Summary:
When computing branch weights in BPI, we used to disallow branches with
weight 0. This is a minor nuisance, because a branch with weight 0 is
different to "don't have information". In the context of
instrumentation, it may mean "never executed", in the context of
sampling, it means "never or seldom executed".
In allowing 0 weight branches, I ran into issues with the switch
expansion code in selection DAG. It is currently hardwired to not handle
branches with weight 0. To maintain the current behaviour, I changed it
to use 1 when it finds 0, but perhaps the algorithm needs changes to
tolerate branches with weight zero.
Reviewers: hansw
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236617 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis Opportunities:
//===---------------------------------------------------------------------===//
In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the
ScalarEvolution expression for %r is this:
{1,+,3,+,2}<loop>
Outside the loop, this could be evaluated simply as (%n * %n), however
ScalarEvolution currently evaluates it as
(-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n))
In addition to being much more complicated, it involves i65 arithmetic,
which is very inefficient when expanded into code.
//===---------------------------------------------------------------------===//
In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll,
ScalarEvolution is forming this expression:
((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32)))
This could be folded to
(-1 * (trunc i64 undef to i32))
//===---------------------------------------------------------------------===//