llvm-6502/lib/Target/X86/Printer.cpp
2002-12-15 08:01:39 +00:00

344 lines
11 KiB
C++

//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
//
// This file contains a printer that converts from our internal representation
// of LLVM code to a nice human readable form that is suitable for debuggging.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "Support/Statistic.h"
namespace {
struct Printer : public FunctionPass {
TargetMachine &TM;
std::ostream &O;
Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {}
bool runOnFunction(Function &F);
};
}
/// createX86CodePrinterPass - Print out the specified machine code function to
/// the specified stream. This function should work regardless of whether or
/// not the function is in SSA form or not.
///
Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) {
return new Printer(TM, O);
}
/// runOnFunction - This uses the X86InstructionInfo::print method
/// to print assembly for each instruction.
bool Printer::runOnFunction (Function & F)
{
static unsigned bbnumber = 0;
MachineFunction & MF = MachineFunction::get (&F);
const MachineInstrInfo & MII = TM.getInstrInfo ();
// Print out labels for the function.
O << "\t.globl\t" << F.getName () << "\n";
O << "\t.type\t" << F.getName () << ", @function\n";
O << F.getName () << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end ();
bb_i != bb_e; ++bb_i)
{
// Print a label for the basic block.
O << ".BB" << bbnumber++ << ":\n";
for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e =
bb_i->end (); i_i != i_e; ++i_i)
{
// Print the assembly for the instruction.
O << "\t";
MII.print(*i_i, O, TM);
}
}
// We didn't modify anything.
return false;
}
static bool isScale(const MachineOperand &MO) {
return MO.isImmediate() &&
(MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
}
static bool isMem(const MachineInstr *MI, unsigned Op) {
return Op+4 <= MI->getNumOperands() &&
MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
}
static void printOp(std::ostream &O, const MachineOperand &MO,
const MRegisterInfo &RI) {
switch (MO.getType()) {
case MachineOperand::MO_VirtualRegister:
if (Value *V = MO.getVRegValueOrNull()) {
O << "<" << V->getName() << ">";
return;
}
case MachineOperand::MO_MachineRegister:
if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
O << RI.get(MO.getReg()).Name;
else
O << "%reg" << MO.getReg();
return;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
O << (int)MO.getImmedValue();
return;
case MachineOperand::MO_PCRelativeDisp:
O << "<" << MO.getVRegValue()->getName() << ">";
return;
default:
O << "<unknown op ty>"; return;
}
}
static const std::string sizePtr (const MachineInstrDescriptor &Desc) {
switch (Desc.TSFlags & X86II::ArgMask) {
case X86II::Arg8: return "BYTE PTR";
case X86II::Arg16: return "WORD PTR";
case X86II::Arg32: return "DWORD PTR";
case X86II::Arg64: return "QWORD PTR";
case X86II::Arg80: return "XWORD PTR";
case X86II::Arg128: return "128BIT PTR"; // dunno what the real one is
default: return "<SIZE?> PTR"; // crack being smoked
}
}
static void printMemReference(std::ostream &O, const MachineInstr *MI,
unsigned Op, const MRegisterInfo &RI) {
assert(isMem(MI, Op) && "Invalid memory reference!");
const MachineOperand &BaseReg = MI->getOperand(Op);
const MachineOperand &Scale = MI->getOperand(Op+1);
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &Disp = MI->getOperand(Op+3);
O << "[";
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOp(O, BaseReg, RI);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (Scale.getImmedValue() != 1)
O << Scale.getImmedValue() << "*";
printOp(O, IndexReg, RI);
NeedPlus = true;
}
if (Disp.getImmedValue()) {
if (NeedPlus) O << " + ";
printOp(O, Disp, RI);
}
O << "]";
}
// print - Print out an x86 instruction in intel syntax
void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O,
const TargetMachine &TM) const {
unsigned Opcode = MI->getOpcode();
const MachineInstrDescriptor &Desc = get(Opcode);
if (Opcode == X86::PHI) {
printOp(O, MI->getOperand(0), RI);
O << " = phi ";
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
if (i != 1) O << ", ";
O << "[";
printOp(O, MI->getOperand(i), RI);
O << ", ";
printOp(O, MI->getOperand(i+1), RI);
O << "]";
}
O << "\n";
return;
}
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::RawFrm:
// The accepted forms of Raw instructions are:
// 1. nop - No operand required
// 2. jmp foo - PC relative displacement operand
//
assert(MI->getNumOperands() == 0 ||
(MI->getNumOperands() == 1 && MI->getOperand(0).isPCRelativeDisp())&&
"Illegal raw instruction!");
O << getName(MI->getOpCode()) << " ";
if (MI->getNumOperands() == 1) {
printOp(O, MI->getOperand(0), RI);
}
O << "\n";
return;
case X86II::AddRegFrm: {
// There are currently two forms of acceptable AddRegFrm instructions.
// Either the instruction JUST takes a single register (like inc, dec, etc),
// or it takes a register and an immediate of the same size as the register
// (move immediate f.e.). Note that this immediate value might be stored as
// an LLVM value, to represent, for example, loading the address of a global
// into a register.
//
assert(MI->getOperand(0).isRegister() &&
(MI->getNumOperands() == 1 ||
(MI->getNumOperands() == 2 &&
(MI->getOperand(1).getVRegValueOrNull() ||
MI->getOperand(1).isImmediate()))) &&
"Illegal form for AddRegFrm instruction!");
unsigned Reg = MI->getOperand(0).getReg();
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
if (MI->getNumOperands() == 2) {
O << ", ";
printOp(O, MI->getOperand(1), RI);
}
O << "\n";
return;
}
case X86II::MRMDestReg: {
// There are two acceptable forms of MRMDestReg instructions, those with 3
// and 2 operands:
//
// 3 Operands: in this form, the first two registers (the destination, and
// the first operand) should be the same, post register allocation. The 3rd
// operand is an additional input. This should be for things like add
// instructions.
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(MI->getOperand(0).isRegister() &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 && MI->getOperand(1).isRegister())) &&
MI->getOperand(MI->getNumOperands()-1).isRegister()
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 3 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
O << "\n";
return;
}
case X86II::MRMDestMem: {
// These instructions are the same as MRMDestReg, but instead of having a
// register reference for the mod/rm field, it's a memory reference.
//
assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
O << getName(MI->getOpCode()) << " " << sizePtr (Desc) << " ";
printMemReference(O, MI, 0, RI);
O << ", ";
printOp(O, MI->getOperand(4), RI);
O << "\n";
return;
}
case X86II::MRMSrcReg: {
// There is a two forms that are acceptable for MRMSrcReg instructions,
// those with 3 and 2 operands:
//
// 3 Operands: in this form, the last register (the second input) is the
// ModR/M input. The first two operands should be the same, post register
// allocation. This is for things like: add r32, r/m32
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(MI->getOperand(0).isRegister() &&
MI->getOperand(1).isRegister() &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 3 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
O << "\n";
return;
}
case X86II::MRMSrcMem: {
// These instructions are the same as MRMSrcReg, but instead of having a
// register reference for the mod/rm field, it's a memory reference.
//
assert(MI->getOperand(0).isRegister() &&
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
(MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
isMem(MI, 2))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 2+4 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", " << sizePtr (Desc) << " ";
printMemReference(O, MI, MI->getNumOperands()-4, RI);
O << "\n";
return;
}
case X86II::MRMS0r: case X86II::MRMS1r:
case X86II::MRMS2r: case X86II::MRMS3r:
case X86II::MRMS4r: case X86II::MRMS5r:
case X86II::MRMS6r: case X86II::MRMS7r: {
// In this form, the following are valid formats:
// 1. sete r
// 2. cmp reg, immediate
// 2. shl rdest, rinput <implicit CL or 1>
// 3. sbb rdest, rinput, immediate [rdest = rinput]
//
assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
assert((MI->getNumOperands() != 2 ||
MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
"Bad MRMSxR format!");
assert((MI->getNumOperands() < 3 ||
(MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
"Bad MRMSxR format!");
if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
}
O << "\n";
return;
}
default:
O << "\t\t\t-"; MI->print(O, TM); break;
}
}