mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-06 04:31:08 +00:00
d6f0602564
gross little neighbor merging implementation. This one has the benefit of not violating the ordering of patterns, so it generates code that passes tests again. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97218 91177308-0d34-0410-b5e6-96231b3b80d8
151 lines
5.1 KiB
C++
151 lines
5.1 KiB
C++
//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the DAG Matcher optimizer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DAGISelMatcher.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
static void ContractNodes(OwningPtr<Matcher> &MatcherPtr) {
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (N == 0) return;
|
|
|
|
// If we have a scope node, walk down all of the children.
|
|
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
|
ContractNodes(Child);
|
|
Scope->resetChild(i, Child.take());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If we found a movechild node with a node that comes in a 'foochild' form,
|
|
// transform it.
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
|
|
Matcher *New = 0;
|
|
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
|
|
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor());
|
|
|
|
if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
|
|
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
|
|
|
|
if (New) {
|
|
// Insert the new node.
|
|
New->setNext(MatcherPtr.take());
|
|
MatcherPtr.reset(New);
|
|
// Remove the old one.
|
|
MC->setNext(MC->getNext()->takeNext());
|
|
return ContractNodes(MatcherPtr);
|
|
}
|
|
}
|
|
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
|
|
if (MoveParentMatcher *MP =
|
|
dyn_cast<MoveParentMatcher>(MC->getNext())) {
|
|
MatcherPtr.reset(MP->takeNext());
|
|
return ContractNodes(MatcherPtr);
|
|
}
|
|
|
|
ContractNodes(N->getNextPtr());
|
|
}
|
|
|
|
static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (N == 0) return;
|
|
|
|
// If this is not a push node, just scan for one.
|
|
ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
|
|
if (Scope == 0)
|
|
return FactorNodes(N->getNextPtr());
|
|
|
|
// Okay, pull together the children of the scope node into a vector so we can
|
|
// inspect it more easily. While we're at it, bucket them up by the hash
|
|
// code of their first predicate.
|
|
SmallVector<Matcher*, 32> OptionsToMatch;
|
|
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
// Factor the subexpression.
|
|
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
|
FactorNodes(Child);
|
|
|
|
if (Matcher *N = Child.take())
|
|
OptionsToMatch.push_back(N);
|
|
}
|
|
|
|
SmallVector<Matcher*, 32> NewOptionsToMatch;
|
|
|
|
// Loop over options to match, merging neighboring patterns with identical
|
|
// starting nodes into a shared matcher.
|
|
for (unsigned i = 0, e = OptionsToMatch.size(); i != e;) {
|
|
// Find the set of matchers that start with this node.
|
|
Matcher *Optn = OptionsToMatch[i++];
|
|
|
|
// See if the next option starts with the same matcher, if not, no sharing.
|
|
if (i == e || !OptionsToMatch[i]->isEqual(Optn)) {
|
|
// TODO: Skip over mutually exclusive patterns.
|
|
NewOptionsToMatch.push_back(Optn);
|
|
continue;
|
|
}
|
|
|
|
// If the two neighbors *do* start with the same matcher, we can factor the
|
|
// matcher out of at least these two patterns. See what the maximal set we
|
|
// can merge together is.
|
|
SmallVector<Matcher*, 8> EqualMatchers;
|
|
EqualMatchers.push_back(Optn);
|
|
EqualMatchers.push_back(OptionsToMatch[i++]);
|
|
|
|
while (i != e && OptionsToMatch[i]->isEqual(Optn))
|
|
EqualMatchers.push_back(OptionsToMatch[i++]);
|
|
|
|
// Factor these checks by pulling the first node off each entry and
|
|
// discarding it. Take the first one off the first entry to reuse.
|
|
Matcher *Shared = Optn;
|
|
Optn = Optn->takeNext();
|
|
EqualMatchers[0] = Optn;
|
|
|
|
// Remove and delete the first node from the other matchers we're factoring.
|
|
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
|
|
Matcher *Tmp = EqualMatchers[i]->takeNext();
|
|
delete EqualMatchers[i];
|
|
EqualMatchers[i] = Tmp;
|
|
}
|
|
|
|
Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
|
|
|
|
// Recursively factor the newly created node.
|
|
FactorNodes(Shared->getNextPtr());
|
|
|
|
NewOptionsToMatch.push_back(Shared);
|
|
}
|
|
|
|
// Reassemble a new Scope node.
|
|
assert(!NewOptionsToMatch.empty() && "where'd all our children go?");
|
|
if (NewOptionsToMatch.size() == 1)
|
|
MatcherPtr.reset(NewOptionsToMatch[0]);
|
|
else {
|
|
Scope->setNumChildren(NewOptionsToMatch.size());
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
|
|
Scope->resetChild(i, NewOptionsToMatch[i]);
|
|
}
|
|
}
|
|
|
|
Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher) {
|
|
OwningPtr<Matcher> MatcherPtr(TheMatcher);
|
|
ContractNodes(MatcherPtr);
|
|
FactorNodes(MatcherPtr);
|
|
return MatcherPtr.take();
|
|
}
|