llvm-6502/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
Duncan Sands 6cb7e6d36b I don't see how NodeUpdated can be called with a
ReadyToProcess node - add an assertion to check
this.  Add an assertion to NodeDeleted that checks
that processed/ready nodes are indeed not deleted.
It is because they are never deleted that none of
the maps can have a deleted node as the source of
a mapping.  It does however seem to be possible in
theory to have a deleted value as the target of a
mapping, however this has not yet been spotted in
the wild.  Still mulling on what to do about this.
[The theoretical situation is this: a node A is
expanded/promoted/whatever to a newly created node
B.  Thus A->B is added to a map.  When the subtree
rooted at B is legalized it is conceivable that B
is deleted due to RAUW on a node somewhere above
it].


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46705 91177308-0d34-0410-b5e6-96231b3b80d8
2008-02-04 09:29:17 +00:00

458 lines
16 KiB
C++

//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeTypes method. It transforms
// an arbitrary well-formed SelectionDAG to only consist of legal types. This
// is common code shared among the LegalizeTypes*.cpp files.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#ifndef NDEBUG
static cl::opt<bool>
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before legalize types"));
#else
static const bool ViewLegalizeTypesDAGs = 0;
#endif
/// run - This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes.
void DAGTypeLegalizer::run() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// The root of the dag may dangle to deleted nodes until the type legalizer is
// done. Set it to null to avoid confusion.
DAG.setRoot(SDOperand());
// Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
// (and remembering them) if they are leaves and assigning 'NewNode' if
// non-leaves.
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
if (I->getNumOperands() == 0) {
I->setNodeId(ReadyToProcess);
Worklist.push_back(I);
} else {
I->setNodeId(NewNode);
}
}
// Now that we have a set of nodes to process, handle them all.
while (!Worklist.empty()) {
SDNode *N = Worklist.back();
Worklist.pop_back();
assert(N->getNodeId() == ReadyToProcess &&
"Node should be ready if on worklist!");
// Scan the values produced by the node, checking to see if any result
// types are illegal.
unsigned i = 0;
unsigned NumResults = N->getNumValues();
do {
MVT::ValueType ResultVT = N->getValueType(i);
LegalizeAction Action = getTypeAction(ResultVT);
if (Action == Promote) {
PromoteResult(N, i);
goto NodeDone;
} else if (Action == Expand) {
// Expand can mean 1) split integer in half 2) scalarize single-element
// vector 3) split vector in half.
if (!MVT::isVector(ResultVT))
ExpandResult(N, i);
else if (MVT::getVectorNumElements(ResultVT) == 1)
ScalarizeResult(N, i); // Scalarize the single-element vector.
else
SplitResult(N, i); // Split the vector in half.
goto NodeDone;
} else {
assert(Action == Legal && "Unknown action!");
}
} while (++i < NumResults);
// Scan the operand list for the node, handling any nodes with operands that
// are illegal.
{
unsigned NumOperands = N->getNumOperands();
bool NeedsRevisit = false;
for (i = 0; i != NumOperands; ++i) {
MVT::ValueType OpVT = N->getOperand(i).getValueType();
LegalizeAction Action = getTypeAction(OpVT);
if (Action == Promote) {
NeedsRevisit = PromoteOperand(N, i);
break;
} else if (Action == Expand) {
// Expand can mean 1) split integer in half 2) scalarize single-element
// vector 3) split vector in half.
if (!MVT::isVector(OpVT)) {
NeedsRevisit = ExpandOperand(N, i);
} else if (MVT::getVectorNumElements(OpVT) == 1) {
// Scalarize the single-element vector.
NeedsRevisit = ScalarizeOperand(N, i);
} else {
NeedsRevisit = SplitOperand(N, i); // Split the vector in half.
}
break;
} else {
assert(Action == Legal && "Unknown action!");
}
}
// If the node needs revisiting, don't add all users to the worklist etc.
if (NeedsRevisit)
continue;
if (i == NumOperands)
DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
}
NodeDone:
// If we reach here, the node was processed, potentially creating new nodes.
// Mark it as processed and add its users to the worklist as appropriate.
N->setNodeId(Processed);
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
int NodeID = User->getNodeId();
assert(NodeID != ReadyToProcess && NodeID != Processed &&
"Invalid node id for user of unprocessed node!");
// This node has two options: it can either be a new node or its Node ID
// may be a count of the number of operands it has that are not ready.
if (NodeID > 0) {
User->setNodeId(NodeID-1);
// If this was the last use it was waiting on, add it to the ready list.
if (NodeID-1 == ReadyToProcess)
Worklist.push_back(User);
continue;
}
// Otherwise, this node is new: this is the first operand of it that
// became ready. Its new NodeID is the number of operands it has minus 1
// (as this node is now processed).
assert(NodeID == NewNode && "Unknown node ID!");
User->setNodeId(User->getNumOperands()-1);
// If the node only has a single operand, it is now ready.
if (User->getNumOperands() == 1)
Worklist.push_back(User);
}
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
//DAG.viewGraph();
// Remove dead nodes. This is important to do for cleanliness but also before
// the checking loop below. Implicit folding by the DAG.getNode operators can
// cause unreachable nodes to be around with their flags set to new.
DAG.RemoveDeadNodes();
// In a debug build, scan all the nodes to make sure we found them all. This
// ensures that there are no cycles and that everything got processed.
#ifndef NDEBUG
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
if (I->getNodeId() == Processed)
continue;
cerr << "Unprocessed node: ";
I->dump(&DAG); cerr << "\n";
if (I->getNodeId() == NewNode)
cerr << "New node not 'noticed'?\n";
else if (I->getNodeId() > 0)
cerr << "Operand not processed?\n";
else if (I->getNodeId() == ReadyToProcess)
cerr << "Not added to worklist?\n";
abort();
}
#endif
}
/// MarkNewNodes - The specified node is the root of a subtree of potentially
/// new nodes. Add the correct NodeId to mark it.
void DAGTypeLegalizer::MarkNewNodes(SDNode *N) {
// If this was an existing node that is already done, we're done.
if (N->getNodeId() != NewNode)
return;
// Okay, we know that this node is new. Recursively walk all of its operands
// to see if they are new also. The depth of this walk is bounded by the size
// of the new tree that was constructed (usually 2-3 nodes), so we don't worry
// about revisiting of nodes.
//
// As we walk the operands, keep track of the number of nodes that are
// processed. If non-zero, this will become the new nodeid of this node.
unsigned NumProcessed = 0;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
int OpId = N->getOperand(i).Val->getNodeId();
if (OpId == NewNode)
MarkNewNodes(N->getOperand(i).Val);
else if (OpId == Processed)
++NumProcessed;
}
N->setNodeId(N->getNumOperands()-NumProcessed);
if (N->getNodeId() == ReadyToProcess)
Worklist.push_back(N);
}
namespace {
/// NodeUpdateListener - This class is a DAGUpdateListener that listens for
/// updates to nodes and recomputes their ready state.
class VISIBILITY_HIDDEN NodeUpdateListener :
public SelectionDAG::DAGUpdateListener {
DAGTypeLegalizer &DTL;
public:
NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}
virtual void NodeDeleted(SDNode *N) {
// Ignore deletes.
assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
"RAUW deleted processed node!");
}
virtual void NodeUpdated(SDNode *N) {
// Node updates can mean pretty much anything. It is possible that an
// operand was set to something already processed (f.e.) in which case
// this node could become ready. Recompute its flags.
assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
"RAUW updated processed node!");
DTL.ReanalyzeNodeFlags(N);
}
};
}
/// ReplaceValueWith - The specified value was legalized to the specified other
/// value. If they are different, update the DAG and NodeIDs replacing any uses
/// of From to use To instead.
void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) {
if (From == To) return;
// If expansion produced new nodes, make sure they are properly marked.
if (To.Val->getNodeId() == NewNode)
MarkNewNodes(To.Val);
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
NodeUpdateListener NUL(*this);
DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
// The old node may still be present in ExpandedNodes or PromotedNodes.
// Inform them about the replacement.
ReplacedNodes[From] = To;
}
/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
/// node's results. The from and to node must define identical result types.
void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
if (From == To) return;
assert(From->getNumValues() == To->getNumValues() &&
"Node results don't match");
// If expansion produced new nodes, make sure they are properly marked.
if (To->getNodeId() == NewNode)
MarkNewNodes(To);
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
NodeUpdateListener NUL(*this);
DAG.ReplaceAllUsesWith(From, To, &NUL);
// The old node may still be present in ExpandedNodes or PromotedNodes.
// Inform them about the replacement.
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
assert(From->getValueType(i) == To->getValueType(i) &&
"Node results don't match");
ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i);
}
}
/// RemapNode - If the specified value was already legalized to another value,
/// replace it by that value.
void DAGTypeLegalizer::RemapNode(SDOperand &N) {
DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.find(N);
if (I != ReplacedNodes.end()) {
// Use path compression to speed up future lookups if values get multiply
// replaced with other values.
RemapNode(I->second);
N = I->second;
}
}
void DAGTypeLegalizer::SetPromotedOp(SDOperand Op, SDOperand Result) {
if (Result.Val->getNodeId() == NewNode)
MarkNewNodes(Result.Val);
SDOperand &OpEntry = PromotedNodes[Op];
assert(OpEntry.Val == 0 && "Node is already promoted!");
OpEntry = Result;
}
void DAGTypeLegalizer::SetScalarizedOp(SDOperand Op, SDOperand Result) {
if (Result.Val->getNodeId() == NewNode)
MarkNewNodes(Result.Val);
SDOperand &OpEntry = ScalarizedNodes[Op];
assert(OpEntry.Val == 0 && "Node is already scalarized!");
OpEntry = Result;
}
void DAGTypeLegalizer::GetExpandedOp(SDOperand Op, SDOperand &Lo,
SDOperand &Hi) {
std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.Val && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi) {
// Remember that this is the result of the node.
std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
assert(Entry.first.Val == 0 && "Node already expanded");
Entry.first = Lo;
Entry.second = Hi;
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
if (Lo.Val->getNodeId() == NewNode)
MarkNewNodes(Lo.Val);
if (Hi.Val->getNodeId() == NewNode)
MarkNewNodes(Hi.Val);
}
void DAGTypeLegalizer::GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) {
std::pair<SDOperand, SDOperand> &Entry = SplitNodes[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.Val && "Operand isn't split");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetSplitOp(SDOperand Op, SDOperand Lo, SDOperand Hi) {
// Remember that this is the result of the node.
std::pair<SDOperand, SDOperand> &Entry = SplitNodes[Op];
assert(Entry.first.Val == 0 && "Node already split");
Entry.first = Lo;
Entry.second = Hi;
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
if (Lo.Val->getNodeId() == NewNode)
MarkNewNodes(Lo.Val);
if (Hi.Val->getNodeId() == NewNode)
MarkNewNodes(Hi.Val);
}
SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
MVT::ValueType DestVT) {
// Create the stack frame object.
SDOperand FIPtr = DAG.CreateStackTemporary(DestVT);
// Emit a store to the stack slot.
SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
// Result is a load from the stack slot.
return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
}
/// HandleMemIntrinsic - This handles memcpy/memset/memmove with invalid
/// operands. This promotes or expands the operands as required.
SDOperand DAGTypeLegalizer::HandleMemIntrinsic(SDNode *N) {
// The chain and pointer [operands #0 and #1] are always valid types.
SDOperand Chain = N->getOperand(0);
SDOperand Ptr = N->getOperand(1);
SDOperand Op2 = N->getOperand(2);
// Op #2 is either a value (memset) or a pointer. Promote it if required.
switch (getTypeAction(Op2.getValueType())) {
default: assert(0 && "Unknown action for pointer/value operand");
case Legal: break;
case Promote: Op2 = GetPromotedOp(Op2); break;
}
// The length could have any action required.
SDOperand Length = N->getOperand(3);
switch (getTypeAction(Length.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: Length = GetPromotedZExtOp(Length); break;
case Expand:
SDOperand Dummy; // discard the high part.
GetExpandedOp(Length, Length, Dummy);
break;
}
SDOperand Align = N->getOperand(4);
switch (getTypeAction(Align.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: Align = GetPromotedZExtOp(Align); break;
}
SDOperand AlwaysInline = N->getOperand(5);
switch (getTypeAction(AlwaysInline.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: AlwaysInline = GetPromotedZExtOp(AlwaysInline); break;
}
SDOperand Ops[] = { Chain, Ptr, Op2, Length, Align, AlwaysInline };
return DAG.UpdateNodeOperands(SDOperand(N, 0), Ops, 6);
}
/// SplitOp - Return the lower and upper halves of Op's bits in a value type
/// half the size of Op's.
void DAGTypeLegalizer::SplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) {
unsigned NVTBits = MVT::getSizeInBits(Op.getValueType())/2;
assert(MVT::getSizeInBits(Op.getValueType()) == 2*NVTBits &&
"Cannot split odd sized integer type");
MVT::ValueType NVT = MVT::getIntegerType(NVTBits);
Lo = DAG.getNode(ISD::TRUNCATE, NVT, Op);
Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
DAG.getConstant(NVTBits, TLI.getShiftAmountTy()));
Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi);
}
//===----------------------------------------------------------------------===//
// Entry Point
//===----------------------------------------------------------------------===//
/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void SelectionDAG::LegalizeTypes() {
if (ViewLegalizeTypesDAGs) viewGraph();
DAGTypeLegalizer(*this).run();
}