llvm-6502/utils/TableGen/DAGISelMatcherOpt.cpp
Chris Lattner d6f0602564 switch from my nice hashtable based merging solution to a
gross little neighbor merging implementation.  This one has
the benefit of not violating the ordering of patterns, so it
generates code that passes tests again.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97218 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-26 08:08:41 +00:00

151 lines
5.1 KiB
C++

//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the DAG Matcher optimizer.
//
//===----------------------------------------------------------------------===//
#include "DAGISelMatcher.h"
#include "llvm/ADT/DenseMap.h"
#include <vector>
using namespace llvm;
static void ContractNodes(OwningPtr<Matcher> &MatcherPtr) {
// If we reached the end of the chain, we're done.
Matcher *N = MatcherPtr.get();
if (N == 0) return;
// If we have a scope node, walk down all of the children.
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
OwningPtr<Matcher> Child(Scope->takeChild(i));
ContractNodes(Child);
Scope->resetChild(i, Child.take());
}
return;
}
// If we found a movechild node with a node that comes in a 'foochild' form,
// transform it.
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
Matcher *New = 0;
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor());
if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
if (New) {
// Insert the new node.
New->setNext(MatcherPtr.take());
MatcherPtr.reset(New);
// Remove the old one.
MC->setNext(MC->getNext()->takeNext());
return ContractNodes(MatcherPtr);
}
}
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
if (MoveParentMatcher *MP =
dyn_cast<MoveParentMatcher>(MC->getNext())) {
MatcherPtr.reset(MP->takeNext());
return ContractNodes(MatcherPtr);
}
ContractNodes(N->getNextPtr());
}
static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
// If we reached the end of the chain, we're done.
Matcher *N = MatcherPtr.get();
if (N == 0) return;
// If this is not a push node, just scan for one.
ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
if (Scope == 0)
return FactorNodes(N->getNextPtr());
// Okay, pull together the children of the scope node into a vector so we can
// inspect it more easily. While we're at it, bucket them up by the hash
// code of their first predicate.
SmallVector<Matcher*, 32> OptionsToMatch;
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
// Factor the subexpression.
OwningPtr<Matcher> Child(Scope->takeChild(i));
FactorNodes(Child);
if (Matcher *N = Child.take())
OptionsToMatch.push_back(N);
}
SmallVector<Matcher*, 32> NewOptionsToMatch;
// Loop over options to match, merging neighboring patterns with identical
// starting nodes into a shared matcher.
for (unsigned i = 0, e = OptionsToMatch.size(); i != e;) {
// Find the set of matchers that start with this node.
Matcher *Optn = OptionsToMatch[i++];
// See if the next option starts with the same matcher, if not, no sharing.
if (i == e || !OptionsToMatch[i]->isEqual(Optn)) {
// TODO: Skip over mutually exclusive patterns.
NewOptionsToMatch.push_back(Optn);
continue;
}
// If the two neighbors *do* start with the same matcher, we can factor the
// matcher out of at least these two patterns. See what the maximal set we
// can merge together is.
SmallVector<Matcher*, 8> EqualMatchers;
EqualMatchers.push_back(Optn);
EqualMatchers.push_back(OptionsToMatch[i++]);
while (i != e && OptionsToMatch[i]->isEqual(Optn))
EqualMatchers.push_back(OptionsToMatch[i++]);
// Factor these checks by pulling the first node off each entry and
// discarding it. Take the first one off the first entry to reuse.
Matcher *Shared = Optn;
Optn = Optn->takeNext();
EqualMatchers[0] = Optn;
// Remove and delete the first node from the other matchers we're factoring.
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
Matcher *Tmp = EqualMatchers[i]->takeNext();
delete EqualMatchers[i];
EqualMatchers[i] = Tmp;
}
Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
// Recursively factor the newly created node.
FactorNodes(Shared->getNextPtr());
NewOptionsToMatch.push_back(Shared);
}
// Reassemble a new Scope node.
assert(!NewOptionsToMatch.empty() && "where'd all our children go?");
if (NewOptionsToMatch.size() == 1)
MatcherPtr.reset(NewOptionsToMatch[0]);
else {
Scope->setNumChildren(NewOptionsToMatch.size());
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
Scope->resetChild(i, NewOptionsToMatch[i]);
}
}
Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher) {
OwningPtr<Matcher> MatcherPtr(TheMatcher);
ContractNodes(MatcherPtr);
FactorNodes(MatcherPtr);
return MatcherPtr.take();
}