mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 15:33:33 +00:00
83ec4b6711
and better control the abstraction. Rename the type to MVT. To update out-of-tree patches, the main thing to do is to rename MVT::ValueType to MVT, and rewrite expressions like MVT::getSizeInBits(VT) in the form VT.getSizeInBits(). Use VT.getSimpleVT() to extract a MVT::SimpleValueType for use in switch statements (you will get an assert failure if VT is an extended value type - these shouldn't exist after type legalization). This results in a small speedup of codegen and no new testsuite failures (x86-64 linux). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8
592 lines
22 KiB
C++
592 lines
22 KiB
C++
//===---- IA64ISelDAGToDAG.cpp - IA64 pattern matching inst selector ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for IA64,
|
|
// converting a legalized dag to an IA64 dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "ia64-codegen"
|
|
#include "IA64.h"
|
|
#include "IA64TargetMachine.h"
|
|
#include "IA64ISelLowering.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <queue>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
//===--------------------------------------------------------------------===//
|
|
/// IA64DAGToDAGISel - IA64 specific code to select IA64 machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
class IA64DAGToDAGISel : public SelectionDAGISel {
|
|
IA64TargetLowering IA64Lowering;
|
|
unsigned GlobalBaseReg;
|
|
public:
|
|
IA64DAGToDAGISel(IA64TargetMachine &TM)
|
|
: SelectionDAGISel(IA64Lowering), IA64Lowering(*TM.getTargetLowering()) {}
|
|
|
|
virtual bool runOnFunction(Function &Fn) {
|
|
// Make sure we re-emit a set of the global base reg if necessary
|
|
GlobalBaseReg = 0;
|
|
return SelectionDAGISel::runOnFunction(Fn);
|
|
}
|
|
|
|
/// getI64Imm - Return a target constant with the specified value, of type
|
|
/// i64.
|
|
inline SDOperand getI64Imm(uint64_t Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i64);
|
|
}
|
|
|
|
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
|
|
/// base register. Return the virtual register that holds this value.
|
|
// SDOperand getGlobalBaseReg(); TODO: hmm
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDNode *Select(SDOperand N);
|
|
|
|
SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
|
|
unsigned OCHi, unsigned OCLo,
|
|
bool IsArithmetic = false,
|
|
bool Negate = false);
|
|
SDNode *SelectBitfieldInsert(SDNode *N);
|
|
|
|
/// SelectCC - Select a comparison of the specified values with the
|
|
/// specified condition code, returning the CR# of the expression.
|
|
SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
|
|
|
|
/// SelectAddr - Given the specified address, return the two operands for a
|
|
/// load/store instruction, and return true if it should be an indexed [r+r]
|
|
/// operation.
|
|
bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "IA64 (Itanium) DAG->DAG Instruction Selector";
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "IA64GenDAGISel.inc"
|
|
|
|
private:
|
|
SDNode *SelectDIV(SDOperand Op);
|
|
};
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
void IA64DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
DEBUG(BB->dump());
|
|
|
|
// Select target instructions for the DAG.
|
|
DAG.setRoot(SelectRoot(DAG.getRoot()));
|
|
DAG.RemoveDeadNodes();
|
|
|
|
// Emit machine code to BB.
|
|
ScheduleAndEmitDAG(DAG);
|
|
}
|
|
|
|
SDNode *IA64DAGToDAGISel::SelectDIV(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
SDOperand Chain = N->getOperand(0);
|
|
SDOperand Tmp1 = N->getOperand(0);
|
|
SDOperand Tmp2 = N->getOperand(1);
|
|
AddToISelQueue(Chain);
|
|
|
|
AddToISelQueue(Tmp1);
|
|
AddToISelQueue(Tmp2);
|
|
|
|
bool isFP=false;
|
|
|
|
if(Tmp1.getValueType().isFloatingPoint())
|
|
isFP=true;
|
|
|
|
bool isModulus=false; // is it a division or a modulus?
|
|
bool isSigned=false;
|
|
|
|
switch(N->getOpcode()) {
|
|
case ISD::FDIV:
|
|
case ISD::SDIV: isModulus=false; isSigned=true; break;
|
|
case ISD::UDIV: isModulus=false; isSigned=false; break;
|
|
case ISD::FREM:
|
|
case ISD::SREM: isModulus=true; isSigned=true; break;
|
|
case ISD::UREM: isModulus=true; isSigned=false; break;
|
|
}
|
|
|
|
// TODO: check for integer divides by powers of 2 (or other simple patterns?)
|
|
|
|
SDOperand TmpPR, TmpPR2;
|
|
SDOperand TmpF1, TmpF2, TmpF3, TmpF4, TmpF5, TmpF6, TmpF7, TmpF8;
|
|
SDOperand TmpF9, TmpF10,TmpF11,TmpF12,TmpF13,TmpF14,TmpF15;
|
|
SDNode *Result;
|
|
|
|
// we'll need copies of F0 and F1
|
|
SDOperand F0 = CurDAG->getRegister(IA64::F0, MVT::f64);
|
|
SDOperand F1 = CurDAG->getRegister(IA64::F1, MVT::f64);
|
|
|
|
// OK, emit some code:
|
|
|
|
if(!isFP) {
|
|
// first, load the inputs into FP regs.
|
|
TmpF1 =
|
|
SDOperand(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp1), 0);
|
|
Chain = TmpF1.getValue(1);
|
|
TmpF2 =
|
|
SDOperand(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp2), 0);
|
|
Chain = TmpF2.getValue(1);
|
|
|
|
// next, convert the inputs to FP
|
|
if(isSigned) {
|
|
TmpF3 =
|
|
SDOperand(CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF1), 0);
|
|
Chain = TmpF3.getValue(1);
|
|
TmpF4 =
|
|
SDOperand(CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF2), 0);
|
|
Chain = TmpF4.getValue(1);
|
|
} else { // is unsigned
|
|
TmpF3 =
|
|
SDOperand(CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF1), 0);
|
|
Chain = TmpF3.getValue(1);
|
|
TmpF4 =
|
|
SDOperand(CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF2), 0);
|
|
Chain = TmpF4.getValue(1);
|
|
}
|
|
|
|
} else { // this is an FP divide/remainder, so we 'leak' some temp
|
|
// regs and assign TmpF3=Tmp1, TmpF4=Tmp2
|
|
TmpF3=Tmp1;
|
|
TmpF4=Tmp2;
|
|
}
|
|
|
|
// we start by computing an approximate reciprocal (good to 9 bits?)
|
|
// note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
|
|
if(isFP)
|
|
TmpF5 = SDOperand(CurDAG->getTargetNode(IA64::FRCPAS0, MVT::f64, MVT::i1,
|
|
TmpF3, TmpF4), 0);
|
|
else
|
|
TmpF5 = SDOperand(CurDAG->getTargetNode(IA64::FRCPAS1, MVT::f64, MVT::i1,
|
|
TmpF3, TmpF4), 0);
|
|
|
|
TmpPR = TmpF5.getValue(1);
|
|
Chain = TmpF5.getValue(2);
|
|
|
|
SDOperand minusB;
|
|
if(isModulus) { // for remainders, it'll be handy to have
|
|
// copies of -input_b
|
|
minusB = SDOperand(CurDAG->getTargetNode(IA64::SUB, MVT::i64,
|
|
CurDAG->getRegister(IA64::r0, MVT::i64), Tmp2), 0);
|
|
Chain = minusB.getValue(1);
|
|
}
|
|
|
|
SDOperand TmpE0, TmpY1, TmpE1, TmpY2;
|
|
|
|
SDOperand OpsE0[] = { TmpF4, TmpF5, F1, TmpPR };
|
|
TmpE0 = SDOperand(CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
|
|
OpsE0, 4), 0);
|
|
Chain = TmpE0.getValue(1);
|
|
SDOperand OpsY1[] = { TmpF5, TmpE0, TmpF5, TmpPR };
|
|
TmpY1 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
OpsY1, 4), 0);
|
|
Chain = TmpY1.getValue(1);
|
|
SDOperand OpsE1[] = { TmpE0, TmpE0, F0, TmpPR };
|
|
TmpE1 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
OpsE1, 4), 0);
|
|
Chain = TmpE1.getValue(1);
|
|
SDOperand OpsY2[] = { TmpY1, TmpE1, TmpY1, TmpPR };
|
|
TmpY2 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
OpsY2, 4), 0);
|
|
Chain = TmpY2.getValue(1);
|
|
|
|
if(isFP) { // if this is an FP divide, we finish up here and exit early
|
|
if(isModulus)
|
|
assert(0 && "Sorry, try another FORTRAN compiler.");
|
|
|
|
SDOperand TmpE2, TmpY3, TmpQ0, TmpR0;
|
|
|
|
SDOperand OpsE2[] = { TmpE1, TmpE1, F0, TmpPR };
|
|
TmpE2 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
OpsE2, 4), 0);
|
|
Chain = TmpE2.getValue(1);
|
|
SDOperand OpsY3[] = { TmpY2, TmpE2, TmpY2, TmpPR };
|
|
TmpY3 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
OpsY3, 4), 0);
|
|
Chain = TmpY3.getValue(1);
|
|
SDOperand OpsQ0[] = { Tmp1, TmpY3, F0, TmpPR };
|
|
TmpQ0 =
|
|
SDOperand(CurDAG->getTargetNode(IA64::CFMADS1, MVT::f64, // double prec!
|
|
OpsQ0, 4), 0);
|
|
Chain = TmpQ0.getValue(1);
|
|
SDOperand OpsR0[] = { Tmp2, TmpQ0, Tmp1, TmpPR };
|
|
TmpR0 =
|
|
SDOperand(CurDAG->getTargetNode(IA64::CFNMADS1, MVT::f64, // double prec!
|
|
OpsR0, 4), 0);
|
|
Chain = TmpR0.getValue(1);
|
|
|
|
// we want Result to have the same target register as the frcpa, so
|
|
// we two-address hack it. See the comment "for this to work..." on
|
|
// page 48 of Intel application note #245415
|
|
SDOperand Ops[] = { TmpF5, TmpY3, TmpR0, TmpQ0, TmpPR };
|
|
Result = CurDAG->getTargetNode(IA64::TCFMADS0, MVT::f64, // d.p. s0 rndg!
|
|
Ops, 5);
|
|
Chain = SDOperand(Result, 1);
|
|
return Result; // XXX: early exit!
|
|
} else { // this is *not* an FP divide, so there's a bit left to do:
|
|
|
|
SDOperand TmpQ2, TmpR2, TmpQ3, TmpQ;
|
|
|
|
SDOperand OpsQ2[] = { TmpF3, TmpY2, F0, TmpPR };
|
|
TmpQ2 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
OpsQ2, 4), 0);
|
|
Chain = TmpQ2.getValue(1);
|
|
SDOperand OpsR2[] = { TmpF4, TmpQ2, TmpF3, TmpPR };
|
|
TmpR2 = SDOperand(CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
|
|
OpsR2, 4), 0);
|
|
Chain = TmpR2.getValue(1);
|
|
|
|
// we want TmpQ3 to have the same target register as the frcpa? maybe we
|
|
// should two-address hack it. See the comment "for this to work..." on page
|
|
// 48 of Intel application note #245415
|
|
SDOperand OpsQ3[] = { TmpF5, TmpR2, TmpY2, TmpQ2, TmpPR };
|
|
TmpQ3 = SDOperand(CurDAG->getTargetNode(IA64::TCFMAS1, MVT::f64,
|
|
OpsQ3, 5), 0);
|
|
Chain = TmpQ3.getValue(1);
|
|
|
|
// STORY: without these two-address instructions (TCFMAS1 and TCFMADS0)
|
|
// the FPSWA won't be able to help out in the case of large/tiny
|
|
// arguments. Other fun bugs may also appear, e.g. 0/x = x, not 0.
|
|
|
|
if(isSigned)
|
|
TmpQ = SDOperand(CurDAG->getTargetNode(IA64::FCVTFXTRUNCS1,
|
|
MVT::f64, TmpQ3), 0);
|
|
else
|
|
TmpQ = SDOperand(CurDAG->getTargetNode(IA64::FCVTFXUTRUNCS1,
|
|
MVT::f64, TmpQ3), 0);
|
|
|
|
Chain = TmpQ.getValue(1);
|
|
|
|
if(isModulus) {
|
|
SDOperand FPminusB =
|
|
SDOperand(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, minusB), 0);
|
|
Chain = FPminusB.getValue(1);
|
|
SDOperand Remainder =
|
|
SDOperand(CurDAG->getTargetNode(IA64::XMAL, MVT::f64,
|
|
TmpQ, FPminusB, TmpF1), 0);
|
|
Chain = Remainder.getValue(1);
|
|
Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, Remainder);
|
|
Chain = SDOperand(Result, 1);
|
|
} else { // just an integer divide
|
|
Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, TmpQ);
|
|
Chain = SDOperand(Result, 1);
|
|
}
|
|
|
|
return Result;
|
|
} // wasn't an FP divide
|
|
}
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDNode *IA64DAGToDAGISel::Select(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
|
|
N->getOpcode() < IA64ISD::FIRST_NUMBER)
|
|
return NULL; // Already selected.
|
|
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
|
|
case IA64ISD::BRCALL: { // XXX: this is also a hack!
|
|
SDOperand Chain = N->getOperand(0);
|
|
SDOperand InFlag; // Null incoming flag value.
|
|
|
|
AddToISelQueue(Chain);
|
|
if(N->getNumOperands()==3) { // we have an incoming chain, callee and flag
|
|
InFlag = N->getOperand(2);
|
|
AddToISelQueue(InFlag);
|
|
}
|
|
|
|
unsigned CallOpcode;
|
|
SDOperand CallOperand;
|
|
|
|
// if we can call directly, do so
|
|
if (GlobalAddressSDNode *GASD =
|
|
dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
|
|
CallOpcode = IA64::BRCALL_IPREL_GA;
|
|
CallOperand = CurDAG->getTargetGlobalAddress(GASD->getGlobal(), MVT::i64);
|
|
} else if (isa<ExternalSymbolSDNode>(N->getOperand(1))) {
|
|
// FIXME: we currently NEED this case for correctness, to avoid
|
|
// "non-pic code with imm reloc.n against dynamic symbol" errors
|
|
CallOpcode = IA64::BRCALL_IPREL_ES;
|
|
CallOperand = N->getOperand(1);
|
|
} else {
|
|
// otherwise we need to load the function descriptor,
|
|
// load the branch target (function)'s entry point and GP,
|
|
// branch (call) then restore the GP
|
|
SDOperand FnDescriptor = N->getOperand(1);
|
|
AddToISelQueue(FnDescriptor);
|
|
|
|
// load the branch target's entry point [mem] and
|
|
// GP value [mem+8]
|
|
SDOperand targetEntryPoint=
|
|
SDOperand(CurDAG->getTargetNode(IA64::LD8, MVT::i64, MVT::Other,
|
|
FnDescriptor, CurDAG->getEntryNode()), 0);
|
|
Chain = targetEntryPoint.getValue(1);
|
|
SDOperand targetGPAddr=
|
|
SDOperand(CurDAG->getTargetNode(IA64::ADDS, MVT::i64,
|
|
FnDescriptor,
|
|
CurDAG->getConstant(8, MVT::i64)), 0);
|
|
Chain = targetGPAddr.getValue(1);
|
|
SDOperand targetGP =
|
|
SDOperand(CurDAG->getTargetNode(IA64::LD8, MVT::i64,MVT::Other,
|
|
targetGPAddr, CurDAG->getEntryNode()), 0);
|
|
Chain = targetGP.getValue(1);
|
|
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::r1, targetGP, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::B6, targetEntryPoint, InFlag); // FLAG these?
|
|
InFlag = Chain.getValue(1);
|
|
|
|
CallOperand = CurDAG->getRegister(IA64::B6, MVT::i64);
|
|
CallOpcode = IA64::BRCALL_INDIRECT;
|
|
}
|
|
|
|
// Finally, once everything is setup, emit the call itself
|
|
if(InFlag.Val)
|
|
Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
|
|
CallOperand, InFlag), 0);
|
|
else // there might be no arguments
|
|
Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
|
|
CallOperand, Chain), 0);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
std::vector<SDOperand> CallResults;
|
|
|
|
CallResults.push_back(Chain);
|
|
CallResults.push_back(InFlag);
|
|
|
|
for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
|
|
ReplaceUses(Op.getValue(i), CallResults[i]);
|
|
return NULL;
|
|
}
|
|
|
|
case IA64ISD::GETFD: {
|
|
SDOperand Input = N->getOperand(0);
|
|
AddToISelQueue(Input);
|
|
return CurDAG->getTargetNode(IA64::GETFD, MVT::i64, Input);
|
|
}
|
|
|
|
case ISD::FDIV:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
return SelectDIV(Op);
|
|
|
|
case ISD::TargetConstantFP: {
|
|
SDOperand Chain = CurDAG->getEntryNode(); // this is a constant, so..
|
|
|
|
SDOperand V;
|
|
ConstantFPSDNode* N2 = cast<ConstantFPSDNode>(N);
|
|
if (N2->getValueAPF().isPosZero()) {
|
|
V = CurDAG->getCopyFromReg(Chain, IA64::F0, MVT::f64);
|
|
} else if (N2->isExactlyValue(N2->getValueType(0) == MVT::f32 ?
|
|
APFloat(+1.0f) : APFloat(+1.0))) {
|
|
V = CurDAG->getCopyFromReg(Chain, IA64::F1, MVT::f64);
|
|
} else
|
|
assert(0 && "Unexpected FP constant!");
|
|
|
|
ReplaceUses(SDOperand(N, 0), V);
|
|
return 0;
|
|
}
|
|
|
|
case ISD::FrameIndex: { // TODO: reduce creepyness
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
if (N->hasOneUse())
|
|
return CurDAG->SelectNodeTo(N, IA64::MOV, MVT::i64,
|
|
CurDAG->getTargetFrameIndex(FI, MVT::i64));
|
|
else
|
|
return CurDAG->getTargetNode(IA64::MOV, MVT::i64,
|
|
CurDAG->getTargetFrameIndex(FI, MVT::i64));
|
|
}
|
|
|
|
case ISD::ConstantPool: { // TODO: nuke the constant pool
|
|
// (ia64 doesn't need one)
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
|
|
Constant *C = CP->getConstVal();
|
|
SDOperand CPI = CurDAG->getTargetConstantPool(C, MVT::i64,
|
|
CP->getAlignment());
|
|
return CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64, // ?
|
|
CurDAG->getRegister(IA64::r1, MVT::i64), CPI);
|
|
}
|
|
|
|
case ISD::GlobalAddress: {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
|
|
SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i64);
|
|
SDOperand Tmp =
|
|
SDOperand(CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64,
|
|
CurDAG->getRegister(IA64::r1,
|
|
MVT::i64), GA), 0);
|
|
return CurDAG->getTargetNode(IA64::LD8, MVT::i64, MVT::Other, Tmp);
|
|
}
|
|
|
|
/* XXX
|
|
case ISD::ExternalSymbol: {
|
|
SDOperand EA = CurDAG->getTargetExternalSymbol(
|
|
cast<ExternalSymbolSDNode>(N)->getSymbol(),
|
|
MVT::i64);
|
|
SDOperand Tmp = CurDAG->getTargetNode(IA64::ADDL_EA, MVT::i64,
|
|
CurDAG->getRegister(IA64::r1,
|
|
MVT::i64),
|
|
EA);
|
|
return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp);
|
|
}
|
|
*/
|
|
|
|
case ISD::LOAD: { // FIXME: load -1, not 1, for bools?
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
SDOperand Chain = LD->getChain();
|
|
SDOperand Address = LD->getBasePtr();
|
|
AddToISelQueue(Chain);
|
|
AddToISelQueue(Address);
|
|
|
|
MVT TypeBeingLoaded = LD->getMemoryVT();
|
|
unsigned Opc;
|
|
switch (TypeBeingLoaded.getSimpleVT()) {
|
|
default:
|
|
#ifndef NDEBUG
|
|
N->dump(CurDAG);
|
|
#endif
|
|
assert(0 && "Cannot load this type!");
|
|
case MVT::i1: { // this is a bool
|
|
Opc = IA64::LD1; // first we load a byte, then compare for != 0
|
|
if(N->getValueType(0) == MVT::i1) { // XXX: early exit!
|
|
return CurDAG->SelectNodeTo(N, IA64::CMPNE, MVT::i1, MVT::Other,
|
|
SDOperand(CurDAG->getTargetNode(Opc, MVT::i64, Address), 0),
|
|
CurDAG->getRegister(IA64::r0, MVT::i64),
|
|
Chain);
|
|
}
|
|
/* otherwise, we want to load a bool into something bigger: LD1
|
|
will do that for us, so we just fall through */
|
|
}
|
|
case MVT::i8: Opc = IA64::LD1; break;
|
|
case MVT::i16: Opc = IA64::LD2; break;
|
|
case MVT::i32: Opc = IA64::LD4; break;
|
|
case MVT::i64: Opc = IA64::LD8; break;
|
|
|
|
case MVT::f32: Opc = IA64::LDF4; break;
|
|
case MVT::f64: Opc = IA64::LDF8; break;
|
|
}
|
|
|
|
// TODO: comment this
|
|
return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
|
|
Address, Chain);
|
|
}
|
|
|
|
case ISD::STORE: {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
SDOperand Address = ST->getBasePtr();
|
|
SDOperand Chain = ST->getChain();
|
|
AddToISelQueue(Address);
|
|
AddToISelQueue(Chain);
|
|
|
|
unsigned Opc;
|
|
if (ISD::isNON_TRUNCStore(N)) {
|
|
switch (N->getOperand(1).getValueType().getSimpleVT()) {
|
|
default: assert(0 && "unknown type in store");
|
|
case MVT::i1: { // this is a bool
|
|
Opc = IA64::ST1; // we store either 0 or 1 as a byte
|
|
// first load zero!
|
|
SDOperand Initial = CurDAG->getCopyFromReg(Chain, IA64::r0, MVT::i64);
|
|
Chain = Initial.getValue(1);
|
|
// then load 1 into the same reg iff the predicate to store is 1
|
|
SDOperand Tmp = ST->getValue();
|
|
AddToISelQueue(Tmp);
|
|
Tmp =
|
|
SDOperand(CurDAG->getTargetNode(IA64::TPCADDS, MVT::i64, Initial,
|
|
CurDAG->getTargetConstant(1, MVT::i64),
|
|
Tmp), 0);
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Address, Tmp, Chain);
|
|
}
|
|
case MVT::i64: Opc = IA64::ST8; break;
|
|
case MVT::f64: Opc = IA64::STF8; break;
|
|
}
|
|
} else { // Truncating store
|
|
switch(ST->getMemoryVT().getSimpleVT()) {
|
|
default: assert(0 && "unknown type in truncstore");
|
|
case MVT::i8: Opc = IA64::ST1; break;
|
|
case MVT::i16: Opc = IA64::ST2; break;
|
|
case MVT::i32: Opc = IA64::ST4; break;
|
|
case MVT::f32: Opc = IA64::STF4; break;
|
|
}
|
|
}
|
|
|
|
SDOperand N1 = N->getOperand(1);
|
|
SDOperand N2 = N->getOperand(2);
|
|
AddToISelQueue(N1);
|
|
AddToISelQueue(N2);
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::Other, N2, N1, Chain);
|
|
}
|
|
|
|
case ISD::BRCOND: {
|
|
SDOperand Chain = N->getOperand(0);
|
|
SDOperand CC = N->getOperand(1);
|
|
AddToISelQueue(Chain);
|
|
AddToISelQueue(CC);
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N->getOperand(2))->getBasicBlock();
|
|
//FIXME - we do NOT need long branches all the time
|
|
return CurDAG->SelectNodeTo(N, IA64::BRLCOND_NOTCALL, MVT::Other, CC,
|
|
CurDAG->getBasicBlock(Dest), Chain);
|
|
}
|
|
|
|
case ISD::CALLSEQ_START:
|
|
case ISD::CALLSEQ_END: {
|
|
int64_t Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
|
|
unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
|
|
IA64::ADJUSTCALLSTACKDOWN : IA64::ADJUSTCALLSTACKUP;
|
|
SDOperand N0 = N->getOperand(0);
|
|
AddToISelQueue(N0);
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::Other, getI64Imm(Amt), N0);
|
|
}
|
|
|
|
case ISD::BR:
|
|
// FIXME: we don't need long branches all the time!
|
|
SDOperand N0 = N->getOperand(0);
|
|
AddToISelQueue(N0);
|
|
return CurDAG->SelectNodeTo(N, IA64::BRL_NOTCALL, MVT::Other,
|
|
N->getOperand(1), N0);
|
|
}
|
|
|
|
return SelectCode(Op);
|
|
}
|
|
|
|
|
|
/// createIA64DAGToDAGInstructionSelector - This pass converts a legalized DAG
|
|
/// into an IA64-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass
|
|
*llvm::createIA64DAGToDAGInstructionSelector(IA64TargetMachine &TM) {
|
|
return new IA64DAGToDAGISel(TM);
|
|
}
|
|
|