llvm-6502/lib/Target/ARM/ARMRegisterInfo.cpp
Lauro Ramos Venancio 8f57667a5d Fix PR1390.
Don't spill extra register to align the stack.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36814 91177308-0d34-0410-b5e6-96231b3b80d8
2007-05-05 23:44:41 +00:00

1494 lines
52 KiB
C++

//===- ARMRegisterInfo.cpp - ARM Register Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the "Instituto Nokia de Tecnologia" and
// is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM implementation of the MRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
#include "ARMSubtarget.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
static cl::opt<bool> ThumbRegScavenging("enable-thumb-reg-scavenging",
cl::Hidden,
cl::desc("Enable register scavenging on Thumb"));
unsigned ARMRegisterInfo::getRegisterNumbering(unsigned RegEnum) {
using namespace ARM;
switch (RegEnum) {
case R0: case S0: case D0: return 0;
case R1: case S1: case D1: return 1;
case R2: case S2: case D2: return 2;
case R3: case S3: case D3: return 3;
case R4: case S4: case D4: return 4;
case R5: case S5: case D5: return 5;
case R6: case S6: case D6: return 6;
case R7: case S7: case D7: return 7;
case R8: case S8: case D8: return 8;
case R9: case S9: case D9: return 9;
case R10: case S10: case D10: return 10;
case R11: case S11: case D11: return 11;
case R12: case S12: case D12: return 12;
case SP: case S13: case D13: return 13;
case LR: case S14: case D14: return 14;
case PC: case S15: case D15: return 15;
case S16: return 16;
case S17: return 17;
case S18: return 18;
case S19: return 19;
case S20: return 20;
case S21: return 21;
case S22: return 22;
case S23: return 23;
case S24: return 24;
case S25: return 25;
case S26: return 26;
case S27: return 27;
case S28: return 28;
case S29: return 29;
case S30: return 30;
case S31: return 31;
default:
assert(0 && "Unknown ARM register!");
abort();
}
}
ARMRegisterInfo::ARMRegisterInfo(const TargetInstrInfo &tii,
const ARMSubtarget &sti)
: ARMGenRegisterInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
TII(tii), STI(sti),
FramePtr((STI.useThumbBacktraces() || STI.isThumb()) ? ARM::R7 : ARM::R11) {
}
bool ARMRegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (!AFI->isThumbFunction() || CSI.empty())
return false;
MachineInstrBuilder MIB = BuildMI(MBB, MI, TII.get(ARM::tPUSH));
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i-1].getReg();
// Add the callee-saved register as live-in. It's killed at the spill.
MBB.addLiveIn(Reg);
MIB.addReg(Reg, false/*isDef*/,false/*isImp*/,true/*isKill*/);
}
return true;
}
bool ARMRegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (!AFI->isThumbFunction() || CSI.empty())
return false;
bool isVarArg = AFI->getVarArgsRegSaveSize() > 0;
MachineInstr *PopMI = new MachineInstr(TII.get(ARM::tPOP));
MBB.insert(MI, PopMI);
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i-1].getReg();
if (Reg == ARM::LR) {
// Special epilogue for vararg functions. See emitEpilogue
if (isVarArg)
continue;
Reg = ARM::PC;
PopMI->setInstrDescriptor(TII.get(ARM::tPOP_RET));
MBB.erase(MI);
}
PopMI->addRegOperand(Reg, true);
}
return true;
}
void ARMRegisterInfo::
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned SrcReg, int FI,
const TargetRegisterClass *RC) const {
if (RC == ARM::GPRRegisterClass) {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (AFI->isThumbFunction())
BuildMI(MBB, I, TII.get(ARM::tSpill)).addReg(SrcReg, false, false, true)
.addFrameIndex(FI).addImm(0);
else
BuildMI(MBB, I, TII.get(ARM::STR)).addReg(SrcReg, false, false, true)
.addFrameIndex(FI).addReg(0).addImm(0);
} else if (RC == ARM::DPRRegisterClass) {
BuildMI(MBB, I, TII.get(ARM::FSTD)).addReg(SrcReg, false, false, true)
.addFrameIndex(FI).addImm(0);
} else {
assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
BuildMI(MBB, I, TII.get(ARM::FSTS)).addReg(SrcReg, false, false, true)
.addFrameIndex(FI).addImm(0);
}
}
void ARMRegisterInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI,
const TargetRegisterClass *RC) const {
if (RC == ARM::GPRRegisterClass) {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (AFI->isThumbFunction())
BuildMI(MBB, I, TII.get(ARM::tRestore), DestReg)
.addFrameIndex(FI).addImm(0);
else
BuildMI(MBB, I, TII.get(ARM::LDR), DestReg)
.addFrameIndex(FI).addReg(0).addImm(0);
} else if (RC == ARM::DPRRegisterClass) {
BuildMI(MBB, I, TII.get(ARM::FLDD), DestReg)
.addFrameIndex(FI).addImm(0);
} else {
assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
BuildMI(MBB, I, TII.get(ARM::FLDS), DestReg)
.addFrameIndex(FI).addImm(0);
}
}
void ARMRegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *RC) const {
if (RC == ARM::GPRRegisterClass) {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
BuildMI(MBB, I, TII.get(AFI->isThumbFunction() ? ARM::tMOVr : ARM::MOVr),
DestReg).addReg(SrcReg);
} else if (RC == ARM::SPRRegisterClass)
BuildMI(MBB, I, TII.get(ARM::FCPYS), DestReg).addReg(SrcReg);
else if (RC == ARM::DPRRegisterClass)
BuildMI(MBB, I, TII.get(ARM::FCPYD), DestReg).addReg(SrcReg);
else
abort();
}
/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
static void emitLoadConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, int Val,
const TargetInstrInfo &TII, bool isThumb) {
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
Constant *C = ConstantInt::get(Type::Int32Ty, Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 2);
if (isThumb)
BuildMI(MBB, MBBI, TII.get(ARM::tLDRcp), DestReg).addConstantPoolIndex(Idx);
else
BuildMI(MBB, MBBI, TII.get(ARM::LDRcp), DestReg).addConstantPoolIndex(Idx)
.addReg(0).addImm(0);
}
void ARMRegisterInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg,
const MachineInstr *Orig) const {
if (Orig->getOpcode() == ARM::MOVi2pieces) {
emitLoadConstPool(MBB, I, DestReg, Orig->getOperand(1).getImmedValue(),
TII, false);
return;
}
MachineInstr *MI = Orig->clone();
MI->getOperand(0).setReg(DestReg);
MBB.insert(I, MI);
}
/// isLowRegister - Returns true if the register is low register r0-r7.
///
static bool isLowRegister(unsigned Reg) {
using namespace ARM;
switch (Reg) {
case R0: case R1: case R2: case R3:
case R4: case R5: case R6: case R7:
return true;
default:
return false;
}
}
MachineInstr *ARMRegisterInfo::foldMemoryOperand(MachineInstr *MI,
unsigned OpNum, int FI) const {
unsigned Opc = MI->getOpcode();
MachineInstr *NewMI = NULL;
switch (Opc) {
default: break;
case ARM::MOVr: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
NewMI = BuildMI(TII.get(ARM::STR)).addReg(SrcReg).addFrameIndex(FI)
.addReg(0).addImm(0);
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
NewMI = BuildMI(TII.get(ARM::LDR), DstReg).addFrameIndex(FI).addReg(0)
.addImm(0);
}
break;
}
case ARM::tMOVr: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
if (isPhysicalRegister(SrcReg) && !isLowRegister(SrcReg))
// tSpill cannot take a high register operand.
break;
NewMI = BuildMI(TII.get(ARM::tSpill)).addReg(SrcReg).addFrameIndex(FI)
.addImm(0);
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
if (isPhysicalRegister(DstReg) && !isLowRegister(DstReg))
// tRestore cannot target a high register operand.
break;
NewMI = BuildMI(TII.get(ARM::tRestore), DstReg).addFrameIndex(FI)
.addImm(0);
}
break;
}
case ARM::FCPYS: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
NewMI = BuildMI(TII.get(ARM::FSTS)).addReg(SrcReg).addFrameIndex(FI)
.addImm(0);
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
NewMI = BuildMI(TII.get(ARM::FLDS), DstReg).addFrameIndex(FI).addImm(0);
}
break;
}
case ARM::FCPYD: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
NewMI = BuildMI(TII.get(ARM::FSTD)).addReg(SrcReg).addFrameIndex(FI)
.addImm(0);
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
NewMI = BuildMI(TII.get(ARM::FLDD), DstReg).addFrameIndex(FI).addImm(0);
}
break;
}
}
if (NewMI)
NewMI->copyKillDeadInfo(MI);
return NewMI;
}
const unsigned* ARMRegisterInfo::getCalleeSavedRegs() const {
static const unsigned CalleeSavedRegs[] = {
ARM::LR, ARM::R11, ARM::R10, ARM::R9, ARM::R8,
ARM::R7, ARM::R6, ARM::R5, ARM::R4,
ARM::D15, ARM::D14, ARM::D13, ARM::D12,
ARM::D11, ARM::D10, ARM::D9, ARM::D8,
0
};
static const unsigned DarwinCalleeSavedRegs[] = {
ARM::LR, ARM::R7, ARM::R6, ARM::R5, ARM::R4,
ARM::R11, ARM::R10, ARM::R9, ARM::R8,
ARM::D15, ARM::D14, ARM::D13, ARM::D12,
ARM::D11, ARM::D10, ARM::D9, ARM::D8,
0
};
return STI.isTargetDarwin() ? DarwinCalleeSavedRegs : CalleeSavedRegs;
}
const TargetRegisterClass* const *
ARMRegisterInfo::getCalleeSavedRegClasses() const {
static const TargetRegisterClass * const CalleeSavedRegClasses[] = {
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
&ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
0
};
return CalleeSavedRegClasses;
}
BitVector ARMRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
// FIXME: avoid re-calculating this everytime.
BitVector Reserved(getNumRegs());
Reserved.set(ARM::SP);
Reserved.set(ARM::PC);
if (STI.isTargetDarwin() || hasFP(MF))
Reserved.set(FramePtr);
// Some targets reserve R9.
if (STI.isR9Reserved())
Reserved.set(ARM::R9);
return Reserved;
}
bool
ARMRegisterInfo::isReservedReg(const MachineFunction &MF, unsigned Reg) const {
switch (Reg) {
default: break;
case ARM::SP:
case ARM::PC:
return true;
case ARM::R7:
case ARM::R11:
if (FramePtr == Reg && (STI.isTargetDarwin() || hasFP(MF)))
return true;
break;
case ARM::R9:
return STI.isR9Reserved();
}
return false;
}
bool
ARMRegisterInfo::requiresRegisterScavenging(const MachineFunction &MF) const {
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
return ThumbRegScavenging || !AFI->isThumbFunction();
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register. This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
///
bool ARMRegisterInfo::hasFP(const MachineFunction &MF) const {
return NoFramePointerElim || MF.getFrameInfo()->hasVarSizedObjects();
}
// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
// not required, we reserve argument space for call sites in the function
// immediately on entry to the current function. This eliminates the need for
// add/sub sp brackets around call sites. Returns true if the call frame is
// included as part of the stack frame.
bool ARMRegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
const MachineFrameInfo *FFI = MF.getFrameInfo();
unsigned CFSize = FFI->getMaxCallFrameSize();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// It's not always a good idea to include the call frame as part of the
// stack frame. ARM (especially Thumb) has small immediate offset to
// address the stack frame. So a large call frame can cause poor codegen
// and may even makes it impossible to scavenge a register.
if (AFI->isThumbFunction()) {
if (CFSize >= ((1 << 8) - 1) * 4 / 2) // Half of imm8 * 4
return false;
} else {
if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
return false;
}
return !hasFP(MF);
}
/// emitARMRegPlusImmediate - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in ARM code.
static
void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg,
int NumBytes, const TargetInstrInfo &TII) {
bool isSub = NumBytes < 0;
if (isSub) NumBytes = -NumBytes;
while (NumBytes) {
unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
assert(ThisVal && "Didn't extract field correctly");
// We will handle these bits from offset, clear them.
NumBytes &= ~ThisVal;
// Get the properly encoded SOImmVal field.
int SOImmVal = ARM_AM::getSOImmVal(ThisVal);
assert(SOImmVal != -1 && "Bit extraction didn't work?");
// Build the new ADD / SUB.
BuildMI(MBB, MBBI, TII.get(isSub ? ARM::SUBri : ARM::ADDri), DestReg)
.addReg(BaseReg, false, false, true).addImm(SOImmVal);
BaseReg = DestReg;
}
}
/// calcNumMI - Returns the number of instructions required to materialize
/// the specific add / sub r, c instruction.
static unsigned calcNumMI(int Opc, int ExtraOpc, unsigned Bytes,
unsigned NumBits, unsigned Scale) {
unsigned NumMIs = 0;
unsigned Chunk = ((1 << NumBits) - 1) * Scale;
if (Opc == ARM::tADDrSPi) {
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
NumMIs++;
NumBits = 8;
Scale = 1; // Followed by a number of tADDi8.
Chunk = ((1 << NumBits) - 1) * Scale;
}
NumMIs += Bytes / Chunk;
if ((Bytes % Chunk) != 0)
NumMIs++;
if (ExtraOpc)
NumMIs++;
return NumMIs;
}
/// emitThumbRegPlusImmInReg - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in Thumb code. Materialize the immediate
/// in a register using mov / mvn sequences or load the immediate from a
/// constpool entry.
static
void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg,
int NumBytes, bool CanChangeCC,
const TargetInstrInfo &TII) {
bool isHigh = !isLowRegister(DestReg) ||
(BaseReg != 0 && !isLowRegister(BaseReg));
bool isSub = false;
// Subtract doesn't have high register version. Load the negative value
// if either base or dest register is a high register. Also, if do not
// issue sub as part of the sequence if condition register is to be
// preserved.
if (NumBytes < 0 && !isHigh && CanChangeCC) {
isSub = true;
NumBytes = -NumBytes;
}
unsigned LdReg = DestReg;
if (DestReg == ARM::SP) {
assert(BaseReg == ARM::SP && "Unexpected!");
LdReg = ARM::R3;
BuildMI(MBB, MBBI, TII.get(ARM::tMOVr), ARM::R12)
.addReg(ARM::R3, false, false, true);
}
if (NumBytes <= 255 && NumBytes >= 0)
BuildMI(MBB, MBBI, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes);
else if (NumBytes < 0 && NumBytes >= -255) {
BuildMI(MBB, MBBI, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes);
BuildMI(MBB, MBBI, TII.get(ARM::tNEG), LdReg)
.addReg(LdReg, false, false, true);
} else
emitLoadConstPool(MBB, MBBI, LdReg, NumBytes, TII, true);
// Emit add / sub.
int Opc = (isSub) ? ARM::tSUBrr : (isHigh ? ARM::tADDhirr : ARM::tADDrr);
const MachineInstrBuilder MIB = BuildMI(MBB, MBBI, TII.get(Opc), DestReg);
if (DestReg == ARM::SP || isSub)
MIB.addReg(BaseReg).addReg(LdReg, false, false, true);
else
MIB.addReg(LdReg).addReg(BaseReg, false, false, true);
if (DestReg == ARM::SP)
BuildMI(MBB, MBBI, TII.get(ARM::tMOVr), ARM::R3)
.addReg(ARM::R12, false, false, true);
}
/// emitThumbRegPlusImmediate - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in Thumb code.
static
void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg,
int NumBytes, const TargetInstrInfo &TII) {
bool isSub = NumBytes < 0;
unsigned Bytes = (unsigned)NumBytes;
if (isSub) Bytes = -NumBytes;
bool isMul4 = (Bytes & 3) == 0;
bool isTwoAddr = false;
bool DstNotEqBase = false;
unsigned NumBits = 1;
unsigned Scale = 1;
int Opc = 0;
int ExtraOpc = 0;
if (DestReg == BaseReg && BaseReg == ARM::SP) {
assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
NumBits = 7;
Scale = 4;
Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
isTwoAddr = true;
} else if (!isSub && BaseReg == ARM::SP) {
// r1 = add sp, 403
// =>
// r1 = add sp, 100 * 4
// r1 = add r1, 3
if (!isMul4) {
Bytes &= ~3;
ExtraOpc = ARM::tADDi3;
}
NumBits = 8;
Scale = 4;
Opc = ARM::tADDrSPi;
} else {
// sp = sub sp, c
// r1 = sub sp, c
// r8 = sub sp, c
if (DestReg != BaseReg)
DstNotEqBase = true;
NumBits = 8;
Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
isTwoAddr = true;
}
unsigned NumMIs = calcNumMI(Opc, ExtraOpc, Bytes, NumBits, Scale);
unsigned Threshold = (DestReg == ARM::SP) ? 3 : 2;
if (NumMIs > Threshold) {
// This will expand into too many instructions. Load the immediate from a
// constpool entry.
emitThumbRegPlusImmInReg(MBB, MBBI, DestReg, BaseReg, NumBytes, true, TII);
return;
}
if (DstNotEqBase) {
if (isLowRegister(DestReg) && isLowRegister(BaseReg)) {
// If both are low registers, emit DestReg = add BaseReg, max(Imm, 7)
unsigned Chunk = (1 << 3) - 1;
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
BuildMI(MBB, MBBI, TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3), DestReg)
.addReg(BaseReg, false, false, true).addImm(ThisVal);
} else {
BuildMI(MBB, MBBI, TII.get(ARM::tMOVr), DestReg)
.addReg(BaseReg, false, false, true);
}
BaseReg = DestReg;
}
unsigned Chunk = ((1 << NumBits) - 1) * Scale;
while (Bytes) {
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
ThisVal /= Scale;
// Build the new tADD / tSUB.
if (isTwoAddr)
BuildMI(MBB, MBBI, TII.get(Opc), DestReg).addReg(DestReg).addImm(ThisVal);
else {
bool isKill = BaseReg != ARM::SP;
BuildMI(MBB, MBBI, TII.get(Opc), DestReg)
.addReg(BaseReg, false, false, isKill).addImm(ThisVal);
BaseReg = DestReg;
if (Opc == ARM::tADDrSPi) {
// r4 = add sp, imm
// r4 = add r4, imm
// ...
NumBits = 8;
Scale = 1;
Chunk = ((1 << NumBits) - 1) * Scale;
Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
isTwoAddr = true;
}
}
}
if (ExtraOpc)
BuildMI(MBB, MBBI, TII.get(ExtraOpc), DestReg)
.addReg(DestReg, false, false, true)
.addImm(((unsigned)NumBytes) & 3);
}
static
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
int NumBytes, bool isThumb, const TargetInstrInfo &TII) {
if (isThumb)
emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes, TII);
else
emitARMRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes, TII);
}
void ARMRegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (!hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
// ADJCALLSTACKUP -> add, sp, sp, amount
MachineInstr *Old = I;
unsigned Amount = Old->getOperand(0).getImmedValue();
if (Amount != 0) {
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
// Replace the pseudo instruction with a new instruction...
if (Old->getOpcode() == ARM::ADJCALLSTACKDOWN) {
emitSPUpdate(MBB, I, -Amount, AFI->isThumbFunction(), TII);
} else {
assert(Old->getOpcode() == ARM::ADJCALLSTACKUP);
emitSPUpdate(MBB, I, Amount, AFI->isThumbFunction(), TII);
}
}
}
MBB.erase(I);
}
/// emitThumbConstant - Emit a series of instructions to materialize a
/// constant.
static void emitThumbConstant(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, int Imm,
const TargetInstrInfo &TII) {
bool isSub = Imm < 0;
if (isSub) Imm = -Imm;
int Chunk = (1 << 8) - 1;
int ThisVal = (Imm > Chunk) ? Chunk : Imm;
Imm -= ThisVal;
BuildMI(MBB, MBBI, TII.get(ARM::tMOVi8), DestReg).addImm(ThisVal);
if (Imm > 0)
emitThumbRegPlusImmediate(MBB, MBBI, DestReg, DestReg, Imm, TII);
if (isSub)
BuildMI(MBB, MBBI, TII.get(ARM::tNEG), DestReg)
.addReg(DestReg, false, false, true);
}
/// findScratchRegister - Find a 'free' ARM register. If register scavenger
/// is not being used, R12 is available. Otherwise, try for a call-clobbered
/// register first and then a spilled callee-saved register if that fails.
static
unsigned findScratchRegister(RegScavenger *RS, const TargetRegisterClass *RC,
ARMFunctionInfo *AFI) {
unsigned Reg = RS ? RS->FindUnusedReg(RC, true) : (unsigned) ARM::R12;
if (Reg == 0)
// Try a already spilled CS register.
Reg = RS->FindUnusedReg(RC, AFI->getSpilledCSRegisters());
return Reg;
}
void ARMRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const{
unsigned i = 0;
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
while (!MI.getOperand(i).isFrameIndex()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
unsigned FrameReg = ARM::SP;
int FrameIndex = MI.getOperand(i).getFrameIndex();
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
MF.getFrameInfo()->getStackSize() + SPAdj;
if (AFI->isGPRCalleeSavedArea1Frame(FrameIndex))
Offset -= AFI->getGPRCalleeSavedArea1Offset();
else if (AFI->isGPRCalleeSavedArea2Frame(FrameIndex))
Offset -= AFI->getGPRCalleeSavedArea2Offset();
else if (AFI->isDPRCalleeSavedAreaFrame(FrameIndex))
Offset -= AFI->getDPRCalleeSavedAreaOffset();
else if (hasFP(MF)) {
assert(SPAdj == 0 && "Unexpected");
// There is alloca()'s in this function, must reference off the frame
// pointer instead.
FrameReg = getFrameRegister(MF);
Offset -= AFI->getFramePtrSpillOffset();
}
unsigned Opcode = MI.getOpcode();
const TargetInstrDescriptor &Desc = TII.get(Opcode);
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
bool isSub = false;
if (Opcode == ARM::ADDri) {
Offset += MI.getOperand(i+1).getImm();
if (Offset == 0) {
// Turn it into a move.
MI.setInstrDescriptor(TII.get(ARM::MOVr));
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.RemoveOperand(i+1);
return;
} else if (Offset < 0) {
Offset = -Offset;
isSub = true;
MI.setInstrDescriptor(TII.get(ARM::SUBri));
}
// Common case: small offset, fits into instruction.
int ImmedOffset = ARM_AM::getSOImmVal(Offset);
if (ImmedOffset != -1) {
// Replace the FrameIndex with sp / fp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(ImmedOffset);
return;
}
// Otherwise, we fallback to common code below to form the imm offset with
// a sequence of ADDri instructions. First though, pull as much of the imm
// into this ADDri as possible.
unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
// We will handle these bits from offset, clear them.
Offset &= ~ThisImmVal;
// Get the properly encoded SOImmVal field.
int ThisSOImmVal = ARM_AM::getSOImmVal(ThisImmVal);
assert(ThisSOImmVal != -1 && "Bit extraction didn't work?");
MI.getOperand(i+1).ChangeToImmediate(ThisSOImmVal);
} else if (Opcode == ARM::tADDrSPi) {
Offset += MI.getOperand(i+1).getImm();
// Can't use tADDrSPi if it's based off the frame pointer.
unsigned NumBits = 0;
unsigned Scale = 1;
if (FrameReg != ARM::SP) {
Opcode = ARM::tADDi3;
MI.setInstrDescriptor(TII.get(ARM::tADDi3));
NumBits = 3;
} else {
NumBits = 8;
Scale = 4;
assert((Offset & 3) == 0 &&
"Thumb add/sub sp, #imm immediate must be multiple of 4!");
}
if (Offset == 0) {
// Turn it into a move.
MI.setInstrDescriptor(TII.get(ARM::tMOVr));
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.RemoveOperand(i+1);
return;
}
// Common case: small offset, fits into instruction.
unsigned Mask = (1 << NumBits) - 1;
if (((Offset / Scale) & ~Mask) == 0) {
// Replace the FrameIndex with sp / fp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(Offset / Scale);
return;
}
unsigned DestReg = MI.getOperand(0).getReg();
unsigned Bytes = (Offset > 0) ? Offset : -Offset;
unsigned NumMIs = calcNumMI(Opcode, 0, Bytes, NumBits, Scale);
// MI would expand into a large number of instructions. Don't try to
// simplify the immediate.
if (NumMIs > 2) {
emitThumbRegPlusImmediate(MBB, II, DestReg, FrameReg, Offset, TII);
MBB.erase(II);
return;
}
if (Offset > 0) {
// Translate r0 = add sp, imm to
// r0 = add sp, 255*4
// r0 = add r0, (imm - 255*4)
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(Mask);
Offset = (Offset - Mask * Scale);
MachineBasicBlock::iterator NII = next(II);
emitThumbRegPlusImmediate(MBB, NII, DestReg, DestReg, Offset, TII);
} else {
// Translate r0 = add sp, -imm to
// r0 = -imm (this is then translated into a series of instructons)
// r0 = add r0, sp
emitThumbConstant(MBB, II, DestReg, Offset, TII);
MI.setInstrDescriptor(TII.get(ARM::tADDhirr));
MI.getOperand(i).ChangeToRegister(DestReg, false, false, true);
MI.getOperand(i+1).ChangeToRegister(FrameReg, false);
}
return;
} else {
unsigned ImmIdx = 0;
int InstrOffs = 0;
unsigned NumBits = 0;
unsigned Scale = 1;
switch (AddrMode) {
case ARMII::AddrMode2: {
ImmIdx = i+2;
InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 12;
break;
}
case ARMII::AddrMode3: {
ImmIdx = i+2;
InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 8;
break;
}
case ARMII::AddrMode5: {
ImmIdx = i+1;
InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 8;
Scale = 4;
break;
}
case ARMII::AddrModeTs: {
ImmIdx = i+1;
InstrOffs = MI.getOperand(ImmIdx).getImm();
NumBits = (FrameReg == ARM::SP) ? 8 : 5;
Scale = 4;
break;
}
default:
assert(0 && "Unsupported addressing mode!");
abort();
break;
}
Offset += InstrOffs * Scale;
assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
if (Offset < 0 && !isThumb) {
Offset = -Offset;
isSub = true;
}
// Common case: small offset, fits into instruction.
MachineOperand &ImmOp = MI.getOperand(ImmIdx);
int ImmedOffset = Offset / Scale;
unsigned Mask = (1 << NumBits) - 1;
if ((unsigned)Offset <= Mask * Scale) {
// Replace the FrameIndex with sp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
if (isSub)
ImmedOffset |= 1 << NumBits;
ImmOp.ChangeToImmediate(ImmedOffset);
return;
}
bool isThumSpillRestore = Opcode == ARM::tRestore || Opcode == ARM::tSpill;
if (AddrMode == ARMII::AddrModeTs) {
// Thumb tLDRspi, tSTRspi. These will change to instructions that use
// a different base register.
NumBits = 5;
Mask = (1 << NumBits) - 1;
}
// If this is a thumb spill / restore, we will be using a constpool load to
// materialize the offset.
if (AddrMode == ARMII::AddrModeTs && isThumSpillRestore)
ImmOp.ChangeToImmediate(0);
else {
// Otherwise, it didn't fit. Pull in what we can to simplify the immed.
ImmedOffset = ImmedOffset & Mask;
if (isSub)
ImmedOffset |= 1 << NumBits;
ImmOp.ChangeToImmediate(ImmedOffset);
Offset &= ~(Mask*Scale);
}
}
// If we get here, the immediate doesn't fit into the instruction. We folded
// as much as possible above, handle the rest, providing a register that is
// SP+LargeImm.
assert(Offset && "This code isn't needed if offset already handled!");
if (isThumb) {
if (TII.isLoad(Opcode)) {
// Use the destination register to materialize sp + offset.
unsigned TmpReg = MI.getOperand(0).getReg();
bool UseRR = false;
if (Opcode == ARM::tRestore) {
if (FrameReg == ARM::SP)
emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,Offset,false,TII);
else {
emitLoadConstPool(MBB, II, TmpReg, Offset, TII, true);
UseRR = true;
}
} else
emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII);
MI.setInstrDescriptor(TII.get(ARM::tLDR));
MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true);
if (UseRR)
MI.addRegOperand(FrameReg, false); // Use [reg, reg] addrmode.
else
MI.addRegOperand(0, false); // tLDR has an extra register operand.
} else if (TII.isStore(Opcode)) {
// FIXME! This is horrific!!! We need register scavenging.
// Our temporary workaround has marked r3 unavailable. Of course, r3 is
// also a ABI register so it's possible that is is the register that is
// being storing here. If that's the case, we do the following:
// r12 = r2
// Use r2 to materialize sp + offset
// str r3, r2
// r2 = r12
unsigned ValReg = MI.getOperand(0).getReg();
unsigned TmpReg = ARM::R3;
bool UseRR = false;
if (ValReg == ARM::R3) {
BuildMI(MBB, II, TII.get(ARM::tMOVr), ARM::R12)
.addReg(ARM::R2, false, false, true);
TmpReg = ARM::R2;
}
if (TmpReg == ARM::R3 && AFI->isR3LiveIn())
BuildMI(MBB, II, TII.get(ARM::tMOVr), ARM::R12)
.addReg(ARM::R3, false, false, true);
if (Opcode == ARM::tSpill) {
if (FrameReg == ARM::SP)
emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,Offset,false,TII);
else {
emitLoadConstPool(MBB, II, TmpReg, Offset, TII, true);
UseRR = true;
}
} else
emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII);
MI.setInstrDescriptor(TII.get(ARM::tSTR));
MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true);
if (UseRR)
MI.addRegOperand(FrameReg, false); // Use [reg, reg] addrmode.
else
MI.addRegOperand(0, false); // tSTR has an extra register operand.
MachineBasicBlock::iterator NII = next(II);
if (ValReg == ARM::R3)
BuildMI(MBB, NII, TII.get(ARM::tMOVr), ARM::R2)
.addReg(ARM::R12, false, false, true);
if (TmpReg == ARM::R3 && AFI->isR3LiveIn())
BuildMI(MBB, NII, TII.get(ARM::tMOVr), ARM::R3)
.addReg(ARM::R12, false, false, true);
} else
assert(false && "Unexpected opcode!");
} else {
// Insert a set of r12 with the full address: r12 = sp + offset
// If the offset we have is too large to fit into the instruction, we need
// to form it with a series of ADDri's. Do this by taking 8-bit chunks
// out of 'Offset'.
unsigned ScratchReg = findScratchRegister(RS, &ARM::GPRRegClass, AFI);
if (ScratchReg == 0)
// No register is "free". Scavenge a register.
ScratchReg = RS->scavengeRegister(&ARM::GPRRegClass, II, SPAdj);
emitARMRegPlusImmediate(MBB, II, ScratchReg, FrameReg,
isSub ? -Offset : Offset, TII);
MI.getOperand(i).ChangeToRegister(ScratchReg, false, false, true);
}
}
static unsigned estimateStackSize(MachineFunction &MF, MachineFrameInfo *MFI) {
const MachineFrameInfo *FFI = MF.getFrameInfo();
int Offset = 0;
for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
int FixedOff = -FFI->getObjectOffset(i);
if (FixedOff > Offset) Offset = FixedOff;
}
for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
Offset += FFI->getObjectSize(i);
unsigned Align = FFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset+Align-1)/Align*Align;
}
return (unsigned)Offset;
}
void
ARMRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
// This tells PEI to spill the FP as if it is any other callee-save register
// to take advantage the eliminateFrameIndex machinery. This also ensures it
// is spilled in the order specified by getCalleeSavedRegs() to make it easier
// to combine multiple loads / stores.
bool CanEliminateFrame = true;
bool CS1Spilled = false;
bool LRSpilled = false;
unsigned NumGPRSpills = 0;
SmallVector<unsigned, 4> UnspilledCS1GPRs;
SmallVector<unsigned, 4> UnspilledCS2GPRs;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Don't spill FP if the frame can be eliminated. This is determined
// by scanning the callee-save registers to see if any is used.
const unsigned *CSRegs = getCalleeSavedRegs();
const TargetRegisterClass* const *CSRegClasses = getCalleeSavedRegClasses();
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
bool Spilled = false;
if (MF.isPhysRegUsed(Reg)) {
AFI->setCSRegisterIsSpilled(Reg);
Spilled = true;
CanEliminateFrame = false;
} else {
// Check alias registers too.
for (const unsigned *Aliases = getAliasSet(Reg); *Aliases; ++Aliases) {
if (MF.isPhysRegUsed(*Aliases)) {
Spilled = true;
CanEliminateFrame = false;
}
}
}
if (CSRegClasses[i] == &ARM::GPRRegClass) {
if (Spilled) {
NumGPRSpills++;
if (!STI.isTargetDarwin()) {
if (Reg == ARM::LR)
LRSpilled = true;
else
CS1Spilled = true;
continue;
}
// Keep track if LR and any of R4, R5, R6, and R7 is spilled.
switch (Reg) {
case ARM::LR:
LRSpilled = true;
// Fallthrough
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
CS1Spilled = true;
break;
default:
break;
}
} else {
if (!STI.isTargetDarwin()) {
UnspilledCS1GPRs.push_back(Reg);
continue;
}
switch (Reg) {
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
UnspilledCS1GPRs.push_back(Reg);
break;
default:
UnspilledCS2GPRs.push_back(Reg);
break;
}
}
}
}
bool ForceLRSpill = false;
if (!LRSpilled && AFI->isThumbFunction()) {
unsigned FnSize = ARM::GetFunctionSize(MF);
// Force LR to be spilled if the Thumb function size is > 2048. This enables
// use of BL to implement far jump. If it turns out that it's not needed
// then the branch fix up path will undo it.
if (FnSize >= (1 << 11)) {
CanEliminateFrame = false;
ForceLRSpill = true;
}
}
bool ExtraCSSpill = false;
if (!CanEliminateFrame || hasFP(MF)) {
AFI->setHasStackFrame(true);
// If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
// Spill LR as well so we can fold BX_RET to the registers restore (LDM).
if (!LRSpilled && CS1Spilled) {
MF.setPhysRegUsed(ARM::LR);
AFI->setCSRegisterIsSpilled(ARM::LR);
NumGPRSpills++;
UnspilledCS1GPRs.erase(std::find(UnspilledCS1GPRs.begin(),
UnspilledCS1GPRs.end(), (unsigned)ARM::LR));
ForceLRSpill = false;
ExtraCSSpill = true;
}
// Darwin ABI requires FP to point to the stack slot that contains the
// previous FP.
if (STI.isTargetDarwin() || hasFP(MF)) {
MF.setPhysRegUsed(FramePtr);
NumGPRSpills++;
}
// Estimate if we might need to scavenge a register at some point in order
// to materialize a stack offset. If so, either spill one additiona
// callee-saved register or reserve a special spill slot to facilitate
// register scavenging.
if (RS && !ExtraCSSpill && !AFI->isThumbFunction()) {
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Size = estimateStackSize(MF, MFI);
unsigned Limit = (1 << 12) - 1;
for (MachineFunction::iterator BB = MF.begin(),E = MF.end();BB != E; ++BB)
for (MachineBasicBlock::iterator I= BB->begin(); I != BB->end(); ++I) {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (I->getOperand(i).isFrameIndex()) {
unsigned Opcode = I->getOpcode();
const TargetInstrDescriptor &Desc = TII.get(Opcode);
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
if (AddrMode == ARMII::AddrMode3) {
Limit = (1 << 8) - 1;
goto DoneEstimating;
} else if (AddrMode == ARMII::AddrMode5) {
unsigned ThisLimit = ((1 << 8) - 1) * 4;
if (ThisLimit < Limit)
Limit = ThisLimit;
}
}
}
DoneEstimating:
if (Size >= Limit) {
// If any non-reserved CS register isn't spilled, just spill one or two
// extra. That should take care of it!
unsigned Extra;
while (!ExtraCSSpill && !UnspilledCS1GPRs.empty()) {
unsigned Reg = UnspilledCS1GPRs.back();
UnspilledCS1GPRs.pop_back();
if (!isReservedReg(MF, Reg)) {
Extra = Reg;
ExtraCSSpill = true;
}
}
while (!ExtraCSSpill && !UnspilledCS2GPRs.empty()) {
unsigned Reg = UnspilledCS2GPRs.back();
UnspilledCS2GPRs.pop_back();
if (!isReservedReg(MF, Reg)) {
Extra = Reg;
ExtraCSSpill = true;
}
}
if (ExtraCSSpill) {
MF.setPhysRegUsed(Extra);
AFI->setCSRegisterIsSpilled(Extra);
} else {
// Reserve a slot closest to SP or frame pointer.
const TargetRegisterClass *RC = &ARM::GPRRegClass;
RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
RC->getAlignment()));
}
}
}
}
if (ForceLRSpill) {
MF.setPhysRegUsed(ARM::LR);
AFI->setCSRegisterIsSpilled(ARM::LR);
AFI->setLRIsSpilledForFarJump(true);
}
}
/// Move iterator pass the next bunch of callee save load / store ops for
/// the particular spill area (1: integer area 1, 2: integer area 2,
/// 3: fp area, 0: don't care).
static void movePastCSLoadStoreOps(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
int Opc, unsigned Area,
const ARMSubtarget &STI) {
while (MBBI != MBB.end() &&
MBBI->getOpcode() == Opc && MBBI->getOperand(1).isFrameIndex()) {
if (Area != 0) {
bool Done = false;
unsigned Category = 0;
switch (MBBI->getOperand(0).getReg()) {
case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7:
case ARM::LR:
Category = 1;
break;
case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11:
Category = STI.isTargetDarwin() ? 2 : 1;
break;
case ARM::D8: case ARM::D9: case ARM::D10: case ARM::D11:
case ARM::D12: case ARM::D13: case ARM::D14: case ARM::D15:
Category = 3;
break;
default:
Done = true;
break;
}
if (Done || Category != Area)
break;
}
++MBBI;
}
}
void ARMRegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
unsigned NumBytes = MFI->getStackSize();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
if (isThumb) {
// Check if R3 is live in. It might have to be used as a scratch register.
for (MachineFunction::livein_iterator I=MF.livein_begin(),E=MF.livein_end();
I != E; ++I) {
if ((*I).first == ARM::R3) {
AFI->setR3IsLiveIn(true);
break;
}
}
// Thumb add/sub sp, imm8 instructions implicitly multiply the offset by 4.
NumBytes = (NumBytes + 3) & ~3;
MFI->setStackSize(NumBytes);
}
// Determine the sizes of each callee-save spill areas and record which frame
// belongs to which callee-save spill areas.
unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
int FramePtrSpillFI = 0;
if (VARegSaveSize)
emitSPUpdate(MBB, MBBI, -VARegSaveSize, isThumb, TII);
if (!AFI->hasStackFrame()) {
if (NumBytes != 0)
emitSPUpdate(MBB, MBBI, -NumBytes, isThumb, TII);
return;
}
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
int FI = CSI[i].getFrameIdx();
switch (Reg) {
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
if (Reg == FramePtr)
FramePtrSpillFI = FI;
AFI->addGPRCalleeSavedArea1Frame(FI);
GPRCS1Size += 4;
break;
case ARM::R8:
case ARM::R9:
case ARM::R10:
case ARM::R11:
if (Reg == FramePtr)
FramePtrSpillFI = FI;
if (STI.isTargetDarwin()) {
AFI->addGPRCalleeSavedArea2Frame(FI);
GPRCS2Size += 4;
} else {
AFI->addGPRCalleeSavedArea1Frame(FI);
GPRCS1Size += 4;
}
break;
default:
AFI->addDPRCalleeSavedAreaFrame(FI);
DPRCSSize += 8;
}
}
if (!isThumb) {
// Build the new SUBri to adjust SP for integer callee-save spill area 1.
emitSPUpdate(MBB, MBBI, -GPRCS1Size, isThumb, TII);
movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, 1, STI);
} else if (MBBI != MBB.end() && MBBI->getOpcode() == ARM::tPUSH)
++MBBI;
// Darwin ABI requires FP to point to the stack slot that contains the
// previous FP.
if (STI.isTargetDarwin() || hasFP(MF))
BuildMI(MBB, MBBI, TII.get(isThumb ? ARM::tADDrSPi : ARM::ADDri), FramePtr)
.addFrameIndex(FramePtrSpillFI).addImm(0);
if (!isThumb) {
// Build the new SUBri to adjust SP for integer callee-save spill area 2.
emitSPUpdate(MBB, MBBI, -GPRCS2Size, false, TII);
// Build the new SUBri to adjust SP for FP callee-save spill area.
movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, 2, STI);
emitSPUpdate(MBB, MBBI, -DPRCSSize, false, TII);
}
// Determine starting offsets of spill areas.
unsigned DPRCSOffset = NumBytes - (GPRCS1Size + GPRCS2Size + DPRCSSize);
unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) + NumBytes);
AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
NumBytes = DPRCSOffset;
if (NumBytes) {
// Insert it after all the callee-save spills.
if (!isThumb)
movePastCSLoadStoreOps(MBB, MBBI, ARM::FSTD, 3, STI);
emitSPUpdate(MBB, MBBI, -NumBytes, isThumb, TII);
}
if(STI.isTargetELF() && hasFP(MF)) {
MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
AFI->getFramePtrSpillOffset());
}
AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
}
static bool isCalleeSavedRegister(unsigned Reg, const unsigned *CSRegs) {
for (unsigned i = 0; CSRegs[i]; ++i)
if (Reg == CSRegs[i])
return true;
return false;
}
static bool isCSRestore(MachineInstr *MI, const unsigned *CSRegs) {
return ((MI->getOpcode() == ARM::FLDD ||
MI->getOpcode() == ARM::LDR ||
MI->getOpcode() == ARM::tRestore) &&
MI->getOperand(1).isFrameIndex() &&
isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs));
}
void ARMRegisterInfo::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = prior(MBB.end());
assert((MBBI->getOpcode() == ARM::BX_RET ||
MBBI->getOpcode() == ARM::tBX_RET ||
MBBI->getOpcode() == ARM::tPOP_RET) &&
"Can only insert epilog into returning blocks");
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
int NumBytes = (int)MFI->getStackSize();
if (!AFI->hasStackFrame()) {
if (NumBytes != 0)
emitSPUpdate(MBB, MBBI, NumBytes, isThumb, TII);
} else {
// Unwind MBBI to point to first LDR / FLDD.
const unsigned *CSRegs = getCalleeSavedRegs();
if (MBBI != MBB.begin()) {
do
--MBBI;
while (MBBI != MBB.begin() && isCSRestore(MBBI, CSRegs));
if (!isCSRestore(MBBI, CSRegs))
++MBBI;
}
// Move SP to start of FP callee save spill area.
NumBytes -= (AFI->getGPRCalleeSavedArea1Size() +
AFI->getGPRCalleeSavedArea2Size() +
AFI->getDPRCalleeSavedAreaSize());
if (isThumb) {
if (hasFP(MF)) {
NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
// Reset SP based on frame pointer only if the stack frame extends beyond
// frame pointer stack slot or target is ELF and the function has FP.
if (NumBytes)
emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, FramePtr, -NumBytes, TII);
else
BuildMI(MBB, MBBI, TII.get(ARM::tMOVr), ARM::SP).addReg(FramePtr);
} else {
if (MBBI->getOpcode() == ARM::tBX_RET &&
&MBB.front() != MBBI &&
prior(MBBI)->getOpcode() == ARM::tPOP) {
MachineBasicBlock::iterator PMBBI = prior(MBBI);
emitSPUpdate(MBB, PMBBI, NumBytes, isThumb, TII);
} else
emitSPUpdate(MBB, MBBI, NumBytes, isThumb, TII);
}
} else {
// Darwin ABI requires FP to point to the stack slot that contains the
// previous FP.
if ((STI.isTargetDarwin() && NumBytes) || hasFP(MF)) {
NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
// Reset SP based on frame pointer only if the stack frame extends beyond
// frame pointer stack slot or target is ELF and the function has FP.
if (AFI->getGPRCalleeSavedArea2Size() ||
AFI->getDPRCalleeSavedAreaSize() ||
AFI->getDPRCalleeSavedAreaOffset()||
hasFP(MF))
if (NumBytes)
BuildMI(MBB, MBBI, TII.get(ARM::SUBri), ARM::SP).addReg(FramePtr)
.addImm(NumBytes);
else
BuildMI(MBB, MBBI, TII.get(ARM::MOVr), ARM::SP).addReg(FramePtr);
} else if (NumBytes) {
emitSPUpdate(MBB, MBBI, NumBytes, false, TII);
}
// Move SP to start of integer callee save spill area 2.
movePastCSLoadStoreOps(MBB, MBBI, ARM::FLDD, 3, STI);
emitSPUpdate(MBB, MBBI, AFI->getDPRCalleeSavedAreaSize(), false, TII);
// Move SP to start of integer callee save spill area 1.
movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, 2, STI);
emitSPUpdate(MBB, MBBI, AFI->getGPRCalleeSavedArea2Size(), false, TII);
// Move SP to SP upon entry to the function.
movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, 1, STI);
emitSPUpdate(MBB, MBBI, AFI->getGPRCalleeSavedArea1Size(), false, TII);
}
}
if (VARegSaveSize) {
if (isThumb)
// Epilogue for vararg functions: pop LR to R3 and branch off it.
// FIXME: Verify this is still ok when R3 is no longer being reserved.
BuildMI(MBB, MBBI, TII.get(ARM::tPOP)).addReg(ARM::R3);
emitSPUpdate(MBB, MBBI, VARegSaveSize, isThumb, TII);
if (isThumb) {
BuildMI(MBB, MBBI, TII.get(ARM::tBX_RET_vararg)).addReg(ARM::R3);
MBB.erase(MBBI);
}
}
}
unsigned ARMRegisterInfo::getRARegister() const {
return ARM::LR;
}
unsigned ARMRegisterInfo::getFrameRegister(MachineFunction &MF) const {
if (STI.isTargetDarwin() || hasFP(MF))
return (STI.useThumbBacktraces() || STI.isThumb()) ? ARM::R7 : ARM::R11;
else
return ARM::SP;
}
unsigned ARMRegisterInfo::getEHExceptionRegister() const {
assert(0 && "What is the exception register");
return 0;
}
unsigned ARMRegisterInfo::getEHHandlerRegister() const {
assert(0 && "What is the exception handler register");
return 0;
}
#include "ARMGenRegisterInfo.inc"