)) {
|
|
AM.Disp += Val;
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case X86ISD::SegmentBaseAddress:
|
|
if (!MatchSegmentBaseAddress(N, AM))
|
|
return false;
|
|
break;
|
|
|
|
case X86ISD::Wrapper:
|
|
if (!MatchWrapper(N, AM))
|
|
return false;
|
|
break;
|
|
|
|
case ISD::LOAD:
|
|
if (!MatchLoad(N, AM))
|
|
return false;
|
|
break;
|
|
|
|
case ISD::FrameIndex:
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase
|
|
&& AM.Base.Reg.getNode() == 0) {
|
|
AM.BaseType = X86ISelAddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case ISD::SHL:
|
|
if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
|
|
break;
|
|
|
|
if (ConstantSDNode
|
|
*CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
|
|
unsigned Val = CN->getZExtValue();
|
|
if (Val == 1 || Val == 2 || Val == 3) {
|
|
AM.Scale = 1 << Val;
|
|
SDValue ShVal = N.getNode()->getOperand(0);
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
|
|
AM.IndexReg = ShVal.getNode()->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
|
|
uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
|
|
if (!is64Bit || isInt32(Disp))
|
|
AM.Disp = Disp;
|
|
else
|
|
AM.IndexReg = ShVal;
|
|
} else {
|
|
AM.IndexReg = ShVal;
|
|
}
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::SMUL_LOHI:
|
|
case ISD::UMUL_LOHI:
|
|
// A mul_lohi where we need the low part can be folded as a plain multiply.
|
|
if (N.getResNo() != 0) break;
|
|
// FALL THROUGH
|
|
case ISD::MUL:
|
|
case X86ISD::MUL_IMM:
|
|
// X*[3,5,9] -> X+X*[2,4,8]
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base.Reg.getNode() == 0 &&
|
|
AM.IndexReg.getNode() == 0 &&
|
|
!AM.isRIPRel) {
|
|
if (ConstantSDNode
|
|
*CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
|
|
if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
|
|
CN->getZExtValue() == 9) {
|
|
AM.Scale = unsigned(CN->getZExtValue())-1;
|
|
|
|
SDValue MulVal = N.getNode()->getOperand(0);
|
|
SDValue Reg;
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
|
|
Reg = MulVal.getNode()->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
|
|
uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
|
|
CN->getZExtValue();
|
|
if (!is64Bit || isInt32(Disp))
|
|
AM.Disp = Disp;
|
|
else
|
|
Reg = N.getNode()->getOperand(0);
|
|
} else {
|
|
Reg = N.getNode()->getOperand(0);
|
|
}
|
|
|
|
AM.IndexReg = AM.Base.Reg = Reg;
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ISD::SUB: {
|
|
// Given A-B, if A can be completely folded into the address and
|
|
// the index field with the index field unused, use -B as the index.
|
|
// This is a win if a has multiple parts that can be folded into
|
|
// the address. Also, this saves a mov if the base register has
|
|
// other uses, since it avoids a two-address sub instruction, however
|
|
// it costs an additional mov if the index register has other uses.
|
|
|
|
// Test if the LHS of the sub can be folded.
|
|
X86ISelAddressMode Backup = AM;
|
|
if (MatchAddress(N.getNode()->getOperand(0), AM, Depth+1)) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
// Test if the index field is free for use.
|
|
if (AM.IndexReg.getNode() || AM.isRIPRel) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
int Cost = 0;
|
|
SDValue RHS = N.getNode()->getOperand(1);
|
|
// If the RHS involves a register with multiple uses, this
|
|
// transformation incurs an extra mov, due to the neg instruction
|
|
// clobbering its operand.
|
|
if (!RHS.getNode()->hasOneUse() ||
|
|
RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
|
|
RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
|
|
RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
|
|
(RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
|
|
RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
|
|
++Cost;
|
|
// If the base is a register with multiple uses, this
|
|
// transformation may save a mov.
|
|
if ((AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base.Reg.getNode() &&
|
|
!AM.Base.Reg.getNode()->hasOneUse()) ||
|
|
AM.BaseType == X86ISelAddressMode::FrameIndexBase)
|
|
--Cost;
|
|
// If the folded LHS was interesting, this transformation saves
|
|
// address arithmetic.
|
|
if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
|
|
((AM.Disp != 0) && (Backup.Disp == 0)) +
|
|
(AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
|
|
--Cost;
|
|
// If it doesn't look like it may be an overall win, don't do it.
|
|
if (Cost >= 0) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
|
|
// Ok, the transformation is legal and appears profitable. Go for it.
|
|
SDValue Zero = CurDAG->getConstant(0, N.getValueType());
|
|
SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
|
|
AM.IndexReg = Neg;
|
|
AM.Scale = 1;
|
|
|
|
// Insert the new nodes into the topological ordering.
|
|
if (Zero.getNode()->getNodeId() == -1 ||
|
|
Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(N.getNode(), Zero.getNode());
|
|
Zero.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
if (Neg.getNode()->getNodeId() == -1 ||
|
|
Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(N.getNode(), Neg.getNode());
|
|
Neg.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case ISD::ADD: {
|
|
X86ISelAddressMode Backup = AM;
|
|
if (!MatchAddress(N.getNode()->getOperand(0), AM, Depth+1) &&
|
|
!MatchAddress(N.getNode()->getOperand(1), AM, Depth+1))
|
|
return false;
|
|
AM = Backup;
|
|
if (!MatchAddress(N.getNode()->getOperand(1), AM, Depth+1) &&
|
|
!MatchAddress(N.getNode()->getOperand(0), AM, Depth+1))
|
|
return false;
|
|
AM = Backup;
|
|
|
|
// If we couldn't fold both operands into the address at the same time,
|
|
// see if we can just put each operand into a register and fold at least
|
|
// the add.
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
!AM.Base.Reg.getNode() &&
|
|
!AM.IndexReg.getNode() &&
|
|
!AM.isRIPRel) {
|
|
AM.Base.Reg = N.getNode()->getOperand(0);
|
|
AM.IndexReg = N.getNode()->getOperand(1);
|
|
AM.Scale = 1;
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::OR:
|
|
// Handle "X | C" as "X + C" iff X is known to have C bits clear.
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
X86ISelAddressMode Backup = AM;
|
|
uint64_t Offset = CN->getSExtValue();
|
|
// Start with the LHS as an addr mode.
|
|
if (!MatchAddress(N.getOperand(0), AM, Depth+1) &&
|
|
// Address could not have picked a GV address for the displacement.
|
|
AM.GV == NULL &&
|
|
// On x86-64, the resultant disp must fit in 32-bits.
|
|
(!is64Bit || isInt32(AM.Disp + Offset)) &&
|
|
// Check to see if the LHS & C is zero.
|
|
CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
|
|
AM.Disp += Offset;
|
|
return false;
|
|
}
|
|
AM = Backup;
|
|
}
|
|
break;
|
|
|
|
case ISD::AND: {
|
|
// Perform some heroic transforms on an and of a constant-count shift
|
|
// with a constant to enable use of the scaled offset field.
|
|
|
|
SDValue Shift = N.getOperand(0);
|
|
if (Shift.getNumOperands() != 2) break;
|
|
|
|
// Scale must not be used already.
|
|
if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
|
|
|
|
// Not when RIP is used as the base.
|
|
if (AM.isRIPRel) break;
|
|
|
|
SDValue X = Shift.getOperand(0);
|
|
ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
|
|
if (!C1 || !C2) break;
|
|
|
|
// Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
|
|
// allows us to convert the shift and and into an h-register extract and
|
|
// a scaled index.
|
|
if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
|
|
unsigned ScaleLog = 8 - C1->getZExtValue();
|
|
if (ScaleLog > 0 && ScaleLog < 4 &&
|
|
C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
|
|
SDValue Eight = CurDAG->getConstant(8, MVT::i8);
|
|
SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
|
|
SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
|
|
X, Eight);
|
|
SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
|
|
Srl, Mask);
|
|
SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
|
|
SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
|
|
And, ShlCount);
|
|
|
|
// Insert the new nodes into the topological ordering.
|
|
if (Eight.getNode()->getNodeId() == -1 ||
|
|
Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(X.getNode(), Eight.getNode());
|
|
Eight.getNode()->setNodeId(X.getNode()->getNodeId());
|
|
}
|
|
if (Mask.getNode()->getNodeId() == -1 ||
|
|
Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(X.getNode(), Mask.getNode());
|
|
Mask.getNode()->setNodeId(X.getNode()->getNodeId());
|
|
}
|
|
if (Srl.getNode()->getNodeId() == -1 ||
|
|
Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
|
|
Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
|
|
}
|
|
if (And.getNode()->getNodeId() == -1 ||
|
|
And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(N.getNode(), And.getNode());
|
|
And.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
if (ShlCount.getNode()->getNodeId() == -1 ||
|
|
ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
|
|
ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
if (Shl.getNode()->getNodeId() == -1 ||
|
|
Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(N.getNode(), Shl.getNode());
|
|
Shl.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
CurDAG->ReplaceAllUsesWith(N, Shl);
|
|
AM.IndexReg = And;
|
|
AM.Scale = (1 << ScaleLog);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
|
|
// allows us to fold the shift into this addressing mode.
|
|
if (Shift.getOpcode() != ISD::SHL) break;
|
|
|
|
// Not likely to be profitable if either the AND or SHIFT node has more
|
|
// than one use (unless all uses are for address computation). Besides,
|
|
// isel mechanism requires their node ids to be reused.
|
|
if (!N.hasOneUse() || !Shift.hasOneUse())
|
|
break;
|
|
|
|
// Verify that the shift amount is something we can fold.
|
|
unsigned ShiftCst = C1->getZExtValue();
|
|
if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
|
|
break;
|
|
|
|
// Get the new AND mask, this folds to a constant.
|
|
SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
|
|
SDValue(C2, 0), SDValue(C1, 0));
|
|
SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
|
|
NewANDMask);
|
|
SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
|
|
NewAND, SDValue(C1, 0));
|
|
|
|
// Insert the new nodes into the topological ordering.
|
|
if (C1->getNodeId() > X.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(X.getNode(), C1);
|
|
C1->setNodeId(X.getNode()->getNodeId());
|
|
}
|
|
if (NewANDMask.getNode()->getNodeId() == -1 ||
|
|
NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
|
|
NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
|
|
}
|
|
if (NewAND.getNode()->getNodeId() == -1 ||
|
|
NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
|
|
NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
|
|
}
|
|
if (NewSHIFT.getNode()->getNodeId() == -1 ||
|
|
NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
|
|
NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
|
|
CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
|
|
|
|
AM.Scale = 1 << ShiftCst;
|
|
AM.IndexReg = NewAND;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return MatchAddressBase(N, AM);
|
|
}
|
|
|
|
/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
|
|
/// specified addressing mode without any further recursion.
|
|
bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
|
|
// Is the base register already occupied?
|
|
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
|
|
// If so, check to see if the scale index register is set.
|
|
if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
|
|
AM.IndexReg = N;
|
|
AM.Scale = 1;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we cannot select it.
|
|
return true;
|
|
}
|
|
|
|
// Default, generate it as a register.
|
|
AM.BaseType = X86ISelAddressMode::RegBase;
|
|
AM.Base.Reg = N;
|
|
return false;
|
|
}
|
|
|
|
/// SelectAddr - returns true if it is able pattern match an addressing mode.
|
|
/// It returns the operands which make up the maximal addressing mode it can
|
|
/// match by reference.
|
|
bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &Segment) {
|
|
X86ISelAddressMode AM;
|
|
bool Done = false;
|
|
if (AvoidDupAddrCompute && !N.hasOneUse()) {
|
|
unsigned Opcode = N.getOpcode();
|
|
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
|
|
Opcode != X86ISD::Wrapper) {
|
|
// If we are able to fold N into addressing mode, then we'll allow it even
|
|
// if N has multiple uses. In general, addressing computation is used as
|
|
// addresses by all of its uses. But watch out for CopyToReg uses, that
|
|
// means the address computation is liveout. It will be computed by a LEA
|
|
// so we want to avoid computing the address twice.
|
|
for (SDNode::use_iterator UI = N.getNode()->use_begin(),
|
|
UE = N.getNode()->use_end(); UI != UE; ++UI) {
|
|
if (UI->getOpcode() == ISD::CopyToReg) {
|
|
MatchAddressBase(N, AM);
|
|
Done = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Done && MatchAddress(N, AM))
|
|
return false;
|
|
|
|
MVT VT = N.getValueType();
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase) {
|
|
if (!AM.Base.Reg.getNode())
|
|
AM.Base.Reg = CurDAG->getRegister(0, VT);
|
|
}
|
|
|
|
if (!AM.IndexReg.getNode())
|
|
AM.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
|
|
return true;
|
|
}
|
|
|
|
/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
|
|
/// match a load whose top elements are either undef or zeros. The load flavor
|
|
/// is derived from the type of N, which is either v4f32 or v2f64.
|
|
bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
|
|
SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &Segment,
|
|
SDValue &InChain,
|
|
SDValue &OutChain) {
|
|
if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
InChain = N.getOperand(0).getValue(1);
|
|
if (ISD::isNON_EXTLoad(InChain.getNode()) &&
|
|
InChain.getValue(0).hasOneUse() &&
|
|
N.hasOneUse() &&
|
|
IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(InChain);
|
|
if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
|
|
return false;
|
|
OutChain = LD->getChain();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Also handle the case where we explicitly require zeros in the top
|
|
// elements. This is a vector shuffle from the zero vector.
|
|
if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
|
|
// Check to see if the top elements are all zeros (or bitcast of zeros).
|
|
N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
N.getOperand(0).getNode()->hasOneUse() &&
|
|
ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
|
|
N.getOperand(0).getOperand(0).hasOneUse()) {
|
|
// Okay, this is a zero extending load. Fold it.
|
|
LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
|
|
if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
|
|
return false;
|
|
OutChain = LD->getChain();
|
|
InChain = SDValue(LD, 1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
|
|
/// mode it matches can be cost effectively emitted as an LEA instruction.
|
|
bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp) {
|
|
X86ISelAddressMode AM;
|
|
|
|
// Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
|
|
// segments.
|
|
SDValue Copy = AM.Segment;
|
|
SDValue T = CurDAG->getRegister(0, MVT::i32);
|
|
AM.Segment = T;
|
|
if (MatchAddress(N, AM))
|
|
return false;
|
|
assert (T == AM.Segment);
|
|
AM.Segment = Copy;
|
|
|
|
MVT VT = N.getValueType();
|
|
unsigned Complexity = 0;
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase)
|
|
if (AM.Base.Reg.getNode())
|
|
Complexity = 1;
|
|
else
|
|
AM.Base.Reg = CurDAG->getRegister(0, VT);
|
|
else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
|
|
Complexity = 4;
|
|
|
|
if (AM.IndexReg.getNode())
|
|
Complexity++;
|
|
else
|
|
AM.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
// Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
|
|
// a simple shift.
|
|
if (AM.Scale > 1)
|
|
Complexity++;
|
|
|
|
// FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
|
|
// to a LEA. This is determined with some expermentation but is by no means
|
|
// optimal (especially for code size consideration). LEA is nice because of
|
|
// its three-address nature. Tweak the cost function again when we can run
|
|
// convertToThreeAddress() at register allocation time.
|
|
if (AM.hasSymbolicDisplacement()) {
|
|
// For X86-64, we should always use lea to materialize RIP relative
|
|
// addresses.
|
|
if (Subtarget->is64Bit())
|
|
Complexity = 4;
|
|
else
|
|
Complexity += 2;
|
|
}
|
|
|
|
if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
|
|
Complexity++;
|
|
|
|
if (Complexity > 2) {
|
|
SDValue Segment;
|
|
getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
|
|
bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp) {
|
|
assert(Op.getOpcode() == X86ISD::TLSADDR);
|
|
assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
|
|
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
|
|
|
|
X86ISelAddressMode AM;
|
|
AM.GV = GA->getGlobal();
|
|
AM.Disp += GA->getOffset();
|
|
AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
|
|
|
|
if (N.getValueType() == MVT::i32) {
|
|
AM.Scale = 1;
|
|
AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
|
|
} else {
|
|
AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
|
|
}
|
|
|
|
SDValue Segment;
|
|
getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment) {
|
|
if (ISD::isNON_EXTLoad(N.getNode()) &&
|
|
N.hasOneUse() &&
|
|
IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
|
|
return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
|
|
return false;
|
|
}
|
|
|
|
/// getGlobalBaseReg - Return an SDNode that returns the value of
|
|
/// the global base register. Output instructions required to
|
|
/// initialize the global base register, if necessary.
|
|
///
|
|
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
|
|
MachineFunction *MF = CurBB->getParent();
|
|
unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
|
|
return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
|
|
}
|
|
|
|
static SDNode *FindCallStartFromCall(SDNode *Node) {
|
|
if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
|
|
assert(Node->getOperand(0).getValueType() == MVT::Other &&
|
|
"Node doesn't have a token chain argument!");
|
|
return FindCallStartFromCall(Node->getOperand(0).getNode());
|
|
}
|
|
|
|
SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue In1 = Node->getOperand(1);
|
|
SDValue In2L = Node->getOperand(2);
|
|
SDValue In2H = Node->getOperand(3);
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
|
|
if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
|
|
return NULL;
|
|
SDValue LSI = Node->getOperand(4); // MemOperand
|
|
const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain};
|
|
return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
|
|
MVT::i32, MVT::i32, MVT::Other, Ops,
|
|
array_lengthof(Ops));
|
|
}
|
|
|
|
SDNode *X86DAGToDAGISel::Select(SDValue N) {
|
|
SDNode *Node = N.getNode();
|
|
MVT NVT = Node->getValueType(0);
|
|
unsigned Opc, MOpc;
|
|
unsigned Opcode = Node->getOpcode();
|
|
DebugLoc dl = Node->getDebugLoc();
|
|
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent, ' ') << "Selecting: ";
|
|
DEBUG(Node->dump(CurDAG));
|
|
DOUT << "\n";
|
|
Indent += 2;
|
|
#endif
|
|
|
|
if (Node->isMachineOpcode()) {
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "== ";
|
|
DEBUG(Node->dump(CurDAG));
|
|
DOUT << "\n";
|
|
Indent -= 2;
|
|
#endif
|
|
return NULL; // Already selected.
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default: break;
|
|
case X86ISD::GlobalBaseReg:
|
|
return getGlobalBaseReg();
|
|
|
|
case X86ISD::ATOMOR64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMOR6432);
|
|
case X86ISD::ATOMXOR64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMXOR6432);
|
|
case X86ISD::ATOMADD64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMADD6432);
|
|
case X86ISD::ATOMSUB64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMSUB6432);
|
|
case X86ISD::ATOMNAND64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMNAND6432);
|
|
case X86ISD::ATOMAND64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMAND6432);
|
|
case X86ISD::ATOMSWAP64_DAG:
|
|
return SelectAtomic64(Node, X86::ATOMSWAP6432);
|
|
|
|
case ISD::SMUL_LOHI:
|
|
case ISD::UMUL_LOHI: {
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
bool isSigned = Opcode == ISD::SMUL_LOHI;
|
|
if (!isSigned)
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
|
|
case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
|
|
case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
|
|
case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
|
|
}
|
|
else
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
|
|
case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
|
|
case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
|
|
case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
|
|
}
|
|
|
|
unsigned LoReg, HiReg;
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
|
|
case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
|
|
case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
|
|
case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
|
|
}
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
|
|
bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
|
|
// multiplty is commmutative
|
|
if (!foldedLoad) {
|
|
foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
|
|
if (foldedLoad)
|
|
std::swap(N0, N1);
|
|
}
|
|
|
|
SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
|
|
N0, SDValue()).getValue(1);
|
|
|
|
if (foldedLoad) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
|
|
InFlag };
|
|
SDNode *CNode =
|
|
CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
|
|
array_lengthof(Ops));
|
|
InFlag = SDValue(CNode, 1);
|
|
// Update the chain.
|
|
ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
|
|
} else {
|
|
InFlag =
|
|
SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
|
|
}
|
|
|
|
// Copy the low half of the result, if it is needed.
|
|
if (!N.getValue(0).use_empty()) {
|
|
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
LoReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
ReplaceUses(N.getValue(0), Result);
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(Result.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
#endif
|
|
}
|
|
// Copy the high half of the result, if it is needed.
|
|
if (!N.getValue(1).use_empty()) {
|
|
SDValue Result;
|
|
if (HiReg == X86::AH && Subtarget->is64Bit()) {
|
|
// Prevent use of AH in a REX instruction by referencing AX instead.
|
|
// Shift it down 8 bits.
|
|
Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
X86::AX, MVT::i16, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
|
|
Result,
|
|
CurDAG->getTargetConstant(8, MVT::i8)), 0);
|
|
// Then truncate it down to i8.
|
|
SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
|
|
Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
|
|
MVT::i8, Result, SRIdx), 0);
|
|
} else {
|
|
Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
HiReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
}
|
|
ReplaceUses(N.getValue(1), Result);
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(Result.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
#endif
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
Indent -= 2;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM: {
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
bool isSigned = Opcode == ISD::SDIVREM;
|
|
if (!isSigned)
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
|
|
case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
|
|
case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
|
|
case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
|
|
}
|
|
else
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
|
|
case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
|
|
case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
|
|
case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
|
|
}
|
|
|
|
unsigned LoReg, HiReg;
|
|
unsigned ClrOpcode, SExtOpcode;
|
|
switch (NVT.getSimpleVT()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8:
|
|
LoReg = X86::AL; HiReg = X86::AH;
|
|
ClrOpcode = 0;
|
|
SExtOpcode = X86::CBW;
|
|
break;
|
|
case MVT::i16:
|
|
LoReg = X86::AX; HiReg = X86::DX;
|
|
ClrOpcode = X86::MOV16r0;
|
|
SExtOpcode = X86::CWD;
|
|
break;
|
|
case MVT::i32:
|
|
LoReg = X86::EAX; HiReg = X86::EDX;
|
|
ClrOpcode = X86::MOV32r0;
|
|
SExtOpcode = X86::CDQ;
|
|
break;
|
|
case MVT::i64:
|
|
LoReg = X86::RAX; HiReg = X86::RDX;
|
|
ClrOpcode = X86::MOV64r0;
|
|
SExtOpcode = X86::CQO;
|
|
break;
|
|
}
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
|
|
bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
|
|
bool signBitIsZero = CurDAG->SignBitIsZero(N0);
|
|
|
|
SDValue InFlag;
|
|
if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
|
|
// Special case for div8, just use a move with zero extension to AX to
|
|
// clear the upper 8 bits (AH).
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
|
|
if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
|
|
Move =
|
|
SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
|
|
MVT::Other, Ops,
|
|
array_lengthof(Ops)), 0);
|
|
Chain = Move.getValue(1);
|
|
ReplaceUses(N0.getValue(1), Chain);
|
|
} else {
|
|
Move =
|
|
SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
|
|
Chain = CurDAG->getEntryNode();
|
|
}
|
|
Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
InFlag =
|
|
CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
|
|
LoReg, N0, SDValue()).getValue(1);
|
|
if (isSigned && !signBitIsZero) {
|
|
// Sign extend the low part into the high part.
|
|
InFlag =
|
|
SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
|
|
} else {
|
|
// Zero out the high part, effectively zero extending the input.
|
|
SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT),
|
|
0);
|
|
InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
|
|
ClrNode, InFlag).getValue(1);
|
|
}
|
|
}
|
|
|
|
if (foldedLoad) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
|
|
InFlag };
|
|
SDNode *CNode =
|
|
CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
|
|
array_lengthof(Ops));
|
|
InFlag = SDValue(CNode, 1);
|
|
// Update the chain.
|
|
ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
|
|
} else {
|
|
InFlag =
|
|
SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
|
|
}
|
|
|
|
// Copy the division (low) result, if it is needed.
|
|
if (!N.getValue(0).use_empty()) {
|
|
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
LoReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
ReplaceUses(N.getValue(0), Result);
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(Result.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
#endif
|
|
}
|
|
// Copy the remainder (high) result, if it is needed.
|
|
if (!N.getValue(1).use_empty()) {
|
|
SDValue Result;
|
|
if (HiReg == X86::AH && Subtarget->is64Bit()) {
|
|
// Prevent use of AH in a REX instruction by referencing AX instead.
|
|
// Shift it down 8 bits.
|
|
Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
X86::AX, MVT::i16, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
|
|
Result,
|
|
CurDAG->getTargetConstant(8, MVT::i8)),
|
|
0);
|
|
// Then truncate it down to i8.
|
|
SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
|
|
Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
|
|
MVT::i8, Result, SRIdx), 0);
|
|
} else {
|
|
Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
HiReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
}
|
|
ReplaceUses(N.getValue(1), Result);
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
DEBUG(Result.getNode()->dump(CurDAG));
|
|
DOUT << "\n";
|
|
#endif
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
Indent -= 2;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case ISD::DECLARE: {
|
|
// Handle DECLARE nodes here because the second operand may have been
|
|
// wrapped in X86ISD::Wrapper.
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
SDValue N2 = Node->getOperand(2);
|
|
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
|
|
|
|
// FIXME: We need to handle this for VLAs.
|
|
if (!FINode) {
|
|
ReplaceUses(N.getValue(0), Chain);
|
|
return NULL;
|
|
}
|
|
|
|
if (N2.getOpcode() == ISD::ADD &&
|
|
N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
|
|
N2 = N2.getOperand(1);
|
|
|
|
// If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
|
|
// somehow, just ignore it.
|
|
if (N2.getOpcode() != X86ISD::Wrapper) {
|
|
ReplaceUses(N.getValue(0), Chain);
|
|
return NULL;
|
|
}
|
|
GlobalAddressSDNode *GVNode =
|
|
dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
|
|
if (GVNode == 0) {
|
|
ReplaceUses(N.getValue(0), Chain);
|
|
return NULL;
|
|
}
|
|
SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
|
|
TLI.getPointerTy());
|
|
SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
|
|
TLI.getPointerTy());
|
|
SDValue Ops[] = { Tmp1, Tmp2, Chain };
|
|
return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
|
|
MVT::Other, Ops,
|
|
array_lengthof(Ops));
|
|
}
|
|
}
|
|
|
|
SDNode *ResNode = SelectCode(N);
|
|
|
|
#ifndef NDEBUG
|
|
DOUT << std::string(Indent-2, ' ') << "=> ";
|
|
if (ResNode == NULL || ResNode == N.getNode())
|
|
DEBUG(N.getNode()->dump(CurDAG));
|
|
else
|
|
DEBUG(ResNode->dump(CurDAG));
|
|
DOUT << "\n";
|
|
Indent -= 2;
|
|
#endif
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
SDValue Op0, Op1, Op2, Op3, Op4;
|
|
switch (ConstraintCode) {
|
|
case 'o': // offsetable ??
|
|
case 'v': // not offsetable ??
|
|
default: return true;
|
|
case 'm': // memory
|
|
if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
OutOps.push_back(Op0);
|
|
OutOps.push_back(Op1);
|
|
OutOps.push_back(Op2);
|
|
OutOps.push_back(Op3);
|
|
OutOps.push_back(Op4);
|
|
return false;
|
|
}
|
|
|
|
/// createX86ISelDag - This pass converts a legalized DAG into a
|
|
/// X86-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
|
|
llvm::CodeGenOpt::Level OptLevel) {
|
|
return new X86DAGToDAGISel(TM, OptLevel);
|
|
}
|