llvm-6502/lib/CodeGen/StrongPHIElimination.cpp
Chris Lattner 84bc5427d6 Rename SSARegMap -> MachineRegisterInfo in keeping with the idea
that "machine" classes are used to represent the current state of
the code being compiled.  Given this expanded name, we can start 
moving other stuff into it.  For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.

Update all the clients to match.

This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8
2007-12-31 04:13:23 +00:00

634 lines
21 KiB
C++

//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions, using an intelligent copy-folding technique based on
// dominator information. This is technique is derived from:
//
// Budimlic, et al. Fast copy coalescing and live-range identification.
// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
// PLDI '02. ACM, New York, NY, 25-32.
// DOI= http://doi.acm.org/10.1145/512529.512534
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "strongphielim"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;
namespace {
struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass {
static char ID; // Pass identification, replacement for typeid
StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {}
DenseMap<MachineBasicBlock*,
std::map<unsigned, unsigned> > Waiting;
std::map<unsigned, std::vector<unsigned> > Stacks;
std::set<unsigned> UsedByAnother;
bool runOnMachineFunction(MachineFunction &Fn);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
AU.addRequired<MachineDominatorTree>();
AU.addRequired<LiveVariables>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
preorder.clear();
maxpreorder.clear();
Waiting.clear();
}
private:
struct DomForestNode {
private:
std::vector<DomForestNode*> children;
unsigned reg;
void addChild(DomForestNode* DFN) { children.push_back(DFN); }
public:
typedef std::vector<DomForestNode*>::iterator iterator;
DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
if (parent)
parent->addChild(this);
}
~DomForestNode() {
for (iterator I = begin(), E = end(); I != E; ++I)
delete *I;
}
inline unsigned getReg() { return reg; }
inline DomForestNode::iterator begin() { return children.begin(); }
inline DomForestNode::iterator end() { return children.end(); }
};
DenseMap<MachineBasicBlock*, unsigned> preorder;
DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
void computeDFS(MachineFunction& MF);
void processBlock(MachineBasicBlock* MBB);
std::vector<DomForestNode*> computeDomForest(std::set<unsigned>& instrs);
void processPHIUnion(MachineInstr* Inst,
std::set<unsigned>& PHIUnion,
std::vector<StrongPHIElimination::DomForestNode*>& DF,
std::vector<std::pair<unsigned, unsigned> >& locals);
void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
void InsertCopies(MachineBasicBlock* MBB);
};
char StrongPHIElimination::ID = 0;
RegisterPass<StrongPHIElimination> X("strong-phi-node-elimination",
"Eliminate PHI nodes for register allocation, intelligently");
}
const PassInfo *llvm::StrongPHIEliminationID = X.getPassInfo();
/// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
/// of the given MachineFunction. These numbers are then used in other parts
/// of the PHI elimination process.
void StrongPHIElimination::computeDFS(MachineFunction& MF) {
SmallPtrSet<MachineDomTreeNode*, 8> frontier;
SmallPtrSet<MachineDomTreeNode*, 8> visited;
unsigned time = 0;
MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
MachineDomTreeNode* node = DT.getRootNode();
std::vector<MachineDomTreeNode*> worklist;
worklist.push_back(node);
while (!worklist.empty()) {
MachineDomTreeNode* currNode = worklist.back();
if (!frontier.count(currNode)) {
frontier.insert(currNode);
++time;
preorder.insert(std::make_pair(currNode->getBlock(), time));
}
bool inserted = false;
for (MachineDomTreeNode::iterator I = node->begin(), E = node->end();
I != E; ++I)
if (!frontier.count(*I) && !visited.count(*I)) {
worklist.push_back(*I);
inserted = true;
break;
}
if (!inserted) {
frontier.erase(currNode);
visited.insert(currNode);
maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
worklist.pop_back();
}
}
}
/// PreorderSorter - a helper class that is used to sort registers
/// according to the preorder number of their defining blocks
class PreorderSorter {
private:
DenseMap<MachineBasicBlock*, unsigned>& preorder;
LiveVariables& LV;
public:
PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
LiveVariables& L) : preorder(p), LV(L) { }
bool operator()(unsigned A, unsigned B) {
if (A == B)
return false;
MachineBasicBlock* ABlock = LV.getVarInfo(A).DefInst->getParent();
MachineBasicBlock* BBlock = LV.getVarInfo(A).DefInst->getParent();
if (preorder[ABlock] < preorder[BBlock])
return true;
else if (preorder[ABlock] > preorder[BBlock])
return false;
assert(0 && "Error sorting by dominance!");
return false;
}
};
/// computeDomForest - compute the subforest of the DomTree corresponding
/// to the defining blocks of the registers in question
std::vector<StrongPHIElimination::DomForestNode*>
StrongPHIElimination::computeDomForest(std::set<unsigned>& regs) {
LiveVariables& LV = getAnalysis<LiveVariables>();
DomForestNode* VirtualRoot = new DomForestNode(0, 0);
maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
std::vector<unsigned> worklist;
worklist.reserve(regs.size());
for (std::set<unsigned>::iterator I = regs.begin(), E = regs.end();
I != E; ++I)
worklist.push_back(*I);
PreorderSorter PS(preorder, LV);
std::sort(worklist.begin(), worklist.end(), PS);
DomForestNode* CurrentParent = VirtualRoot;
std::vector<DomForestNode*> stack;
stack.push_back(VirtualRoot);
for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
I != E; ++I) {
unsigned pre = preorder[LV.getVarInfo(*I).DefInst->getParent()];
MachineBasicBlock* parentBlock =
LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
while (pre > maxpreorder[parentBlock]) {
stack.pop_back();
CurrentParent = stack.back();
parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
}
DomForestNode* child = new DomForestNode(*I, CurrentParent);
stack.push_back(child);
CurrentParent = child;
}
std::vector<DomForestNode*> ret;
ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
return ret;
}
/// isLiveIn - helper method that determines, from a VarInfo, if a register
/// is live into a block
bool isLiveIn(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) {
if (V.AliveBlocks.test(MBB->getNumber()))
return true;
if (V.DefInst->getParent() != MBB &&
V.UsedBlocks.test(MBB->getNumber()))
return true;
return false;
}
/// isLiveOut - help method that determines, from a VarInfo, if a register is
/// live out of a block.
bool isLiveOut(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) {
if (MBB == V.DefInst->getParent() ||
V.UsedBlocks.test(MBB->getNumber())) {
for (std::vector<MachineInstr*>::iterator I = V.Kills.begin(),
E = V.Kills.end(); I != E; ++I)
if ((*I)->getParent() == MBB)
return false;
return true;
}
return false;
}
/// isKillInst - helper method that determines, from a VarInfo, if an
/// instruction kills a given register
bool isKillInst(LiveVariables::VarInfo& V, MachineInstr* MI) {
return std::find(V.Kills.begin(), V.Kills.end(), MI) != V.Kills.end();
}
/// interferes - checks for local interferences by scanning a block. The only
/// trick parameter is 'mode' which tells it the relationship of the two
/// registers. 0 - defined in the same block, 1 - first properly dominates
/// second, 2 - second properly dominates first
bool interferes(LiveVariables::VarInfo& First, LiveVariables::VarInfo& Second,
MachineBasicBlock* scan, unsigned mode) {
MachineInstr* def = 0;
MachineInstr* kill = 0;
bool interference = false;
// Wallk the block, checking for interferences
for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
MBI != MBE; ++MBI) {
MachineInstr* curr = MBI;
// Same defining block...
if (mode == 0) {
if (curr == First.DefInst) {
// If we find our first DefInst, save it
if (!def) {
def = curr;
// If there's already an unkilled DefInst, then
// this is an interference
} else if (!kill) {
interference = true;
break;
// If there's a DefInst followed by a KillInst, then
// they can't interfere
} else {
interference = false;
break;
}
// Symmetric with the above
} else if (curr == Second.DefInst ) {
if (!def) {
def = curr;
} else if (!kill) {
interference = true;
break;
} else {
interference = false;
break;
}
// Store KillInsts if they match up with the DefInst
} else if (isKillInst(First, curr)) {
if (def == First.DefInst) {
kill = curr;
} else if (isKillInst(Second, curr)) {
if (def == Second.DefInst) {
kill = curr;
}
}
}
// First properly dominates second...
} else if (mode == 1) {
if (curr == Second.DefInst) {
// DefInst of second without kill of first is an interference
if (!kill) {
interference = true;
break;
// DefInst after a kill is a non-interference
} else {
interference = false;
break;
}
// Save KillInsts of First
} else if (isKillInst(First, curr)) {
kill = curr;
}
// Symmetric with the above
} else if (mode == 2) {
if (curr == First.DefInst) {
if (!kill) {
interference = true;
break;
} else {
interference = false;
break;
}
} else if (isKillInst(Second, curr)) {
kill = curr;
}
}
}
return interference;
}
/// processBlock - Eliminate PHIs in the given block
void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
LiveVariables& LV = getAnalysis<LiveVariables>();
// Holds names that have been added to a set in any PHI within this block
// before the current one.
std::set<unsigned> ProcessedNames;
MachineBasicBlock::iterator P = MBB->begin();
while (P->getOpcode() == TargetInstrInfo::PHI) {
LiveVariables::VarInfo& PHIInfo = LV.getVarInfo(P->getOperand(0).getReg());
unsigned DestReg = P->getOperand(0).getReg();
// Hold the names that are currently in the candidate set.
std::set<unsigned> PHIUnion;
std::set<MachineBasicBlock*> UnionedBlocks;
for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
unsigned SrcReg = P->getOperand(i-1).getReg();
LiveVariables::VarInfo& SrcInfo = LV.getVarInfo(SrcReg);
// Check for trivial interferences
if (isLiveIn(SrcInfo, P->getParent()) ||
isLiveOut(PHIInfo, SrcInfo.DefInst->getParent()) ||
( PHIInfo.DefInst->getOpcode() == TargetInstrInfo::PHI &&
isLiveIn(PHIInfo, SrcInfo.DefInst->getParent()) ) ||
ProcessedNames.count(SrcReg) ||
UnionedBlocks.count(SrcInfo.DefInst->getParent())) {
// add a copy from a_i to p in Waiting[From[a_i]]
MachineBasicBlock* From = P->getOperand(i).getMBB();
Waiting[From].insert(std::make_pair(SrcReg, DestReg));
UsedByAnother.insert(SrcReg);
} else {
PHIUnion.insert(SrcReg);
UnionedBlocks.insert(SrcInfo.DefInst->getParent());
}
}
std::vector<StrongPHIElimination::DomForestNode*> DF =
computeDomForest(PHIUnion);
// Walk DomForest to resolve interferences
std::vector<std::pair<unsigned, unsigned> > localInterferences;
processPHIUnion(P, PHIUnion, DF, localInterferences);
// Check for local interferences
for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
std::pair<unsigned, unsigned> p = *I;
LiveVariables::VarInfo& FirstInfo = LV.getVarInfo(p.first);
LiveVariables::VarInfo& SecondInfo = LV.getVarInfo(p.second);
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
// Determine the block we need to scan and the relationship between
// the two registers
MachineBasicBlock* scan = 0;
unsigned mode = 0;
if (FirstInfo.DefInst->getParent() == SecondInfo.DefInst->getParent()) {
scan = FirstInfo.DefInst->getParent();
mode = 0; // Same block
} else if (MDT.dominates(FirstInfo.DefInst->getParent(),
SecondInfo.DefInst->getParent())) {
scan = SecondInfo.DefInst->getParent();
mode = 1; // First dominates second
} else {
scan = FirstInfo.DefInst->getParent();
mode = 2; // Second dominates first
}
// If there's an interference, we need to insert copies
if (interferes(FirstInfo, SecondInfo, scan, mode)) {
// Insert copies for First
for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
if (P->getOperand(i-1).getReg() == p.first) {
unsigned SrcReg = p.first;
MachineBasicBlock* From = P->getOperand(i).getMBB();
Waiting[From].insert(std::make_pair(SrcReg,
P->getOperand(0).getReg()));
UsedByAnother.insert(SrcReg);
PHIUnion.erase(SrcReg);
}
}
}
}
// FIXME: Cache renaming information
ProcessedNames.insert(PHIUnion.begin(), PHIUnion.end());
++P;
}
}
/// processPHIUnion - Take a set of candidate registers to be coallesced when
/// decomposing the PHI instruction. Use the DominanceForest to remove the ones
/// that are known to interfere, and flag others that need to be checked for
/// local interferences.
void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
std::set<unsigned>& PHIUnion,
std::vector<StrongPHIElimination::DomForestNode*>& DF,
std::vector<std::pair<unsigned, unsigned> >& locals) {
std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
SmallPtrSet<DomForestNode*, 4> visited;
LiveVariables& LV = getAnalysis<LiveVariables>();
unsigned DestReg = Inst->getOperand(0).getReg();
// DF walk on the DomForest
while (!worklist.empty()) {
DomForestNode* DFNode = worklist.back();
LiveVariables::VarInfo& Info = LV.getVarInfo(DFNode->getReg());
visited.insert(DFNode);
bool inserted = false;
for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
CI != CE; ++CI) {
DomForestNode* child = *CI;
LiveVariables::VarInfo& CInfo = LV.getVarInfo(child->getReg());
if (isLiveOut(Info, CInfo.DefInst->getParent())) {
// Insert copies for parent
for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
unsigned SrcReg = DFNode->getReg();
MachineBasicBlock* From = Inst->getOperand(i).getMBB();
Waiting[From].insert(std::make_pair(SrcReg, DestReg));
UsedByAnother.insert(SrcReg);
PHIUnion.erase(SrcReg);
}
}
} else if (isLiveIn(Info, CInfo.DefInst->getParent()) ||
Info.DefInst->getParent() == CInfo.DefInst->getParent()) {
// Add (p, c) to possible local interferences
locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
}
if (!visited.count(child)) {
worklist.push_back(child);
inserted = true;
}
}
if (!inserted) worklist.pop_back();
}
}
/// ScheduleCopies - Insert copies into predecessor blocks, scheduling
/// them properly so as to avoid the 'lost copy' and the 'virtual swap'
/// problems.
///
/// Based on "Practical Improvements to the Construction and Destruction
/// of Static Single Assignment Form" by Briggs, et al.
void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
std::set<unsigned>& pushed) {
std::map<unsigned, unsigned>& copy_set= Waiting[MBB];
std::map<unsigned, unsigned> worklist;
std::map<unsigned, unsigned> map;
// Setup worklist of initial copies
for (std::map<unsigned, unsigned>::iterator I = copy_set.begin(),
E = copy_set.end(); I != E; ) {
map.insert(std::make_pair(I->first, I->first));
map.insert(std::make_pair(I->second, I->second));
if (!UsedByAnother.count(I->first)) {
worklist.insert(*I);
// Avoid iterator invalidation
unsigned first = I->first;
++I;
copy_set.erase(first);
} else {
++I;
}
}
LiveVariables& LV = getAnalysis<LiveVariables>();
// Iterate over the worklist, inserting copies
while (!worklist.empty() || !copy_set.empty()) {
while (!worklist.empty()) {
std::pair<unsigned, unsigned> curr = *worklist.begin();
worklist.erase(curr.first);
if (isLiveOut(LV.getVarInfo(curr.second), MBB)) {
// Insert copy from curr.second to a temporary
// Push temporary on Stacks
// Insert temporary in pushed
}
// Insert copy from map[curr.first] to curr.second
map[curr.first] = curr.second;
// If curr.first is a destination in copy_set...
for (std::map<unsigned, unsigned>::iterator I = copy_set.begin(),
E = copy_set.end(); I != E; )
if (curr.first == I->second) {
std::pair<unsigned, unsigned> temp = *I;
// Avoid iterator invalidation
++I;
copy_set.erase(temp.first);
worklist.insert(temp);
break;
} else {
++I;
}
}
if (!copy_set.empty()) {
std::pair<unsigned, unsigned> curr = *copy_set.begin();
copy_set.erase(curr.first);
// Insert a copy from dest to a new temporary t at the end of b
// map[curr.second] = t;
worklist.insert(curr);
}
}
}
/// InsertCopies - insert copies into MBB and all of its successors
void StrongPHIElimination::InsertCopies(MachineBasicBlock* MBB) {
std::set<unsigned> pushed;
// Rewrite register uses from Stacks
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I)
for (unsigned i = 0; i < I->getNumOperands(); ++i)
if (I->getOperand(i).isRegister() &&
Stacks[I->getOperand(i).getReg()].size()) {
I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
}
// Schedule the copies for this block
ScheduleCopies(MBB, pushed);
// Recur to our successors
for (GraphTraits<MachineBasicBlock*>::ChildIteratorType I =
GraphTraits<MachineBasicBlock*>::child_begin(MBB), E =
GraphTraits<MachineBasicBlock*>::child_end(MBB); I != E; ++I)
InsertCopies(*I);
// As we exit this block, pop the names we pushed while processing it
for (std::set<unsigned>::iterator I = pushed.begin(),
E = pushed.end(); I != E; ++I)
Stacks[*I].pop_back();
}
bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
// Compute DFS numbers of each block
computeDFS(Fn);
// Determine which phi node operands need copies
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
if (!I->empty() &&
I->begin()->getOpcode() == TargetInstrInfo::PHI)
processBlock(I);
// Insert copies
// FIXME: This process should probably preserve LiveVariables
InsertCopies(Fn.begin());
// FIXME: Perform renaming
return false;
}