llvm-6502/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
Misha Brukman a2196c1aae * Instead of re-inventing the MachineConstantPool emitter that's already given
in Emitter.cpp, just convert the Sparc version of the constant pool into
  what's already supported and inter-operate.
* Implemented a first pass at lazy function resolution in the JITResolver. That
  required adding a SparcV9CodeEmitter pointer to simplify generating
  bit-patterns of the instructions.
* SparcV9CodeEmitter now creates and destroys static TheJITResolver, which makes
  sense because the SparcV9CodeEmitter is the only user of TheJITResolver, and
  lives for the entire duration of the JIT (via PassManager which lives in VM).
* Changed all return values in the JITResolver to uint64_t because of the 64-bit
  Sparc architecture.
* Added a new version of getting the value of a GlobalValue in the
  SparcV9CodeEmitter, which now works for already-generated functions (JITted or
  library functions).
* Removed little-used and unused functions, cleaning up the internal view of the
  SparcV9CodeEmitter.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6612 91177308-0d34-0410-b5e6-96231b3b80d8
2003-06-04 20:01:13 +00:00

470 lines
17 KiB
C++

//===-- SparcV9CodeEmitter.cpp - --------===//
//
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetData.h"
#include "Support/hash_set"
#include "SparcInternals.h"
#include "SparcV9CodeEmitter.h"
bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM,
MachineCodeEmitter &MCE) {
//PM.add(new SparcV9CodeEmitter(MCE));
//MachineCodeEmitter *M = MachineCodeEmitter::createDebugMachineCodeEmitter();
MachineCodeEmitter *M = MachineCodeEmitter::createFilePrinterEmitter(MCE);
PM.add(new SparcV9CodeEmitter(*this, *M));
PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
return false;
}
namespace {
class JITResolver {
SparcV9CodeEmitter &SparcV9;
MachineCodeEmitter &MCE;
// LazyCodeGenMap - Keep track of call sites for functions that are to be
// lazily resolved.
std::map<uint64_t, Function*> LazyCodeGenMap;
// LazyResolverMap - Keep track of the lazy resolver created for a
// particular function so that we can reuse them if necessary.
std::map<Function*, uint64_t> LazyResolverMap;
public:
JITResolver(SparcV9CodeEmitter &V9,
MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {}
uint64_t getLazyResolver(Function *F);
uint64_t addFunctionReference(uint64_t Address, Function *F);
// Utility functions for accessing data from static callback
uint64_t getCurrentPCValue() {
return MCE.getCurrentPCValue();
}
unsigned getBinaryCodeForInstr(MachineInstr &MI) {
return SparcV9.getBinaryCodeForInstr(MI);
}
private:
uint64_t emitStubForFunction(Function *F);
static void CompilationCallback();
uint64_t resolveFunctionReference(uint64_t RetAddr);
};
JITResolver *TheJITResolver;
}
/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address. Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) {
LazyCodeGenMap[Address] = F;
return (intptr_t)&JITResolver::CompilationCallback;
}
uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) {
std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
assert(I != LazyCodeGenMap.end() && "Not in map!");
Function *F = I->second;
LazyCodeGenMap.erase(I);
return MCE.forceCompilationOf(F);
}
uint64_t JITResolver::getLazyResolver(Function *F) {
std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F);
if (I != LazyResolverMap.end() && I->first == F) return I->second;
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
uint64_t Stub = emitStubForFunction(F);
LazyResolverMap.insert(I, std::make_pair(F, Stub));
return Stub;
}
void JITResolver::CompilationCallback() {
uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0);
uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0);
std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
<< " SP=0x" << (uint64_t)(intptr_t)StackPtr << std::dec << "\n";
int64_t NewVal = (int64_t)TheJITResolver->resolveFunctionReference(RetAddr);
// Rewrite the call target... so that we don't fault every time we execute
// the call.
int64_t RealCallTarget = (int64_t)
((NewVal - TheJITResolver->getCurrentPCValue()) >> 4);
MachineInstr *MI = BuildMI(V9::CALL, 1);
MI->addSignExtImmOperand(RealCallTarget);
// FIXME: this could be in the wrong byte order!!
*((unsigned*)(intptr_t)RetAddr) = TheJITResolver->getBinaryCodeForInstr(*MI);
delete MI;
// Change the return address to reexecute the call instruction...
StackPtr[1] -= 4;
}
/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated. In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
uint64_t JITResolver::emitStubForFunction(Function *F) {
#if 0
MCE.startFunctionStub(*F, 6);
MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
uint64_t Address = addFunctionReference(MCE.getCurrentPCValue(), F);
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
return (intptr_t)MCE.finishFunctionStub(*F);
#endif
MCE.startFunctionStub(*F, 6);
int64_t CurrPC = MCE.getCurrentPCValue();
int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
int64_t CallTarget = (Addr-CurrPC) >> 2;
MachineInstr *Call = BuildMI(V9::CALL, 1);
Call->addSignExtImmOperand(CallTarget);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
delete Call;
MachineInstr *Nop = BuildMI(V9::NOP, 0);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
delete Nop;
SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub
return (intptr_t)MCE.finishFunctionStub(*F);
}
SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm,
MachineCodeEmitter &M): TM(tm), MCE(M)
{
TheJITResolver = new JITResolver(*this, M);
}
SparcV9CodeEmitter::~SparcV9CodeEmitter() {
delete TheJITResolver;
}
void SparcV9CodeEmitter::emitWord(unsigned Val) {
// Output the constant in big endian byte order...
unsigned byteVal;
for (int i = 3; i >= 0; --i) {
byteVal = Val >> 8*i;
MCE.emitByte(byteVal & 255);
}
}
unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) {
switch (regClass) {
case UltraSparcRegInfo::IntRegType: {
// Sparc manual, p31
static const unsigned IntRegMap[] = {
// "o0", "o1", "o2", "o3", "o4", "o5", "o7",
8, 9, 10, 11, 12, 13, 15,
// "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
16, 17, 18, 19, 20, 21, 22, 23,
// "i0", "i1", "i2", "i3", "i4", "i5",
24, 25, 26, 27, 28, 29,
// "i6", "i7",
30, 31,
// "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
0, 1, 2, 3, 4, 5, 6, 7,
// "o6"
14
};
return IntRegMap[fakeReg];
break;
}
case UltraSparcRegInfo::FPSingleRegType: {
return fakeReg;
}
case UltraSparcRegInfo::FPDoubleRegType: {
return fakeReg;
}
case UltraSparcRegInfo::FloatCCRegType: {
return fakeReg;
}
case UltraSparcRegInfo::IntCCRegType: {
return fakeReg;
}
default:
assert(0 && "Invalid unified register number in getRegType");
return fakeReg;
}
}
int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
MachineOperand &MO) {
int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
// or things that get fixed up later by the JIT.
if (MO.isVirtualRegister()) {
std::cerr << "ERROR: virtual register found in machine code.\n";
abort();
} else if (MO.isPCRelativeDisp()) {
std::cerr << "PCRelativeDisp: ";
Value *V = MO.getVRegValue();
if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
std::cerr << "Saving reference to BB (VReg)\n";
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (const Constant *C = dyn_cast<Constant>(V)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
std::cerr << "const: 0x" << std::hex << rv
<< "\n" << std::dec;
} else {
std::cerr << "ERROR: constant not in map:" << MO << "\n";
abort();
}
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// same as MO.isGlobalAddress()
std::cerr << "GlobalValue: ";
// external function calls, etc.?
if (Function *F = dyn_cast<Function>(GV)) {
std::cerr << "Function: ";
if (F->isExternal()) {
// Sparc backend broken: this MO should be `ExternalSymbol'
rv = (int64_t)MCE.getGlobalValueAddress(F->getName());
} else {
rv = (int64_t)MCE.getGlobalValueAddress(F);
}
if (rv == 0) {
std::cerr << "not yet generated\n";
// Function has not yet been code generated!
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F);
// Delayed resolution...
rv = TheJITResolver->getLazyResolver(F);
} else {
std::cerr << "already generated: 0x" << std::hex << rv << "\n"
<< std::dec;
}
} else {
std::cerr << "not a function: " << *GV << "\n";
abort();
}
// The real target of the call is Addr = PC + (rv * 4)
// So undo that: give the instruction (Addr - PC) / 4
if (MI.getOpcode() == V9::CALL) {
int64_t CurrPC = MCE.getCurrentPCValue();
std::cerr << "rv addr: 0x" << std::hex << rv << "\n";
std::cerr << "curr PC: 0x" << CurrPC << "\n";
rv = (rv - CurrPC) >> 2;
if (rv >= (1<<29) || rv <= -(1<<29)) {
std::cerr << "addr out of bounds for the 30-bit call: " << rv << "\n";
abort();
}
std::cerr << "returning addr: 0x" << rv << "\n" << std::dec;
}
} else {
std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
abort();
}
} else if (MO.isPhysicalRegister()) {
// This is necessary because the Sparc doesn't actually lay out registers
// in the real fashion -- it skips those that it chooses not to allocate,
// i.e. those that are the SP, etc.
unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
regType = TM.getRegInfo().getRegType(fakeReg);
// At least map fakeReg into its class
fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass);
// Find the real register number for use in an instruction
realReg = getRealRegNum(fakeReg, regClass);
std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n";
rv = realReg;
} else if (MO.isImmediate()) {
rv = MO.getImmedValue();
std::cerr << "immed: " << rv << "\n";
} else if (MO.isGlobalAddress()) {
std::cerr << "GlobalAddress: not PC-relative\n";
rv = (int64_t)
(intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
MI, MO.isPCRelative());
} else if (MO.isMachineBasicBlock()) {
// Duplicate code of the above case for VirtualRegister, BasicBlock...
// It should really hit this case, but Sparc backend uses VRegs instead
std::cerr << "Saving reference to MBB\n";
BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (MO.isExternalSymbol()) {
// Sparc backend doesn't generate this (yet...)
std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
abort();
} else if (MO.isFrameIndex()) {
// Sparc backend doesn't generate this (yet...)
int FrameIndex = MO.getFrameIndex();
std::cerr << "ERROR: Frame index unhandled.\n";
abort();
} else if (MO.isConstantPoolIndex()) {
// Sparc backend doesn't generate this (yet...)
std::cerr << "ERROR: Constant Pool index unhandled.\n";
abort();
} else {
std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
abort();
}
// Finally, deal with the various bitfield-extracting functions that
// are used in SPARC assembly. (Some of these make no sense in combination
// with some of the above; we'll trust that the instruction selector
// will not produce nonsense, and not check for valid combinations here.)
if (MO.opLoBits32()) { // %lo(val)
return rv & 0x03ff;
} else if (MO.opHiBits32()) { // %lm(val)
return (rv >> 10) & 0x03fffff;
} else if (MO.opLoBits64()) { // %hm(val)
return (rv >> 32) & 0x03ff;
} else if (MO.opHiBits64()) { // %hh(val)
return rv >> 42;
} else { // (unadorned) val
return rv;
}
}
unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
Val >>= bit;
return (Val & 1);
}
bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
MCE.startFunction(MF);
std::cerr << "Starting function " << MF.getFunction()->getName()
<< ", address: " << "0x" << std::hex
<< (long)MCE.getCurrentPCValue() << "\n";
// The Sparc backend does not use MachineConstantPool;
// instead, it has its own constant pool implementation.
// We create a new MachineConstantPool here to be compatible with the emitter.
MachineConstantPool MCP;
const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues();
for (hash_set<const Constant*>::const_iterator I = pool.begin(),
E = pool.end(); I != E; ++I)
{
Constant *C = (Constant*)*I;
unsigned idx = MCP.getConstantPoolIndex(C);
std::cerr << "Mapping constant 0x" << (intptr_t)C << " to " << idx << "\n";
ConstantMap[C] = idx;
}
MCE.emitConstantPool(&MCP);
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
emitBasicBlock(*I);
MCE.finishFunction(MF);
std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n";
ConstantMap.clear();
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
long Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second.first;
MachineInstr *MI = BBRefs[i].second.second;
std::cerr << "Fixup @" << std::hex << Ref << " to " << Location
<< " in instr: " << std::dec << *MI << "\n";
}
// Resolve branches to BasicBlocks for the entire function
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
long Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second.first;
MachineInstr *MI = BBRefs[i].second.second;
std::cerr << "attempting to resolve BB: " << i << "\n";
for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
MachineOperand &op = MI->getOperand(ii);
if (op.isPCRelativeDisp()) {
// the instruction's branch target is made such that it branches to
// PC + (br target * 4), so undo that arithmetic here:
// Location is the target of the branch
// Ref is the location of the instruction, and hence the PC
unsigned branchTarget = (Location - (long)Ref) >> 2;
// Save the flags.
bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;
if (op.opLoBits32()) { loBits32=true; }
if (op.opHiBits32()) { hiBits32=true; }
if (op.opLoBits64()) { loBits64=true; }
if (op.opHiBits64()) { hiBits64=true; }
MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
branchTarget);
if (loBits32) { MI->setOperandLo32(ii); }
else if (hiBits32) { MI->setOperandHi32(ii); }
else if (loBits64) { MI->setOperandLo64(ii); }
else if (hiBits64) { MI->setOperandHi64(ii); }
std::cerr << "Rewrote BB ref: ";
unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
*Ref = fixedInstr;
break;
}
}
}
BBRefs.clear();
BBLocations.clear();
return false;
}
void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
currBB = MBB.getBasicBlock();
BBLocations[currBB] = MCE.getCurrentPCValue();
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
emitWord(getBinaryCodeForInstr(**I));
}
void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
bool isPCRelative)
{
if (isPCRelative) { // must be a call, this is a major hack!
// Try looking up the function to see if it is already compiled!
if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) {
intptr_t CurByte = MCE.getCurrentPCValue();
// The real target of the call is Addr = PC + (target * 4)
// CurByte is the PC, Addr we just received
return (void*) (((long)Addr - (long)CurByte) >> 2);
} else {
if (Function *F = dyn_cast<Function>(V)) {
// Function has not yet been code generated!
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
cast<Function>(V));
// Delayed resolution...
return
(void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
} else if (Constant *C = ConstantPointerRef::get(V)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
return (void*)
(intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
} else {
std::cerr << "Constant: 0x" << std::hex << &*C << std::dec
<< ", " << *V << " not found in ConstantMap!\n";
abort();
}
} else {
std::cerr << "Unhandled global: " << *V << "\n";
abort();
}
}
} else {
return (void*)(intptr_t)MCE.getGlobalValueAddress(V);
}
}
#include "SparcV9CodeEmitter.inc"