llvm-6502/lib/Target/Alpha/AlphaInstrInfo.td
2005-11-09 19:17:08 +00:00

594 lines
31 KiB
TableGen
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- AlphaInstrInfo.td - The Alpha Instruction Set -------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
include "AlphaInstrFormats.td"
//********************
//Paterns for matching
//********************
def immUExt8 : PatLeaf<(imm), [{
// immUExt8 predicate - True if the immediate fits in a 8-bit zero extended
// field. Used by instructions like 'addi'.
return (unsigned long)N->getValue() == (unsigned char)N->getValue();
}]>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
// field. Used by instructions like 'lda'.
return (int)N->getValue() == (short)N->getValue();
}]>;
def iZAPX : SDNodeXForm<imm, [{
// Transformation function: get the imm to ZAPi
uint64_t UImm = (uint64_t)N->getValue();
unsigned int build = 0;
for(int i = 0; i < 8; ++i)
{
if ((UImm & 0x00FF) == 0x00FF)
build |= 1 << i;
else if ((UImm & 0x00FF) != 0)
{ build = 0; break; }
UImm >>= 8;
}
return getI64Imm(build);
}]>;
def immZAP : PatLeaf<(imm), [{
// immZAP predicate - True if the immediate fits is suitable for use in a
// ZAP instruction
uint64_t UImm = (uint64_t)N->getValue();
unsigned int build = 0;
for(int i = 0; i < 8; ++i)
{
if ((UImm & 0x00FF) == 0x00FF)
build |= 1 << i;
else if ((UImm & 0x00FF) != 0)
{ build = 0; break; }
UImm >>= 8;
}
return build != 0;
}], iZAPX>;
def intop : PatFrag<(ops node:$op), (sext_inreg node:$op, i32)>;
def add4 : PatFrag<(ops node:$op1, node:$op2),
(add (shl node:$op1, 2), node:$op2)>;
def sub4 : PatFrag<(ops node:$op1, node:$op2),
(sub (shl node:$op1, 2), node:$op2)>;
def add8 : PatFrag<(ops node:$op1, node:$op2),
(add (shl node:$op1, 3), node:$op2)>;
def sub8 : PatFrag<(ops node:$op1, node:$op2),
(sub (shl node:$op1, 3), node:$op2)>;
// //#define FP $15
// //#define RA $26
// //#define PV $27
// //#define GP $29
// //#define SP $30
def PHI : PseudoInstAlpha<(ops variable_ops), "#phi">;
def IDEF : PseudoInstAlpha<(ops GPRC:$RA), "#idef $RA">;
def WTF : PseudoInstAlpha<(ops variable_ops), "#wtf">;
def ADJUSTSTACKUP : PseudoInstAlpha<(ops variable_ops), "ADJUP">;
def ADJUSTSTACKDOWN : PseudoInstAlpha<(ops variable_ops), "ADJDOWN">;
def ALTENT : PseudoInstAlpha<(ops s64imm:$TARGET), "$TARGET:\n">;
def PCLABEL : PseudoInstAlpha<(ops s64imm:$num), "PCMARKER_$num:\n">;
def MEMLABEL : PseudoInstAlpha<(ops s64imm:$i, s64imm:$j, s64imm:$k, s64imm:$m),
"LSMARKER$$$i$$$j$$$k$$$m:\n">;
//*****************
//These are shortcuts, the assembler expands them
//*****************
//AT = R28
//T0-T7 = R1 - R8
//T8-T11 = R22-R25
//An even better improvement on the Int = SetCC(FP): SelectCC!
//These are evil because they hide control flow in a MBB
//really the ISel should emit multiple MBB
let isTwoAddress = 1 in {
//Conditional move of an int based on a FP CC
def CMOVEQ_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
"fbne $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n">;
def CMOVEQi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, F8RC:$RCOND),
"fbne $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n">;
def CMOVNE_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
"fbeq $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n">;
def CMOVNEi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, F8RC:$RCOND),
"fbeq $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n">;
//Conditional move of an FP based on a Int CC
def FCMOVEQ_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
"bne $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n">;
def FCMOVNE_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
"beq $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n">;
}
//***********************
//Real instructions
//***********************
//Operation Form:
//conditional moves, int
def CMOVEQ : OForm4< 0x11, 0x24, "cmoveq $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND = zero
def CMOVEQi : OForm4L< 0x11, 0x24, "cmoveq $RCOND,$L,$RDEST">; //CMOVE if RCOND = zero
def CMOVGE : OForm4< 0x11, 0x46, "cmovge $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND >= zero
def CMOVGEi : OForm4L< 0x11, 0x46, "cmovge $RCOND,$L,$RDEST">; //CMOVE if RCOND >= zero
def CMOVGT : OForm4< 0x11, 0x66, "cmovgt $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND > zero
def CMOVGTi : OForm4L< 0x11, 0x66, "cmovgt $RCOND,$L,$RDEST">; //CMOVE if RCOND > zero
def CMOVLBC : OForm4< 0x11, 0x16, "cmovlbc $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND low bit clear
def CMOVLBCi : OForm4L< 0x11, 0x16, "cmovlbc $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit clear
def CMOVLBS : OForm4< 0x11, 0x14, "cmovlbs $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND low bit set
def CMOVLBSi : OForm4L< 0x11, 0x14, "cmovlbs $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit set
def CMOVLE : OForm4< 0x11, 0x64, "cmovle $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND <= zero
def CMOVLEi : OForm4L< 0x11, 0x64, "cmovle $RCOND,$L,$RDEST">; //CMOVE if RCOND <= zero
def CMOVLT : OForm4< 0x11, 0x44, "cmovlt $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND < zero
def CMOVLTi : OForm4L< 0x11, 0x44, "cmovlt $RCOND,$L,$RDEST">; //CMOVE if RCOND < zero
def CMOVNE : OForm4< 0x11, 0x26, "cmovne $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND != zero
def CMOVNEi : OForm4L< 0x11, 0x26, "cmovne $RCOND,$L,$RDEST">; //CMOVE if RCOND != zero
//conditional moves, fp
let OperandList = (ops F8RC:$RDEST, F8RC:$RSRC2, F8RC:$RSRC, F8RC:$RCOND),
isTwoAddress = 1 in {
def FCMOVEQ : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if = zero
def FCMOVGE : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if >= zero
def FCMOVGT : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if > zero
def FCMOVLE : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if <= zero
def FCMOVLT : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RSRC,$RDEST",[]>; // FCMOVE if < zero
def FCMOVNE : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if != zero
}
def ADDL : OForm< 0x10, 0x00, "addl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (add GPRC:$RA, GPRC:$RB)))]>;
def ADDLi : OFormL<0x10, 0x00, "addl $RA,$L,$RC",
[(set GPRC:$RC, (intop (add GPRC:$RA, immUExt8:$L)))]>;
def ADDQ : OForm< 0x10, 0x20, "addq $RA,$RB,$RC",
[(set GPRC:$RC, (add GPRC:$RA, GPRC:$RB))]>;
def ADDQi : OFormL<0x10, 0x20, "addq $RA,$L,$RC",
[(set GPRC:$RC, (add GPRC:$RA, immUExt8:$L))]>;
def AND : OForm< 0x11, 0x00, "and $RA,$RB,$RC",
[(set GPRC:$RC, (and GPRC:$RA, GPRC:$RB))]>;
def ANDi : OFormL<0x11, 0x00, "and $RA,$L,$RC",
[(set GPRC:$RC, (and GPRC:$RA, immUExt8:$L))]>;
def BIC : OForm< 0x11, 0x08, "bic $RA,$RB,$RC",
[(set GPRC:$RC, (and GPRC:$RA, (not GPRC:$RB)))]>;
def BICi : OFormL<0x11, 0x08, "bic $RA,$L,$RC", []>;
// [(set GPRC:$RC, (and GPRC:$RA, (not immUExt8:$L)))]>; //FIXME?
def BIS : OForm< 0x11, 0x20, "bis $RA,$RB,$RC",
[(set GPRC:$RC, (or GPRC:$RA, GPRC:$RB))]>;
def BISi : OFormL<0x11, 0x20, "bis $RA,$L,$RC",
[(set GPRC:$RC, (or GPRC:$RA, immUExt8:$L))]>;
def CTLZ : OForm2<0x1C, 0x32, "CTLZ $RB,$RC",
[(set GPRC:$RC, (ctlz GPRC:$RB))]>;
def CTPOP : OForm2<0x1C, 0x30, "CTPOP $RB,$RC",
[(set GPRC:$RC, (ctpop GPRC:$RB))]>;
def CTTZ : OForm2<0x1C, 0x33, "CTTZ $RB,$RC",
[(set GPRC:$RC, (cttz GPRC:$RB))]>;
def EQV : OForm< 0x11, 0x48, "eqv $RA,$RB,$RC",
[(set GPRC:$RC, (xor GPRC:$RA, (not GPRC:$RB)))]>;
def EQVi : OFormL<0x11, 0x48, "eqv $RA,$L,$RC", []>;
// [(set GPRC:$RC, (xor GPRC:$RA, (not immUExt8:$L)))]>;
//def EXTBL : OForm< 0x12, 0x06, "EXTBL $RA,$RB,$RC", []>; //Extract byte low
//def EXTBLi : OFormL<0x12, 0x06, "EXTBL $RA,$L,$RC", []>; //Extract byte low
//def EXTLH : OForm< 0x12, 0x6A, "EXTLH $RA,$RB,$RC", []>; //Extract longword high
//def EXTLHi : OFormL<0x12, 0x6A, "EXTLH $RA,$L,$RC", []>; //Extract longword high
//def EXTLL : OForm< 0x12, 0x26, "EXTLL $RA,$RB,$RC", []>; //Extract longword low
//def EXTLLi : OFormL<0x12, 0x26, "EXTLL $RA,$L,$RC", []>; //Extract longword low
//def EXTQH : OForm< 0x12, 0x7A, "EXTQH $RA,$RB,$RC", []>; //Extract quadword high
//def EXTQHi : OFormL<0x12, 0x7A, "EXTQH $RA,$L,$RC", []>; //Extract quadword high
//def EXTQ : OForm< 0x12, 0x36, "EXTQ $RA,$RB,$RC", []>; //Extract quadword low
//def EXTQi : OFormL<0x12, 0x36, "EXTQ $RA,$L,$RC", []>; //Extract quadword low
//def EXTWH : OForm< 0x12, 0x5A, "EXTWH $RA,$RB,$RC", []>; //Extract word high
//def EXTWHi : OFormL<0x12, 0x5A, "EXTWH $RA,$L,$RC", []>; //Extract word high
//def EXTWL : OForm< 0x12, 0x16, "EXTWL $RA,$RB,$RC", []>; //Extract word low
//def EXTWLi : OFormL<0x12, 0x16, "EXTWL $RA,$L,$RC", []>; //Extract word low
//def IMPLVER : OForm< 0x11, 0x6C, "IMPLVER $RA,$RB,$RC", []>; //Implementation version
//def IMPLVERi : OFormL<0x11, 0x6C, "IMPLVER $RA,$L,$RC", []>; //Implementation version
//def INSBL : OForm< 0x12, 0x0B, "INSBL $RA,$RB,$RC", []>; //Insert byte low
//def INSBLi : OFormL<0x12, 0x0B, "INSBL $RA,$L,$RC", []>; //Insert byte low
//def INSLH : OForm< 0x12, 0x67, "INSLH $RA,$RB,$RC", []>; //Insert longword high
//def INSLHi : OFormL<0x12, 0x67, "INSLH $RA,$L,$RC", []>; //Insert longword high
//def INSLL : OForm< 0x12, 0x2B, "INSLL $RA,$RB,$RC", []>; //Insert longword low
//def INSLLi : OFormL<0x12, 0x2B, "INSLL $RA,$L,$RC", []>; //Insert longword low
//def INSQH : OForm< 0x12, 0x77, "INSQH $RA,$RB,$RC", []>; //Insert quadword high
//def INSQHi : OFormL<0x12, 0x77, "INSQH $RA,$L,$RC", []>; //Insert quadword high
//def INSQL : OForm< 0x12, 0x3B, "INSQL $RA,$RB,$RC", []>; //Insert quadword low
//def INSQLi : OFormL<0x12, 0x3B, "INSQL $RA,$L,$RC", []>; //Insert quadword low
//def INSWH : OForm< 0x12, 0x57, "INSWH $RA,$RB,$RC", []>; //Insert word high
//def INSWHi : OFormL<0x12, 0x57, "INSWH $RA,$L,$RC", []>; //Insert word high
//def INSWL : OForm< 0x12, 0x1B, "INSWL $RA,$RB,$RC", []>; //Insert word low
//def INSWLi : OFormL<0x12, 0x1B, "INSWL $RA,$L,$RC", []>; //Insert word low
//def MSKBL : OForm< 0x12, 0x02, "MSKBL $RA,$RB,$RC", []>; //Mask byte low
//def MSKBLi : OFormL<0x12, 0x02, "MSKBL $RA,$L,$RC", []>; //Mask byte low
//def MSKLH : OForm< 0x12, 0x62, "MSKLH $RA,$RB,$RC", []>; //Mask longword high
//def MSKLHi : OFormL<0x12, 0x62, "MSKLH $RA,$L,$RC", []>; //Mask longword high
//def MSKLL : OForm< 0x12, 0x22, "MSKLL $RA,$RB,$RC", []>; //Mask longword low
//def MSKLLi : OFormL<0x12, 0x22, "MSKLL $RA,$L,$RC", []>; //Mask longword low
//def MSKQH : OForm< 0x12, 0x72, "MSKQH $RA,$RB,$RC", []>; //Mask quadword high
//def MSKQHi : OFormL<0x12, 0x72, "MSKQH $RA,$L,$RC", []>; //Mask quadword high
//def MSKQL : OForm< 0x12, 0x32, "MSKQL $RA,$RB,$RC", []>; //Mask quadword low
//def MSKQLi : OFormL<0x12, 0x32, "MSKQL $RA,$L,$RC", []>; //Mask quadword low
//def MSKWH : OForm< 0x12, 0x52, "MSKWH $RA,$RB,$RC", []>; //Mask word high
//def MSKWHi : OFormL<0x12, 0x52, "MSKWH $RA,$L,$RC", []>; //Mask word high
//def MSKWL : OForm< 0x12, 0x12, "MSKWL $RA,$RB,$RC", []>; //Mask word low
//def MSKWLi : OFormL<0x12, 0x12, "MSKWL $RA,$L,$RC", []>; //Mask word low
def MULL : OForm< 0x13, 0x00, "mull $RA,$RB,$RC",
[(set GPRC:$RC, (intop (mul GPRC:$RA, GPRC:$RB)))]>;
def MULLi : OFormL<0x13, 0x00, "mull $RA,$L,$RC",
[(set GPRC:$RC, (intop (mul GPRC:$RA, immUExt8:$L)))]>;
def MULQ : OForm< 0x13, 0x20, "mulq $RA,$RB,$RC",
[(set GPRC:$RC, (mul GPRC:$RA, GPRC:$RB))]>;
def MULQi : OFormL<0x13, 0x20, "mulq $RA,$L,$RC",
[(set GPRC:$RC, (mul GPRC:$RA, immUExt8:$L))]>;
def ORNOT : OForm< 0x11, 0x28, "ornot $RA,$RB,$RC",
[(set GPRC:$RC, (or GPRC:$RA, (not GPRC:$RB)))]>;
def ORNOTi : OFormL<0x11, 0x28, "ornot $RA,$L,$RC", []>;
// [(set GPRC:$RC, (or GPRC:$RA, (not immUExt8:$L)))]>;
def S4ADDL : OForm< 0x10, 0x02, "s4addl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (add4 GPRC:$RA, GPRC:$RB)))]>;
def S4ADDLi : OFormL<0x10, 0x02, "s4addl $RA,$L,$RC",
[(set GPRC:$RC, (intop (add4 GPRC:$RA, immUExt8:$L)))]>;
def S4ADDQ : OForm< 0x10, 0x22, "s4addq $RA,$RB,$RC",
[(set GPRC:$RC, (add4 GPRC:$RA, GPRC:$RB))]>;
def S4ADDQi : OFormL<0x10, 0x22, "s4addq $RA,$L,$RC",
[(set GPRC:$RC, (add4 GPRC:$RA, immUExt8:$L))]>;
def S4SUBL : OForm< 0x10, 0x0B, "s4subl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (sub4 GPRC:$RA, GPRC:$RB)))]>;
def S4SUBLi : OFormL<0x10, 0x0B, "s4subl $RA,$L,$RC",
[(set GPRC:$RC, (intop (sub4 GPRC:$RA, immUExt8:$L)))]>;
def S4SUBQ : OForm< 0x10, 0x2B, "s4subq $RA,$RB,$RC",
[(set GPRC:$RC, (sub4 GPRC:$RA, GPRC:$RB))]>;
def S4SUBQi : OFormL<0x10, 0x2B, "s4subq $RA,$L,$RC",
[(set GPRC:$RC, (sub4 GPRC:$RA, immUExt8:$L))]>;
def S8ADDL : OForm< 0x10, 0x12, "s8addl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (add8 GPRC:$RA, GPRC:$RB)))]>;
def S8ADDLi : OFormL<0x10, 0x12, "s8addl $RA,$L,$RC",
[(set GPRC:$RC, (intop (add8 GPRC:$RA, immUExt8:$L)))]>;
def S8ADDQ : OForm< 0x10, 0x32, "s8addq $RA,$RB,$RC",
[(set GPRC:$RC, (add8 GPRC:$RA, GPRC:$RB))]>;
def S8ADDQi : OFormL<0x10, 0x32, "s8addq $RA,$L,$RC",
[(set GPRC:$RC, (add8 GPRC:$RA, immUExt8:$L))]>;
def S8SUBL : OForm< 0x10, 0x1B, "s8subl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (sub8 GPRC:$RA, GPRC:$RB)))]>;
def S8SUBLi : OFormL<0x10, 0x1B, "s8subl $RA,$L,$RC",
[(set GPRC:$RC, (intop (sub8 GPRC:$RA, immUExt8:$L)))]>;
def S8SUBQ : OForm< 0x10, 0x3B, "s8subq $RA,$RB,$RC",
[(set GPRC:$RC, (sub8 GPRC:$RA, GPRC:$RB))]>;
def S8SUBQi : OFormL<0x10, 0x3B, "s8subq $RA,$L,$RC",
[(set GPRC:$RC, (sub8 GPRC:$RA, immUExt8:$L))]>;
def SEXTB : OForm2<0x1C, 0x00, "sextb $RB,$RC",
[(set GPRC:$RC, (sext_inreg GPRC:$RB, i8))]>;
def SEXTW : OForm2<0x1C, 0x01, "sextw $RB,$RC",
[(set GPRC:$RC, (sext_inreg GPRC:$RB, i16))]>;
def SL : OForm< 0x12, 0x39, "sll $RA,$RB,$RC",
[(set GPRC:$RC, (shl GPRC:$RA, GPRC:$RB))]>;
def SLi : OFormL<0x12, 0x39, "sll $RA,$L,$RC",
[(set GPRC:$RC, (shl GPRC:$RA, immUExt8:$L))]>;
def SRA : OForm< 0x12, 0x3C, "sra $RA,$RB,$RC",
[(set GPRC:$RC, (sra GPRC:$RA, GPRC:$RB))]>;
def SRAi : OFormL<0x12, 0x3C, "sra $RA,$L,$RC",
[(set GPRC:$RC, (sra GPRC:$RA, immUExt8:$L))]>;
def SRL : OForm< 0x12, 0x34, "srl $RA,$RB,$RC",
[(set GPRC:$RC, (srl GPRC:$RA, GPRC:$RB))]>;
def SRLi : OFormL<0x12, 0x34, "srl $RA,$L,$RC",
[(set GPRC:$RC, (srl GPRC:$RA, immUExt8:$L))]>;
def SUBL : OForm< 0x10, 0x09, "subl $RA,$RB,$RC",
[(set GPRC:$RC, (intop (sub GPRC:$RA, GPRC:$RB)))]>;
def SUBLi : OFormL<0x10, 0x09, "subl $RA,$L,$RC",
[(set GPRC:$RC, (intop (sub GPRC:$RA, immUExt8:$L)))]>;
def SUBQ : OForm< 0x10, 0x29, "subq $RA,$RB,$RC",
[(set GPRC:$RC, (sub GPRC:$RA, GPRC:$RB))]>;
def SUBQi : OFormL<0x10, 0x29, "subq $RA,$L,$RC",
[(set GPRC:$RC, (sub GPRC:$RA, immUExt8:$L))]>;
def UMULH : OForm< 0x13, 0x30, "umulh $RA,$RB,$RC",
[(set GPRC:$RC, (mulhu GPRC:$RA, GPRC:$RB))]>;
def UMULHi : OFormL<0x13, 0x30, "umulh $RA,$L,$RC",
[(set GPRC:$RC, (mulhu GPRC:$RA, immUExt8:$L))]>;
def XOR : OForm< 0x11, 0x40, "xor $RA,$RB,$RC",
[(set GPRC:$RC, (xor GPRC:$RA, GPRC:$RB))]>;
def XORi : OFormL<0x11, 0x40, "xor $RA,$L,$RC",
[(set GPRC:$RC, (xor GPRC:$RA, immUExt8:$L))]>;
//FIXME: what to do about zap? the cases it catches are very complex
def ZAP : OForm< 0x12, 0x30, "zap $RA,$RB,$RC", []>; //Zero bytes
//ZAPi is useless give ZAPNOTi
def ZAPi : OFormL<0x12, 0x30, "zap $RA,$L,$RC", []>; //Zero bytes
//FIXME: what to do about zapnot? see ZAP :)
def ZAPNOT : OForm< 0x12, 0x31, "zapnot $RA,$RB,$RC", []>; //Zero bytes not
def ZAPNOTi : OFormL<0x12, 0x31, "zapnot $RA,$L,$RC",
[(set GPRC:$RC, (and GPRC:$RA, immZAP:$L))]>;
//Comparison, int
//So this is a waste of what this instruction can do, but it still saves something
def CMPBGE : OForm< 0x10, 0x0F, "cmpbge $RA,$RB,$RC",
[(set GPRC:$RC, (setuge (and GPRC:$RA, 255), (and GPRC:$RB, 255)))]>;
def CMPBGEi : OFormL<0x10, 0x0F, "cmpbge $RA,$L,$RC",
[(set GPRC:$RC, (setuge (and GPRC:$RA, 255), immUExt8:$L))]>;
def CMPEQ : OForm< 0x10, 0x2D, "cmpeq $RA,$RB,$RC",
[(set GPRC:$RC, (seteq GPRC:$RA, GPRC:$RB))]>;
def CMPEQi : OFormL<0x10, 0x2D, "cmpeq $RA,$L,$RC",
[(set GPRC:$RC, (seteq GPRC:$RA, immUExt8:$L))]>;
def CMPLE : OForm< 0x10, 0x6D, "cmple $RA,$RB,$RC",
[(set GPRC:$RC, (setle GPRC:$RA, GPRC:$RB))]>;
def CMPLEi : OFormL<0x10, 0x6D, "cmple $RA,$L,$RC",
[(set GPRC:$RC, (setle GPRC:$RA, immUExt8:$L))]>;
def CMPLT : OForm< 0x10, 0x4D, "cmplt $RA,$RB,$RC",
[(set GPRC:$RC, (setlt GPRC:$RA, GPRC:$RB))]>;
def CMPLTi : OFormL<0x10, 0x4D, "cmplt $RA,$L,$RC",
[(set GPRC:$RC, (setlt GPRC:$RA, immUExt8:$L))]>;
def CMPULE : OForm< 0x10, 0x3D, "cmpule $RA,$RB,$RC",
[(set GPRC:$RC, (setule GPRC:$RA, GPRC:$RB))]>;
def CMPULEi : OFormL<0x10, 0x3D, "cmpule $RA,$L,$RC",
[(set GPRC:$RC, (setule GPRC:$RA, immUExt8:$L))]>;
def CMPULT : OForm< 0x10, 0x1D, "cmpult $RA,$RB,$RC",
[(set GPRC:$RC, (setlt GPRC:$RA, GPRC:$RB))]>;
def CMPULTi : OFormL<0x10, 0x1D, "cmpult $RA,$L,$RC",
[(set GPRC:$RC, (setlt GPRC:$RA, immUExt8:$L))]>;
//Patterns for unsupported int comparisons
def : Pat<(setueq GPRC:$X, GPRC:$Y), (CMPEQ GPRC:$X, GPRC:$Y)>;
def : Pat<(setueq GPRC:$X, immUExt8:$Y), (CMPEQi GPRC:$X, immUExt8:$Y)>;
def : Pat<(setugt GPRC:$X, GPRC:$Y), (CMPULT GPRC:$Y, GPRC:$X)>;
def : Pat<(setugt immUExt8:$X, GPRC:$Y), (CMPULTi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setuge GPRC:$X, GPRC:$Y), (CMPULE GPRC:$Y, GPRC:$X)>;
def : Pat<(setuge immUExt8:$X, GPRC:$Y), (CMPULEi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setgt GPRC:$X, GPRC:$Y), (CMPLT GPRC:$Y, GPRC:$X)>;
def : Pat<(setgt immUExt8:$X, GPRC:$Y), (CMPLTi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setge GPRC:$X, GPRC:$Y), (CMPLE GPRC:$Y, GPRC:$X)>;
def : Pat<(setge immUExt8:$X, GPRC:$Y), (CMPLEi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setne GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>;
def : Pat<(setne GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQi GPRC:$X, immUExt8:$Y), 0)>;
def : Pat<(setune GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>;
def : Pat<(setune GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQ GPRC:$X, immUExt8:$Y), 0)>;
let isReturn = 1, isTerminator = 1 in
def RET : MbrForm< 0x1A, 0x02, (ops GPRC:$RD, GPRC:$RS, s64imm:$DISP), "ret $RD,($RS),$DISP">; //Return from subroutine
//DAG Version:
let isReturn = 1, isTerminator = 1, Ra = 31, Rb = 26, disp = 1, Uses = [R26] in
def RETDAG : MbrForm< 0x1A, 0x02, (ops), "ret $$31,($$26),1">; //Return from subroutine
def JMP : MbrForm< 0x1A, 0x00, (ops GPRC:$RD, GPRC:$RS, GPRC:$DISP), "jmp $RD,($RS),$DISP">; //Jump
let isCall = 1,
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
R20, R21, R22, R23, R24, R25, R27, R28, R29,
F0, F1,
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R29] in {
def JSR : MbrForm< 0x1A, 0x01, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr $RD,($RS),$DISP">; //Jump to subroutine
def BSR : BForm<0x34, "bsr $RA,$DISP">; //Branch to subroutine
}
let isCall = 1,
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
R20, R21, R22, R23, R24, R25, R26, R27, R28, R29,
F0, F1,
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R27, R29] in {
def JSRDAG : MbrForm< 0x1A, 0x01, (ops ), "jsr $$26,($$27),0">; //Jump to subroutine
}
let isCall = 1, Defs = [R24, R25, R27, R28], Uses = [R24, R25] in
def JSRs : MbrForm< 0x1A, 0x01, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr $RD,($RS),$DISP">; //Jump to div or rem
def JSR_COROUTINE : MbrForm< 0x1A, 0x03, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr_coroutine $RD,($RS),$DISP">; //Jump to subroutine return
def BR : BForm<0x30, "br $RA,$DISP">; //Branch
def BR_DAG : BFormD<0x30, "br $$31,$DISP">; //Branch
//Stores, int
def STB : MForm<0x0E, "stb $RA,$DISP($RB)">; // Store byte
def STW : MForm<0x0D, "stw $RA,$DISP($RB)">; // Store word
def STL : MForm<0x2C, "stl $RA,$DISP($RB)">; // Store longword
def STQ : MForm<0x2D, "stq $RA,$DISP($RB)">; //Store quadword
//Loads, int
def LDL : MForm<0x28, "ldl $RA,$DISP($RB)">; // Load sign-extended longword
def LDQ : MForm<0x29, "ldq $RA,$DISP($RB)">; //Load quadword
def LDBU : MForm<0x0A, "ldbu $RA,$DISP($RB)">; //Load zero-extended byte
def LDWU : MForm<0x0C, "ldwu $RA,$DISP($RB)">; //Load zero-extended word
//Stores, float
def STS : MForm<0x26, "sts $RA,$DISP($RB)">; //Store S_floating
def STT : MForm<0x27, "stt $RA,$DISP($RB)">; //Store T_floating
//Loads, float
def LDS : MForm<0x22, "lds $RA,$DISP($RB)">; //Load S_floating
def LDT : MForm<0x23, "ldt $RA,$DISP($RB)">; //Load T_floating
//Load address
def LDA : MForm<0x08, "lda $RA,$DISP($RB)">; //Load address
def LDAH : MForm<0x09, "ldah $RA,$DISP($RB)">; //Load address high
//Loads, int, Rellocated Low form
def LDLr : MForm<0x28, "ldl $RA,$DISP($RB)\t\t!gprellow">; // Load sign-extended longword
def LDQr : MForm<0x29, "ldq $RA,$DISP($RB)\t\t!gprellow">; //Load quadword
def LDBUr : MForm<0x0A, "ldbu $RA,$DISP($RB)\t\t!gprellow">; //Load zero-extended byte
def LDWUr : MForm<0x0C, "ldwu $RA,$DISP($RB)\t\t!gprellow">; //Load zero-extended word
//Loads, float, Rellocated Low form
def LDSr : MForm<0x22, "lds $RA,$DISP($RB)\t\t!gprellow">; //Load S_floating
def LDTr : MForm<0x23, "ldt $RA,$DISP($RB)\t\t!gprellow">; //Load T_floating
//Load address, rellocated low and high form
def LDAr : MForm<0x08, "lda $RA,$DISP($RB)\t\t!gprellow">; //Load address
def LDAHr : MForm<0x09, "ldah $RA,$DISP($RB)\t\t!gprelhigh">; //Load address high
//load address, rellocated gpdist form
def LDAg : MgForm<0x08, "lda $RA,0($RB)\t\t!gpdisp!$NUM">; //Load address
def LDAHg : MgForm<0x09, "ldah $RA,0($RB)\t\t!gpdisp!$NUM">; //Load address
//Load quad, rellocated literal form
def LDQl : MForm<0x29, "ldq $RA,$DISP($RB)\t\t!literal">; //Load quadword
//Stores, int
def STBr : MForm<0x0E, "stb $RA,$DISP($RB)\t\t!gprellow">; // Store byte
def STWr : MForm<0x0D, "stw $RA,$DISP($RB)\t\t!gprellow">; // Store word
def STLr : MForm<0x2C, "stl $RA,$DISP($RB)\t\t!gprellow">; // Store longword
def STQr : MForm<0x2D, "stq $RA,$DISP($RB)\t\t!gprellow">; //Store quadword
//Stores, float
def STSr : MForm<0x26, "sts $RA,$DISP($RB)\t\t!gprellow">; //Store S_floating
def STTr : MForm<0x27, "stt $RA,$DISP($RB)\t\t!gprellow">; //Store T_floating
//Branches, int
def BEQ : BForm<0x39, "beq $RA,$DISP">; //Branch if = zero
def BGE : BForm<0x3E, "bge $RA,$DISP">; //Branch if >= zero
def BGT : BForm<0x3F, "bgt $RA,$DISP">; //Branch if > zero
def BLBC : BForm<0x38, "blbc $RA,$DISP">; //Branch if low bit clear
def BLBS : BForm<0x3C, "blbs $RA,$DISP">; //Branch if low bit set
def BLE : BForm<0x3B, "ble $RA,$DISP">; //Branch if <= zero
def BLT : BForm<0x3A, "blt $RA,$DISP">; //Branch if < zero
def BNE : BForm<0x3D, "bne $RA,$DISP">; //Branch if != zero
//Branches, float
def FBEQ : FBForm<0x31, "fbeq $RA,$DISP">; //Floating branch if = zero
def FBGE : FBForm<0x36, "fbge $RA,$DISP">; //Floating branch if >= zero
def FBGT : FBForm<0x37, "fbgt $RA,$DISP">; //Floating branch if > zero
def FBLE : FBForm<0x33, "fble $RA,$DISP">; //Floating branch if <= zero
def FBLT : FBForm<0x32, "fblt $RA,$DISP">; //Floating branch if < zero
def FBNE : FBForm<0x35, "fbne $RA,$DISP">; //Floating branch if != zero
//Basic Floating point ops
//Floats
let OperandList = (ops F4RC:$RC, F4RC:$RB), Fa = 31 in
def SQRTS : FPForm<0x14, 0x58B, "sqrts/su $RB,$RC",
[(set F4RC:$RC, (fsqrt F4RC:$RB))]>;
let OperandList = (ops F4RC:$RC, F4RC:$RA, F4RC:$RB) in {
def ADDS : FPForm<0x16, 0x580, "adds/su $RA,$RB,$RC",
[(set F4RC:$RC, (fadd F4RC:$RA, F4RC:$RB))]>;
def SUBS : FPForm<0x16, 0x581, "subs/su $RA,$RB,$RC",
[(set F4RC:$RC, (fsub F4RC:$RA, F4RC:$RB))]>;
def DIVS : FPForm<0x16, 0x583, "divs/su $RA,$RB,$RC",
[(set F4RC:$RC, (fdiv F4RC:$RA, F4RC:$RB))]>;
def MULS : FPForm<0x16, 0x582, "muls/su $RA,$RB,$RC",
[(set F4RC:$RC, (fmul F4RC:$RA, F4RC:$RB))]>;
def CPYSS : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",[]>; //Copy sign
def CPYSES : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[]>; //Copy sign and exponent
def CPYSNS : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",[]>; //Copy sign negate
}
//Doubles
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
def SQRTT : FPForm<0x14, 0x5AB, "sqrtt/su $RB,$RC",
[(set F8RC:$RC, (fsqrt F8RC:$RB))]>;
let OperandList = (ops F8RC:$RC, F8RC:$RA, F8RC:$RB) in {
def ADDT : FPForm<0x16, 0x5A0, "addt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fadd F8RC:$RA, F8RC:$RB))]>;
def SUBT : FPForm<0x16, 0x5A1, "subt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fsub F8RC:$RA, F8RC:$RB))]>;
def DIVT : FPForm<0x16, 0x5A3, "divt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fdiv F8RC:$RA, F8RC:$RB))]>;
def MULT : FPForm<0x16, 0x5A2, "mult/su $RA,$RB,$RC",
[(set F8RC:$RC, (fmul F8RC:$RA, F8RC:$RB))]>;
def CPYST : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",[]>; //Copy sign
def CPYSET : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[]>; //Copy sign and exponent
def CPYSNT : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",[]>; //Copy sign negate
def CMPTEQ : FPForm<0x16, 0x5A5, "cmpteq/su $RA,$RB,$RC", []>;
// [(set F8RC:$RC, (seteq F8RC:$RA, F8RC:$RB))]>;
def CMPTLE : FPForm<0x16, 0x5A7, "cmptle/su $RA,$RB,$RC", []>;
// [(set F8RC:$RC, (setle F8RC:$RA, F8RC:$RB))]>;
def CMPTLT : FPForm<0x16, 0x5A6, "cmptlt/su $RA,$RB,$RC", []>;
// [(set F8RC:$RC, (setlt F8RC:$RA, F8RC:$RB))]>;
def CMPTUN : FPForm<0x16, 0x5A4, "cmptun/su $RA,$RB,$RC", []>;
// [(set F8RC:$RC, (setuo F8RC:$RA, F8RC:$RB))]>;
}
//TODO: Add lots more FP patterns
let OperandList = (ops GPRC:$RC, F4RC:$RA), Fb = 31 in
def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC",[]>; //Floating to integer move, S_floating
let OperandList = (ops GPRC:$RC, F8RC:$RA), Fb = 31 in
def FTOIT : FPForm<0x1C, 0x070, "ftoit $RA,$RC",[]>; //Floating to integer move, T_floating
let OperandList = (ops F4RC:$RC, GPRC:$RA), Fb = 31 in
def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC",[]>; //Integer to floating move, S_floating
let OperandList = (ops F8RC:$RC, GPRC:$RA), Fb = 31 in
def ITOFT : FPForm<0x14, 0x024, "itoft $RA,$RC",[]>; //Integer to floating move, T_floating
let OperandList = (ops F4RC:$RC, F8RC:$RB), Fa = 31 in
def CVTQS : FPForm<0x16, 0x7BC, "cvtqs/sui $RB,$RC",[]>; //Convert quadword to S_floating
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
def CVTQT : FPForm<0x16, 0x7BE, "cvtqt/sui $RB,$RC",[]>; //Convert quadword to T_floating
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
def CVTTQ : FPForm<0x16, 0x52F, "cvttq/svc $RB,$RC",[]>; //Convert T_floating to quadword
let OperandList = (ops F8RC:$RC, F4RC:$RB), Fa = 31 in
def CVTST : FPForm<0x16, 0x6AC, "cvtst/s $RB,$RC",
[(set F8RC:$RC, (fextend F4RC:$RB))]>;
let OperandList = (ops F4RC:$RC, F8RC:$RB), Fa = 31 in
def CVTTS : FPForm<0x16, 0x7AC, "cvtts/sui $RB,$RC",
[(set F4RC:$RC, (fround F8RC:$RB))]>;
//S_floating : IEEE Single
//T_floating : IEEE Double
//Unused instructions
//Mnemonic Format Opcode Description
//CALL_PAL Pcd 00 Trap to PALcode
//ECB Mfc 18.E800 Evict cache block
//EXCB Mfc 18.0400 Exception barrier
//FETCH Mfc 18.8000 Prefetch data
//FETCH_M Mfc 18.A000 Prefetch data, modify intent
//LDL_L Mem 2A Load sign-extended longword locked
//LDQ_L Mem 2B Load quadword locked
//LDQ_U Mem 0B Load unaligned quadword
//MB Mfc 18.4000 Memory barrier
//RPCC Mfc 18.C000 Read process cycle counter
//STL_C Mem 2E Store longword conditional
//STQ_C Mem 2F Store quadword conditional
//STQ_U Mem 0F Store unaligned quadword
//TRAPB Mfc 18.0000 Trap barrier
//WH64 Mfc 18.F800 Write hint  64 bytes
//WMB Mfc 18.4400 Write memory barrier
//MF_FPCR F-P 17.025 Move from FPCR
//MT_FPCR F-P 17.024 Move to FPCR
//There are in the Multimedia extentions, so let's not use them yet
//def MAXSB8 : OForm<0x1C, 0x3E, "MAXSB8 $RA,$RB,$RC">; //Vector signed byte maximum
//def MAXSW4 : OForm< 0x1C, 0x3F, "MAXSW4 $RA,$RB,$RC">; //Vector signed word maximum
//def MAXUB8 : OForm<0x1C, 0x3C, "MAXUB8 $RA,$RB,$RC">; //Vector unsigned byte maximum
//def MAXUW4 : OForm< 0x1C, 0x3D, "MAXUW4 $RA,$RB,$RC">; //Vector unsigned word maximum
//def MINSB8 : OForm< 0x1C, 0x38, "MINSB8 $RA,$RB,$RC">; //Vector signed byte minimum
//def MINSW4 : OForm< 0x1C, 0x39, "MINSW4 $RA,$RB,$RC">; //Vector signed word minimum
//def MINUB8 : OForm< 0x1C, 0x3A, "MINUB8 $RA,$RB,$RC">; //Vector unsigned byte minimum
//def MINUW4 : OForm< 0x1C, 0x3B, "MINUW4 $RA,$RB,$RC">; //Vector unsigned word minimum
//def PERR : OForm< 0x1C, 0x31, "PERR $RA,$RB,$RC">; //Pixel error
//def PKLB : OForm< 0x1C, 0x37, "PKLB $RA,$RB,$RC">; //Pack longwords to bytes
//def PKWB : OForm<0x1C, 0x36, "PKWB $RA,$RB,$RC">; //Pack words to bytes
//def UNPKBL : OForm< 0x1C, 0x35, "UNPKBL $RA,$RB,$RC">; //Unpack bytes to longwords
//def UNPKBW : OForm< 0x1C, 0x34, "UNPKBW $RA,$RB,$RC">; //Unpack bytes to words
//CVTLQ F-P 17.010 Convert longword to quadword
//CVTQL F-P 17.030 Convert quadword to longword
//def AMASK : OForm< 0x11, 0x61, "AMASK $RA,$RB,$RC", []>; //Architecture mask
//def AMASKi : OFormL<0x11, 0x61, "AMASK $RA,$L,$RC", []>; //Architecture mask
def : Pat<(i64 immSExt16:$imm),
(LDA immSExt16:$imm, R31)>;