llvm-6502/lib/CodeGen/RegAllocPBQP.cpp
Dan Gohman b8cab9227a Fix command-line option printing to print two spaces where needed,
instead of requiring all "short description" strings to begin with
two spaces. This makes these strings less mysterious, and it fixes
some cases where short description strings mistakenly did not
begin with two spaces.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57521 91177308-0d34-0410-b5e6-96231b3b80d8
2008-10-14 20:25:08 +00:00

530 lines
16 KiB
C++

//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
// register allocator for LLVM. This allocator works by constructing a PBQP
// problem representing the register allocation problem under consideration,
// solving this using a PBQP solver, and mapping the solution back to a
// register assignment. If any variables are selected for spilling then spill
// code is inserted and the process repeated.
//
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
// for register allocation. For more information on PBQP for register
// allocation see the following papers:
//
// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
//
// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
// architectures. In Proceedings of the Joint Conference on Languages,
// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
// NY, USA, 139-148.
//
// Author: Lang Hames
// Email: lhames@gmail.com
//
//===----------------------------------------------------------------------===//
// TODO:
//
// * Use of std::set in constructPBQPProblem destroys allocation order preference.
// Switch to an order preserving container.
//
// * Coalescing support.
#define DEBUG_TYPE "regalloc"
#include "PBQP.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include <memory>
#include <map>
#include <set>
#include <vector>
#include <limits>
using namespace llvm;
static RegisterRegAlloc
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
createPBQPRegisterAllocator);
namespace {
//!
//! PBQP based allocators solve the register allocation problem by mapping
//! register allocation problems to Partitioned Boolean Quadratic
//! Programming problems.
class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
public:
static char ID;
//! Construct a PBQP register allocator.
PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
//! Return the pass name.
virtual const char* getPassName() const throw() {
return "PBQP Register Allocator";
}
//! PBQP analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const {
au.addRequired<LiveIntervals>();
au.addRequired<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(au);
}
//! Perform register allocation
virtual bool runOnMachineFunction(MachineFunction &MF);
private:
typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
typedef std::vector<const LiveInterval*> Node2LIMap;
typedef std::vector<unsigned> AllowedSet;
typedef std::vector<AllowedSet> AllowedSetMap;
typedef std::set<unsigned> IgnoreSet;
MachineFunction *mf;
const TargetMachine *tm;
const TargetRegisterInfo *tri;
const TargetInstrInfo *tii;
const MachineLoopInfo *loopInfo;
MachineRegisterInfo *mri;
LiveIntervals *li;
VirtRegMap *vrm;
LI2NodeMap li2Node;
Node2LIMap node2LI;
AllowedSetMap allowedSets;
IgnoreSet ignoreSet;
//! Builds a PBQP cost vector.
template <typename Container>
PBQPVector* buildCostVector(const Container &allowed,
PBQPNum spillCost) const;
//! \brief Builds a PBQP interference matrix.
//!
//! @return Either a pointer to a non-zero PBQP matrix representing the
//! allocation option costs, or a null pointer for a zero matrix.
//!
//! Expects allowed sets for two interfering LiveIntervals. These allowed
//! sets should contain only allocable registers from the LiveInterval's
//! register class, with any interfering pre-colored registers removed.
template <typename Container>
PBQPMatrix* buildInterferenceMatrix(const Container &allowed1,
const Container &allowed2) const;
//!
//! Expects allowed sets for two potentially coalescable LiveIntervals,
//! and an estimated benefit due to coalescing. The allowed sets should
//! contain only allocable registers from the LiveInterval's register
//! classes, with any interfering pre-colored registers removed.
template <typename Container>
PBQPMatrix* buildCoalescingMatrix(const Container &allowed1,
const Container &allowed2,
PBQPNum cBenefit) const;
//! \brief Helper function for constructInitialPBQPProblem().
//!
//! This function iterates over the Function we are about to allocate for
//! and computes spill costs.
void calcSpillCosts();
//! \brief Scans the MachineFunction being allocated to find coalescing
// opportunities.
void findCoalescingOpportunities();
//! \brief Constructs a PBQP problem representation of the register
//! allocation problem for this function.
//!
//! @return a PBQP solver object for the register allocation problem.
pbqp* constructPBQPProblem();
//! \brief Given a solved PBQP problem maps this solution back to a register
//! assignment.
bool mapPBQPToRegAlloc(pbqp *problem);
};
char PBQPRegAlloc::ID = 0;
}
template <typename Container>
PBQPVector* PBQPRegAlloc::buildCostVector(const Container &allowed,
PBQPNum spillCost) const {
// Allocate vector. Additional element (0th) used for spill option
PBQPVector *v = new PBQPVector(allowed.size() + 1);
(*v)[0] = spillCost;
return v;
}
template <typename Container>
PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
const Container &allowed1, const Container &allowed2) const {
typedef typename Container::const_iterator ContainerIterator;
// Construct a PBQP matrix representing the cost of allocation options. The
// rows and columns correspond to the allocation options for the two live
// intervals. Elements will be infinite where corresponding registers alias,
// since we cannot allocate aliasing registers to interfering live intervals.
// All other elements (non-aliasing combinations) will have zero cost. Note
// that the spill option (element 0,0) has zero cost, since we can allocate
// both intervals to memory safely (the cost for each individual allocation
// to memory is accounted for by the cost vectors for each live interval).
PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
// Assume this is a zero matrix until proven otherwise. Zero matrices occur
// between interfering live ranges with non-overlapping register sets (e.g.
// non-overlapping reg classes, or disjoint sets of allowed regs within the
// same class). The term "overlapping" is used advisedly: sets which do not
// intersect, but contain registers which alias, will have non-zero matrices.
// We optimize zero matrices away to improve solver speed.
bool isZeroMatrix = true;
// Row index. Starts at 1, since the 0th row is for the spill option, which
// is always zero.
unsigned ri = 1;
// Iterate over allowed sets, insert infinities where required.
for (ContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
a1Itr != a1End; ++a1Itr) {
// Column index, starts at 1 as for row index.
unsigned ci = 1;
unsigned reg1 = *a1Itr;
for (ContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
a2Itr != a2End; ++a2Itr) {
unsigned reg2 = *a2Itr;
// If the row/column regs are identical or alias insert an infinity.
if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
(*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
isZeroMatrix = false;
}
++ci;
}
++ri;
}
// If this turns out to be a zero matrix...
if (isZeroMatrix) {
// free it and return null.
delete m;
return 0;
}
// ...otherwise return the cost matrix.
return m;
}
void PBQPRegAlloc::calcSpillCosts() {
// Calculate the spill cost for each live interval by iterating over the
// function counting loads and stores, with loop depth taken into account.
for (MachineFunction::const_iterator bbItr = mf->begin(), bbEnd = mf->end();
bbItr != bbEnd; ++bbItr) {
const MachineBasicBlock *mbb = &*bbItr;
float loopDepth = loopInfo->getLoopDepth(mbb);
for (MachineBasicBlock::const_iterator
iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) {
const MachineInstr *instr = &*iItr;
for (unsigned opNo = 0; opNo < instr->getNumOperands(); ++opNo) {
const MachineOperand &mo = instr->getOperand(opNo);
// We're not interested in non-registers...
if (!mo.isReg())
continue;
unsigned moReg = mo.getReg();
// ...Or invalid registers...
if (moReg == 0)
continue;
// ...Or physical registers...
if (TargetRegisterInfo::isPhysicalRegister(moReg))
continue;
assert ((mo.isUse() || mo.isDef()) &&
"Not a use, not a def, what is it?");
//... Just the virtual registers. We treat loads and stores as equal.
li->getInterval(moReg).weight += powf(10.0f, loopDepth);
}
}
}
}
pbqp* PBQPRegAlloc::constructPBQPProblem() {
typedef std::vector<const LiveInterval*> LIVector;
typedef std::set<unsigned> RegSet;
// These will store the physical & virtual intervals, respectively.
LIVector physIntervals, virtIntervals;
// Start by clearing the old node <-> live interval mappings & allowed sets
li2Node.clear();
node2LI.clear();
allowedSets.clear();
// Iterate over intervals classifying them as physical or virtual, and
// constructing live interval <-> node number mappings.
for (LiveIntervals::iterator itr = li->begin(), end = li->end();
itr != end; ++itr) {
if (itr->second->getNumValNums() != 0) {
DOUT << "Live range has " << itr->second->getNumValNums() << ": " << itr->second << "\n";
}
if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
physIntervals.push_back(itr->second);
mri->setPhysRegUsed(itr->second->reg);
}
else {
// If we've allocated this virtual register interval a stack slot on a
// previous round then it's not an allocation candidate
if (ignoreSet.find(itr->first) != ignoreSet.end())
continue;
li2Node[itr->second] = node2LI.size();
node2LI.push_back(itr->second);
virtIntervals.push_back(itr->second);
}
}
// Early out if there's no regs to allocate for.
if (virtIntervals.empty())
return 0;
// Construct a PBQP solver for this problem
pbqp *solver = alloc_pbqp(virtIntervals.size());
// Resize allowedSets container appropriately.
allowedSets.resize(virtIntervals.size());
// Iterate over virtual register intervals to compute allowed sets...
for (unsigned node = 0; node < node2LI.size(); ++node) {
// Grab pointers to the interval and its register class.
const LiveInterval *li = node2LI[node];
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
// Start by assuming all allocable registers in the class are allowed...
RegSet liAllowed(liRC->allocation_order_begin(*mf),
liRC->allocation_order_end(*mf));
// If this range is non-empty then eliminate the physical registers which
// overlap with this range, along with all their aliases.
if (!li->empty()) {
for (LIVector::iterator pItr = physIntervals.begin(),
pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
if (li->overlaps(**pItr)) {
unsigned pReg = (*pItr)->reg;
// Remove the overlapping reg...
liAllowed.erase(pReg);
const unsigned *aliasItr = tri->getAliasSet(pReg);
if (aliasItr != 0) {
// ...and its aliases.
for (; *aliasItr != 0; ++aliasItr) {
liAllowed.erase(*aliasItr);
}
}
}
}
}
// Copy the allowed set into a member vector for use when constructing cost
// vectors & matrices, and mapping PBQP solutions back to assignments.
allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
// Set the spill cost to the interval weight, or epsilon if the
// interval weight is zero
PBQPNum spillCost = (li->weight != 0.0) ?
li->weight : std::numeric_limits<PBQPNum>::min();
// Build a cost vector for this interval.
add_pbqp_nodecosts(solver, node,
buildCostVector(allowedSets[node], spillCost));
}
// Now add the cost matrices...
for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
const LiveInterval *li = node2LI[node1];
if (li->empty())
continue;
// Test for live range overlaps and insert interference matrices.
for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
const LiveInterval *li2 = node2LI[node2];
if (li2->empty())
continue;
if (li->overlaps(*li2)) {
PBQPMatrix *m =
buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
if (m != 0) {
add_pbqp_edgecosts(solver, node1, node2, m);
delete m;
}
}
}
}
// We're done, PBQP problem constructed - return it.
return solver;
}
bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
// Set to true if we have any spills
bool anotherRoundNeeded = false;
// Clear the existing allocation.
vrm->clearAllVirt();
// Iterate over the nodes mapping the PBQP solution to a register assignment.
for (unsigned node = 0; node < node2LI.size(); ++node) {
unsigned symReg = node2LI[node]->reg,
allocSelection = get_pbqp_solution(problem, node);
// If the PBQP solution is non-zero it's a physical register...
if (allocSelection != 0) {
// Get the physical reg, subtracting 1 to account for the spill option.
unsigned physReg = allowedSets[node][allocSelection - 1];
// Add to the virt reg map and update the used phys regs.
vrm->assignVirt2Phys(symReg, physReg);
mri->setPhysRegUsed(physReg);
}
// ...Otherwise it's a spill.
else {
// Make sure we ignore this virtual reg on the next round
// of allocation
ignoreSet.insert(node2LI[node]->reg);
float SSWeight;
// Insert spill ranges for this live range
SmallVector<LiveInterval*, 8> spillIs;
std::vector<LiveInterval*> newSpills =
li->addIntervalsForSpills(*node2LI[node], spillIs, loopInfo, *vrm,
SSWeight);
// We need another round if spill intervals were added.
anotherRoundNeeded |= !newSpills.empty();
}
}
return !anotherRoundNeeded;
}
bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
mf = &MF;
tm = &mf->getTarget();
tri = tm->getRegisterInfo();
mri = &mf->getRegInfo();
li = &getAnalysis<LiveIntervals>();
loopInfo = &getAnalysis<MachineLoopInfo>();
std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
vrm = vrmAutoPtr.get();
// Allocator main loop:
//
// * Map current regalloc problem to a PBQP problem
// * Solve the PBQP problem
// * Map the solution back to a register allocation
// * Spill if necessary
//
// This process is continued till no more spills are generated.
bool regallocComplete = false;
// Calculate spill costs for intervals
calcSpillCosts();
while (!regallocComplete) {
pbqp *problem = constructPBQPProblem();
// Fast out if there's no problem to solve.
if (problem == 0)
return true;
solve_pbqp(problem);
regallocComplete = mapPBQPToRegAlloc(problem);
free_pbqp(problem);
}
ignoreSet.clear();
std::auto_ptr<Spiller> spiller(createSpiller());
spiller->runOnMachineFunction(*mf, *vrm);
return true;
}
FunctionPass* llvm::createPBQPRegisterAllocator() {
return new PBQPRegAlloc();
}
#undef DEBUG_TYPE