llvm-6502/lib/Target/IA64/IA64ISelLowering.cpp
2005-12-21 20:51:37 +00:00

372 lines
14 KiB
C++

//===-- IA64ISelLowering.cpp - IA64 DAG Lowering Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Duraid Madina and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the IA64ISelLowering class.
//
//===----------------------------------------------------------------------===//
#include "IA64ISelLowering.h"
#include "IA64MachineFunctionInfo.h"
#include "IA64TargetMachine.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
using namespace llvm;
IA64TargetLowering::IA64TargetLowering(TargetMachine &TM)
: TargetLowering(TM) {
// register class for general registers
addRegisterClass(MVT::i64, IA64::GRRegisterClass);
// register class for FP registers
addRegisterClass(MVT::f64, IA64::FPRegisterClass);
// register class for predicate registers
addRegisterClass(MVT::i1, IA64::PRRegisterClass);
setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand);
setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand);
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
setSetCCResultType(MVT::i1);
setShiftAmountType(MVT::i64);
setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote);
setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand);
setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand);
setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand);
setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand);
setOperationAction(ISD::SEXTLOAD , MVT::i32 , Expand);
setOperationAction(ISD::FREM , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f64 , Expand);
setOperationAction(ISD::UREM , MVT::f32 , Expand);
setOperationAction(ISD::UREM , MVT::f64 , Expand);
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
setOperationAction(ISD::MEMSET , MVT::Other, Expand);
setOperationAction(ISD::MEMCPY , MVT::Other, Expand);
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
// We don't support sin/cos/sqrt
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
// We don't have line number support yet.
setOperationAction(ISD::LOCATION, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
//IA64 has these, but they are not implemented
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
computeRegisterProperties();
addLegalFPImmediate(+0.0);
addLegalFPImmediate(+1.0);
}
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
static bool isFloatingPointZero(SDOperand Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
// Maybe this has already been legalized into the constant pool?
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
}
return false;
}
std::vector<SDOperand>
IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
std::vector<SDOperand> ArgValues;
//
// add beautiful description of IA64 stack frame format
// here (from intel 24535803.pdf most likely)
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
MachineBasicBlock& BB = MF.front();
unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35,
IA64::r36, IA64::r37, IA64::r38, IA64::r39};
unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
IA64::F12,IA64::F13,IA64::F14, IA64::F15};
unsigned argVreg[8];
unsigned argPreg[8];
unsigned argOpc[8];
unsigned used_FPArgs = 0; // how many FP args have been used so far?
unsigned ArgOffset = 0;
int count = 0;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
{
SDOperand newroot, argt;
if(count < 8) { // need to fix this logic? maybe.
switch (getValueType(I->getType())) {
default:
assert(0 && "ERROR in LowerArgs: can't lower this type of arg.\n");
case MVT::f32:
// fixme? (well, will need to for weird FP structy stuff,
// see intel ABI docs)
case MVT::f64:
//XXX BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]);
MF.addLiveIn(args_FP[used_FPArgs]); // mark this reg as liveIn
// floating point args go into f8..f15 as-needed, the increment
argVreg[count] = // is below..:
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64));
// FP args go into f8..f15 as needed: (hence the ++)
argPreg[count] = args_FP[used_FPArgs++];
argOpc[count] = IA64::FMOV;
argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), argVreg[count],
MVT::f64);
if (I->getType() == Type::FloatTy)
argt = DAG.getNode(ISD::FP_ROUND, MVT::f32, argt);
break;
case MVT::i1: // NOTE: as far as C abi stuff goes,
// bools are just boring old ints
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
//XXX BuildMI(&BB, IA64::IDEF, 0, args_int[count]);
MF.addLiveIn(args_int[count]); // mark this register as liveIn
argVreg[count] =
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
argPreg[count] = args_int[count];
argOpc[count] = IA64::MOV;
argt = newroot =
DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], MVT::i64);
if ( getValueType(I->getType()) != MVT::i64)
argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()),
newroot);
break;
}
} else { // more than 8 args go into the frame
// Create the frame index object for this incoming parameter...
ArgOffset = 16 + 8 * (count - 8);
int FI = MFI->CreateFixedObject(8, ArgOffset);
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
argt = newroot = DAG.getLoad(getValueType(I->getType()),
DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL));
}
++count;
DAG.setRoot(newroot.getValue(1));
ArgValues.push_back(argt);
}
// Create a vreg to hold the output of (what will become)
// the "alloc" instruction
VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR);
// we create a PSEUDO_ALLOC (pseudo)instruction for now
/*
BuildMI(&BB, IA64::IDEF, 0, IA64::r1);
// hmm:
BuildMI(&BB, IA64::IDEF, 0, IA64::r12);
BuildMI(&BB, IA64::IDEF, 0, IA64::rp);
// ..hmm.
BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1);
// hmm:
BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12);
BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp);
// ..hmm.
*/
unsigned tempOffset=0;
// if this is a varargs function, we simply lower llvm.va_start by
// pointing to the first entry
if(F.isVarArg()) {
tempOffset=0;
VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset);
}
// here we actually do the moving of args, and store them to the stack
// too if this is a varargs function:
for (int i = 0; i < count && i < 8; ++i) {
BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]);
if(F.isVarArg()) {
// if this is a varargs function, we copy the input registers to the stack
int FI = MFI->CreateFixedObject(8, tempOffset);
tempOffset+=8; //XXX: is it safe to use r22 like this?
BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI);
// FIXME: we should use st8.spill here, one day
BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]);
}
}
// Finally, inform the code generator which regs we return values in.
// (see the ISD::RET: case in the instruction selector)
switch (getValueType(F.getReturnType())) {
default: assert(0 && "i have no idea where to return this type!");
case MVT::isVoid: break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
MF.addLiveOut(IA64::r8);
break;
case MVT::f32:
case MVT::f64:
MF.addLiveOut(IA64::F8);
break;
}
return ArgValues;
}
std::pair<SDOperand, SDOperand>
IA64TargetLowering::LowerCallTo(SDOperand Chain,
const Type *RetTy, bool isVarArg,
unsigned CallingConv, bool isTailCall,
SDOperand Callee, ArgListTy &Args,
SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
unsigned NumBytes = 16;
unsigned outRegsUsed = 0;
if (Args.size() > 8) {
NumBytes += (Args.size() - 8) * 8;
outRegsUsed = 8;
} else {
outRegsUsed = Args.size();
}
// FIXME? this WILL fail if we ever try to pass around an arg that
// consumes more than a single output slot (a 'real' double, int128
// some sort of aggregate etc.), as we'll underestimate how many 'outX'
// registers we use. Hopefully, the assembler will notice.
MF.getInfo<IA64FunctionInfo>()->outRegsUsed=
std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed);
Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
std::vector<SDOperand> args_to_use;
for (unsigned i = 0, e = Args.size(); i != e; ++i)
{
switch (getValueType(Args[i].second)) {
default: assert(0 && "unexpected argument type!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
//promote to 64-bits, sign/zero extending based on type
//of the argument
if(Args[i].second->isSigned())
Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64,
Args[i].first);
else
Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64,
Args[i].first);
break;
case MVT::f32:
//promote to 64-bits
Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first);
case MVT::f64:
case MVT::i64:
break;
}
args_to_use.push_back(Args[i].first);
}
std::vector<MVT::ValueType> RetVals;
MVT::ValueType RetTyVT = getValueType(RetTy);
if (RetTyVT != MVT::isVoid)
RetVals.push_back(RetTyVT);
RetVals.push_back(MVT::Other);
SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain,
Callee, args_to_use), 0);
Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
return std::make_pair(TheCall, Chain);
}
SDOperand
IA64TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP,
Value *VAListV, SelectionDAG &DAG) {
// vastart just stores the address of the VarArgsFrameIndex slot.
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64);
return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR,
VAListP, DAG.getSrcValue(VAListV));
}
std::pair<SDOperand,SDOperand> IA64TargetLowering::
LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
const Type *ArgTy, SelectionDAG &DAG) {
MVT::ValueType ArgVT = getValueType(ArgTy);
SDOperand Val = DAG.getLoad(MVT::i64, Chain,
VAListP, DAG.getSrcValue(VAListV));
SDOperand Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), Val,
DAG.getSrcValue(NULL));
unsigned Amt;
if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
Amt = 8;
else {
assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
"Other types should have been promoted for varargs!");
Amt = 8;
}
Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val,
DAG.getConstant(Amt, Val.getValueType()));
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
Val, VAListP, DAG.getSrcValue(VAListV));
return std::make_pair(Result, Chain);
}
std::pair<SDOperand, SDOperand> IA64TargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG) {
assert(0 && "LowerFrameReturnAddress unimplemented");
abort();
}