llvm-6502/lib/CodeGen
Jakob Stoklund Olesen cf724f0786 Remove an assertion to fix PR9872.
It can happen that a live debug variable is the last use of a sub-register, and
the register allocator will pick a larger register class for the virtual
register.  If the allocated register doesn't support the sub-register index,
just use %noreg for the debug variables instead of asserting.

In PR9872, a debug variable ends up in the sub_8bit_hi part of a GR32_ABCD
register. The register is split and one part is inflated to GR32 and assigned
%ESI because there are no more normal uses of sub_8bit_hi.

Since %ESI doesn't have that sub-register, substPhysReg asserted. Now it will
simply insert a %noreg instead, and the debug variable will be marked
unavailable in that range.

We don't currently have a way of saying: !"value" is in bits 8-15 of %ESI, I
don't know if DWARF even supports that.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131073 91177308-0d34-0410-b5e6-96231b3b80d8
2011-05-08 19:21:08 +00:00
..
AsmPrinter Move CompileUnit::getOrCreateNameSpace() and CompileUnit::addPubType() from DwarfDebug.cpp to DwarfCompileUnit.cpp 2011-05-06 16:57:54 +00:00
SelectionDAG 80 col violations. 2011-05-06 20:52:23 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp
AntiDepBreaker.h
BranchFolding.cpp
BranchFolding.h
CalcSpillWeights.cpp Use the new TRI->getLargestLegalSuperClass hook to constrain register class inflation. 2011-04-26 18:52:36 +00:00
CallingConvLower.cpp
CMakeLists.txt
CodeGen.cpp
CodePlacementOpt.cpp
CriticalAntiDepBreaker.cpp
CriticalAntiDepBreaker.h
DeadMachineInstructionElim.cpp
DwarfEHPrepare.cpp
EdgeBundles.cpp
ELF.h
ELFCodeEmitter.cpp
ELFCodeEmitter.h
ELFWriter.cpp
ELFWriter.h
ExpandISelPseudos.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
IfConversion.cpp If converter was being too cute. It look for root BBs (which don't have 2011-04-27 19:32:43 +00:00
InlineSpiller.cpp Add some statistics to the splitting and spilling frameworks. 2011-05-05 17:22:53 +00:00
InterferenceCache.cpp
InterferenceCache.h
IntrinsicLowering.cpp
LatencyPriorityQueue.cpp
LiveDebugVariables.cpp Remove an assertion to fix PR9872. 2011-05-08 19:21:08 +00:00
LiveDebugVariables.h Update LiveDebugVariables after live range splitting. 2011-05-06 18:00:02 +00:00
LiveInterval.cpp
LiveIntervalAnalysis.cpp When a physreg is live-in and live through a basic block, make sure its live 2011-04-30 19:12:33 +00:00
LiveIntervalUnion.cpp
LiveIntervalUnion.h
LiveRangeEdit.cpp Add some statistics to the splitting and spilling frameworks. 2011-05-05 17:22:53 +00:00
LiveRangeEdit.h Update LiveDebugVariables after live range splitting. 2011-05-06 18:00:02 +00:00
LiveStackAnalysis.cpp
LiveVariables.cpp
LLVMTargetMachine.cpp Remove the DwarfTable enum. 2011-05-05 22:14:31 +00:00
LocalStackSlotAllocation.cpp
LowerSubregs.cpp
MachineBasicBlock.cpp
MachineCSE.cpp Re-revert r130877; it's apparently causing a regression on 197.parser, 2011-05-06 05:23:07 +00:00
MachineDominators.cpp
MachineFunction.cpp Make the logic for determining function alignment more explicit. No functionality change. 2011-05-06 20:34:06 +00:00
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp Remove an assertion to fix PR9872. 2011-05-08 19:21:08 +00:00
MachineLICM.cpp
MachineLoopInfo.cpp
MachineLoopRanges.cpp
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachineRegisterInfo.cpp
MachineSink.cpp
MachineSSAUpdater.cpp
MachineVerifier.cpp SjLj EH could produce a machine basic block that legitimately has more than one 2011-05-04 22:54:05 +00:00
Makefile
ObjectCodeEmitter.cpp
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp Update comment. 2011-04-30 03:13:08 +00:00
PeepholeOptimizer.cpp
PHIElimination.cpp
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp Typo: Reviewed by Alistair. 2011-05-06 18:14:32 +00:00
PreAllocSplitting.cpp
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp
PrologEpilogInserter.h
PseudoSourceValue.cpp
README.txt
RegAllocBase.h
RegAllocBasic.cpp Emit a proper error message when register allocators run out of registers. 2011-05-06 21:58:30 +00:00
RegAllocFast.cpp
RegAllocGreedy.cpp Emit a proper error message when register allocators run out of registers. 2011-05-06 21:58:30 +00:00
RegAllocLinearScan.cpp
RegAllocPBQP.cpp
RegisterCoalescer.cpp
RegisterScavenging.cpp Handle <def,undef> in the second loop as well. 2011-05-02 20:36:53 +00:00
RenderMachineFunction.cpp
RenderMachineFunction.h
ScheduleDAG.cpp
ScheduleDAGEmit.cpp
ScheduleDAGInstrs.cpp Added an assertion, and updated a comment. 2011-05-06 21:52:52 +00:00
ScheduleDAGInstrs.h
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShrinkWrapping.cpp
SimpleRegisterCoalescing.cpp Disable physical register coalescing by default. 2011-05-04 23:59:00 +00:00
SimpleRegisterCoalescing.h
SjLjEHPrepare.cpp
SlotIndexes.cpp
Spiller.cpp
Spiller.h
SpillPlacement.cpp
SpillPlacement.h
SplitKit.cpp Add some statistics to the splitting and spilling frameworks. 2011-05-05 17:22:53 +00:00
SplitKit.h Gracefully handle invalid live ranges. Fix PR9831. 2011-05-03 20:42:13 +00:00
Splitter.cpp
Splitter.h
StackProtector.cpp
StackSlotColoring.cpp
StrongPHIElimination.cpp
TailDuplication.cpp
TargetInstrInfoImpl.cpp
TargetLoweringObjectFileImpl.cpp Remove a flag that would set the ".eh" symbol as .globl. MachO was the only one 2011-05-05 06:49:15 +00:00
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp
VirtRegMap.cpp Also count identity copies. 2011-05-06 17:59:57 +00:00
VirtRegMap.h
VirtRegRewriter.cpp
VirtRegRewriter.h

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.