mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
83d886db3a
This builds on r217342, which added the infrastructure to compute known bits using assumptions (@llvm.assume calls). That original commit added only a few patterns (to catch common cases related to determining pointer alignment); this change adds several other patterns for simple cases. r217342 contained that, for assume(v & b = a), bits in the mask that are known to be one, we can propagate known bits from the a to v. It also had a known-bits transfer for assume(a = b). This patch adds: assume(~(v & b) = a) : For those bits in the mask that are known to be one, we can propagate inverted known bits from the a to v. assume(v | b = a) : For those bits in b that are known to be zero, we can propagate known bits from the a to v. assume(~(v | b) = a): For those bits in b that are known to be zero, we can propagate inverted known bits from the a to v. assume(v ^ b = a) : For those bits in b that are known to be zero, we can propagate known bits from the a to v. For those bits in b that are known to be one, we can propagate inverted known bits from the a to v. assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can propagate inverted known bits from the a to v. For those bits in b that are known to be one, we can propagate known bits from the a to v. assume(v << c = a) : For those bits in a that are known, we can propagate them to known bits in v shifted to the right by c. assume(~(v << c) = a) : For those bits in a that are known, we can propagate them inverted to known bits in v shifted to the right by c. assume(v >> c = a) : For those bits in a that are known, we can propagate them to known bits in v shifted to the right by c. assume(~(v >> c) = a) : For those bits in a that are known, we can propagate them inverted to known bits in v shifted to the right by c. assume(v >=_s c) where c is non-negative: The sign bit of v is zero assume(v >_s c) where c is at least -1: The sign bit of v is zero assume(v <=_s c) where c is negative: The sign bit of v is one assume(v <_s c) where c is non-positive: The sign bit of v is one assume(v <=_u c): Transfer the known high zero bits assume(v <_u c): Transfer the known high zero bits (if c is know to be a power of 2, transfer one more) A small addition to InstCombine was necessary for some of the test cases. The problem is that when InstCombine was simplifying and, or, etc. it would fail to check the 'do I know all of the bits' condition before checking less specific conditions and would not fully constant-fold the result. I'm not sure how to trigger this aside from using assumptions, so I've just included the change here. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217343 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
ADCE | ||
AddDiscriminators | ||
ArgumentPromotion | ||
AtomicExpand/ARM | ||
BBVectorize | ||
BranchFolding | ||
CodeExtractor | ||
CodeGenPrepare | ||
ConstantHoisting | ||
ConstantMerge | ||
ConstProp | ||
CorrelatedValuePropagation | ||
DeadArgElim | ||
DeadStoreElimination | ||
DebugIR | ||
EarlyCSE | ||
FunctionAttrs | ||
GCOVProfiling | ||
GlobalDCE | ||
GlobalOpt | ||
GVN | ||
IndVarSimplify | ||
Inline | ||
InstCombine | ||
InstMerge | ||
InstSimplify | ||
Internalize | ||
IPConstantProp | ||
JumpThreading | ||
LCSSA | ||
LICM | ||
LoadCombine | ||
LoopDeletion | ||
LoopIdiom | ||
LoopReroll | ||
LoopRotate | ||
LoopSimplify | ||
LoopStrengthReduce | ||
LoopUnroll | ||
LoopUnswitch | ||
LoopVectorize | ||
LowerAtomic | ||
LowerExpectIntrinsic | ||
LowerInvoke | ||
LowerSwitch | ||
Mem2Reg | ||
MemCpyOpt | ||
MergeFunc | ||
MetaRenamer | ||
ObjCARC | ||
PartiallyInlineLibCalls | ||
PhaseOrdering | ||
PruneEH | ||
Reassociate | ||
Reg2Mem | ||
SampleProfile | ||
Scalarizer | ||
ScalarRepl | ||
SCCP | ||
SeparateConstOffsetFromGEP/NVPTX | ||
SimplifyCFG | ||
Sink | ||
SLPVectorizer | ||
SROA | ||
StripSymbols | ||
StructurizeCFG | ||
TailCallElim | ||
TailDup | ||
Util |