mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
5733100450
Summary: Some optimizations such as jump threading and loop unswitching can negatively affect performance when applied to divergent branches. The divergence analysis added in this patch conservatively estimates which branches in a GPU program can diverge. This information can then help LLVM to run certain optimizations selectively. Test Plan: test/Analysis/DivergenceAnalysis/NVPTX/diverge.ll Reviewers: resistor, hfinkel, eliben, meheff, jholewinski Subscribers: broune, bjarke.roune, madhur13490, tstellarAMD, dberlin, echristo, jholewinski, llvm-commits Differential Revision: http://reviews.llvm.org/D8576 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234567 91177308-0d34-0410-b5e6-96231b3b80d8
120 lines
4.3 KiB
C++
120 lines
4.3 KiB
C++
//===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXTargetTransformInfo.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "NVPTXtti"
|
|
|
|
// Whether the given intrinsic reads threadIdx.x/y/z.
|
|
static bool readsThreadIndex(const IntrinsicInst *II) {
|
|
switch (II->getIntrinsicID()) {
|
|
default: return false;
|
|
case Intrinsic::nvvm_read_ptx_sreg_tid_x:
|
|
case Intrinsic::nvvm_read_ptx_sreg_tid_y:
|
|
case Intrinsic::nvvm_read_ptx_sreg_tid_z:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool readsLaneId(const IntrinsicInst *II) {
|
|
return II->getIntrinsicID() == Intrinsic::ptx_read_laneid;
|
|
}
|
|
|
|
// Whether the given intrinsic is an atomic instruction in PTX.
|
|
static bool isNVVMAtomic(const IntrinsicInst *II) {
|
|
switch (II->getIntrinsicID()) {
|
|
default: return false;
|
|
case Intrinsic::nvvm_atomic_load_add_f32:
|
|
case Intrinsic::nvvm_atomic_load_inc_32:
|
|
case Intrinsic::nvvm_atomic_load_dec_32:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) {
|
|
// Without inter-procedural analysis, we conservatively assume that arguments
|
|
// to __device__ functions are divergent.
|
|
if (const Argument *Arg = dyn_cast<Argument>(V))
|
|
return !isKernelFunction(*Arg->getParent());
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
// Without pointer analysis, we conservatively assume values loaded from
|
|
// generic or local address space are divergent.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
unsigned AS = LI->getPointerAddressSpace();
|
|
return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
|
|
}
|
|
// Atomic instructions may cause divergence. Atomic instructions are
|
|
// executed sequentially across all threads in a warp. Therefore, an earlier
|
|
// executed thread may see different memory inputs than a later executed
|
|
// thread. For example, suppose *a = 0 initially.
|
|
//
|
|
// atom.global.add.s32 d, [a], 1
|
|
//
|
|
// returns 0 for the first thread that enters the critical region, and 1 for
|
|
// the second thread.
|
|
if (I->isAtomic())
|
|
return true;
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
// Instructions that read threadIdx are obviously divergent.
|
|
if (readsThreadIndex(II) || readsLaneId(II))
|
|
return true;
|
|
// Handle the NVPTX atomic instrinsics that cannot be represented as an
|
|
// atomic IR instruction.
|
|
if (isNVVMAtomic(II))
|
|
return true;
|
|
}
|
|
// Conservatively consider the return value of function calls as divergent.
|
|
// We could analyze callees with bodies more precisely using
|
|
// inter-procedural analysis.
|
|
if (isa<CallInst>(I))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned NVPTXTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
|
|
TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo) {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
|
|
switch (ISD) {
|
|
default:
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::XOR:
|
|
case ISD::OR:
|
|
case ISD::AND:
|
|
// The machine code (SASS) simulates an i64 with two i32. Therefore, we
|
|
// estimate that arithmetic operations on i64 are twice as expensive as
|
|
// those on types that can fit into one machine register.
|
|
if (LT.second.SimpleTy == MVT::i64)
|
|
return 2 * LT.first;
|
|
// Delegate other cases to the basic TTI.
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
}
|
|
}
|