llvm-6502/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
2010-10-29 16:38:59 +00:00

936 lines
27 KiB
C++

//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmParser.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
using namespace llvm;
// The shift types for register controlled shifts in arm memory addressing
enum ShiftType {
Lsl,
Lsr,
Asr,
Ror,
Rrx
};
namespace {
struct ARMOperand;
class ARMAsmParser : public TargetAsmParser {
MCAsmParser &Parser;
TargetMachine &TM;
private:
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
ARMOperand *MaybeParseRegister(bool ParseWriteBack);
ARMOperand *ParseRegisterList();
ARMOperand *ParseMemory();
bool ParseMemoryOffsetReg(bool &Negative,
bool &OffsetRegShifted,
enum ShiftType &ShiftType,
const MCExpr *&ShiftAmount,
const MCExpr *&Offset,
bool &OffsetIsReg,
int &OffsetRegNum,
SMLoc &E);
bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E);
ARMOperand *ParseOperand();
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveThumb(SMLoc L);
bool ParseDirectiveThumbFunc(SMLoc L);
bool ParseDirectiveCode(SMLoc L);
bool ParseDirectiveSyntax(SMLoc L);
bool MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out);
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "ARMGenAsmMatcher.inc"
/// }
public:
ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM)
: TargetAsmParser(T), Parser(_Parser), TM(_TM) {}
virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
};
} // end anonymous namespace
namespace {
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
struct ARMOperand : public MCParsedAsmOperand {
public:
enum KindTy {
CondCode,
Immediate,
Memory,
Register,
Token
} Kind;
SMLoc StartLoc, EndLoc;
union {
struct {
ARMCC::CondCodes Val;
} CC;
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNum;
bool Writeback;
} Reg;
struct {
const MCExpr *Val;
} Imm;
// This is for all forms of ARM address expressions
struct {
unsigned BaseRegNum;
unsigned OffsetRegNum; // used when OffsetIsReg is true
const MCExpr *Offset; // used when OffsetIsReg is false
const MCExpr *ShiftAmount; // used when OffsetRegShifted is true
enum ShiftType ShiftType; // used when OffsetRegShifted is true
unsigned
OffsetRegShifted : 1, // only used when OffsetIsReg is true
Preindexed : 1,
Postindexed : 1,
OffsetIsReg : 1,
Negative : 1, // only used when OffsetIsReg is true
Writeback : 1;
} Mem;
};
ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case CondCode:
CC = o.CC;
break;
case Token:
Tok = o.Tok;
break;
case Register:
Reg = o.Reg;
break;
case Immediate:
Imm = o.Imm;
break;
case Memory:
Mem = o.Mem;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
ARMCC::CondCodes getCondCode() const {
assert(Kind == CondCode && "Invalid access!");
return CC.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert(Kind == Register && "Invalid access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
bool isCondCode() const { return Kind == CondCode; }
bool isImm() const { return Kind == Immediate; }
bool isReg() const { return Kind == Register; }
bool isToken() const { return Kind == Token; }
bool isMemory() const { return Kind == Memory; }
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
// FIXME: What belongs here?
Inst.addOperand(MCOperand::CreateReg(0));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
bool isMemMode5() const {
if (!isMemory() || Mem.OffsetIsReg || Mem.OffsetRegShifted ||
Mem.Preindexed || Mem.Negative || Mem.Postindexed ||
Mem.Writeback)
return false;
return true;
}
void addMemMode5Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemMode5() && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
assert(!Mem.OffsetIsReg && "invalid mode 5 operand");
addExpr(Inst, Mem.Offset);
}
virtual void dump(raw_ostream &OS) const;
static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
ARMOperand *Op = new ARMOperand(CondCode);
Op->CC.Val = CC;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
ARMOperand *Op = new ARMOperand(Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateReg(unsigned RegNum, bool Writeback, SMLoc S,
SMLoc E) {
ARMOperand *Op = new ARMOperand(Register);
Op->Reg.RegNum = RegNum;
Op->Reg.Writeback = Writeback;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
const MCExpr *Offset, unsigned OffsetRegNum,
bool OffsetRegShifted, enum ShiftType ShiftType,
const MCExpr *ShiftAmount, bool Preindexed,
bool Postindexed, bool Negative, bool Writeback,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(Memory);
Op->Mem.BaseRegNum = BaseRegNum;
Op->Mem.OffsetIsReg = OffsetIsReg;
Op->Mem.Offset = Offset;
Op->Mem.OffsetRegNum = OffsetRegNum;
Op->Mem.OffsetRegShifted = OffsetRegShifted;
Op->Mem.ShiftType = ShiftType;
Op->Mem.ShiftAmount = ShiftAmount;
Op->Mem.Preindexed = Preindexed;
Op->Mem.Postindexed = Postindexed;
Op->Mem.Negative = Negative;
Op->Mem.Writeback = Writeback;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
private:
ARMOperand(KindTy K) : Kind(K) {}
};
} // end anonymous namespace.
void ARMOperand::dump(raw_ostream &OS) const {
switch (Kind) {
case CondCode:
OS << ARMCondCodeToString(getCondCode());
break;
case Immediate:
getImm()->print(OS);
break;
case Memory:
OS << "<memory>";
break;
case Register:
OS << "<register " << getReg() << ">";
break;
case Token:
OS << "'" << getToken() << "'";
break;
}
}
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
/// Try to parse a register name. The token must be an Identifier when called,
/// and if it is a register name the token is eaten and a Reg operand is created
/// and returned. Otherwise return null.
///
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
ARMOperand *ARMAsmParser::MaybeParseRegister(bool ParseWriteBack) {
SMLoc S, E;
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
int RegNum;
RegNum = MatchRegisterName(Tok.getString());
if (RegNum == -1)
return 0;
S = Tok.getLoc();
Parser.Lex(); // Eat identifier token.
E = Parser.getTok().getLoc();
bool Writeback = false;
if (ParseWriteBack) {
const AsmToken &ExclaimTok = Parser.getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
E = ExclaimTok.getLoc();
Writeback = true;
Parser.Lex(); // Eat exclaim token
}
}
return ARMOperand::CreateReg(RegNum, Writeback, S, E);
}
/// Parse a register list, return it if successful else return null. The first
/// token must be a '{' when called.
ARMOperand *ARMAsmParser::ParseRegisterList() {
SMLoc S, E;
assert(Parser.getTok().is(AsmToken::LCurly) &&
"Token is not an Left Curly Brace");
S = Parser.getTok().getLoc();
Parser.Lex(); // Eat left curly brace token.
const AsmToken &RegTok = Parser.getTok();
SMLoc RegLoc = RegTok.getLoc();
if (RegTok.isNot(AsmToken::Identifier)) {
Error(RegLoc, "register expected");
return 0;
}
int RegNum = MatchRegisterName(RegTok.getString());
if (RegNum == -1) {
Error(RegLoc, "register expected");
return 0;
}
Parser.Lex(); // Eat identifier token.
unsigned RegList = 1 << RegNum;
int HighRegNum = RegNum;
// TODO ranges like "{Rn-Rm}"
while (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat comma token.
const AsmToken &RegTok = Parser.getTok();
SMLoc RegLoc = RegTok.getLoc();
if (RegTok.isNot(AsmToken::Identifier)) {
Error(RegLoc, "register expected");
return 0;
}
int RegNum = MatchRegisterName(RegTok.getString());
if (RegNum == -1) {
Error(RegLoc, "register expected");
return 0;
}
if (RegList & (1 << RegNum))
Warning(RegLoc, "register duplicated in register list");
else if (RegNum <= HighRegNum)
Warning(RegLoc, "register not in ascending order in register list");
RegList |= 1 << RegNum;
HighRegNum = RegNum;
Parser.Lex(); // Eat identifier token.
}
const AsmToken &RCurlyTok = Parser.getTok();
if (RCurlyTok.isNot(AsmToken::RCurly)) {
Error(RCurlyTok.getLoc(), "'}' expected");
return 0;
}
E = RCurlyTok.getLoc();
Parser.Lex(); // Eat left curly brace token.
// FIXME: Need to return an operand!
Error(E, "FIXME: register list parsing not implemented");
return 0;
}
/// Parse an arm memory expression, return false if successful else return true
/// or an error. The first token must be a '[' when called.
/// TODO Only preindexing and postindexing addressing are started, unindexed
/// with option, etc are still to do.
ARMOperand *ARMAsmParser::ParseMemory() {
SMLoc S, E;
assert(Parser.getTok().is(AsmToken::LBrac) &&
"Token is not an Left Bracket");
S = Parser.getTok().getLoc();
Parser.Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = Parser.getTok();
if (BaseRegTok.isNot(AsmToken::Identifier)) {
Error(BaseRegTok.getLoc(), "register expected");
return 0;
}
int BaseRegNum = 0;
if (ARMOperand *Op = MaybeParseRegister(false)) {
BaseRegNum = Op->getReg();
delete Op;
} else {
Error(BaseRegTok.getLoc(), "register expected");
return 0;
}
bool Preindexed = false;
bool Postindexed = false;
bool OffsetIsReg = false;
bool Negative = false;
bool Writeback = false;
// First look for preindexed address forms, that is after the "[Rn" we now
// have to see if the next token is a comma.
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Comma)) {
Preindexed = true;
Parser.Lex(); // Eat comma token.
int OffsetRegNum;
bool OffsetRegShifted;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount;
const MCExpr *Offset;
if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount,
Offset, OffsetIsReg, OffsetRegNum, E))
return 0;
const AsmToken &RBracTok = Parser.getTok();
if (RBracTok.isNot(AsmToken::RBrac)) {
Error(RBracTok.getLoc(), "']' expected");
return 0;
}
E = RBracTok.getLoc();
Parser.Lex(); // Eat right bracket token.
const AsmToken &ExclaimTok = Parser.getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
E = ExclaimTok.getLoc();
Writeback = true;
Parser.Lex(); // Eat exclaim token
}
return ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
OffsetRegShifted, ShiftType, ShiftAmount,
Preindexed, Postindexed, Negative, Writeback,
S, E);
}
// The "[Rn" we have so far was not followed by a comma.
else if (Tok.is(AsmToken::RBrac)) {
// This is a post indexing addressing forms, that is a ']' follows after
// the "[Rn".
Postindexed = true;
Writeback = true;
E = Tok.getLoc();
Parser.Lex(); // Eat right bracket token.
int OffsetRegNum = 0;
bool OffsetRegShifted = false;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount;
const MCExpr *Offset = 0;
const AsmToken &NextTok = Parser.getTok();
if (NextTok.isNot(AsmToken::EndOfStatement)) {
if (NextTok.isNot(AsmToken::Comma)) {
Error(NextTok.getLoc(), "',' expected");
return 0;
}
Parser.Lex(); // Eat comma token.
if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType,
ShiftAmount, Offset, OffsetIsReg, OffsetRegNum,
E))
return 0;
}
return ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
OffsetRegShifted, ShiftType, ShiftAmount,
Preindexed, Postindexed, Negative, Writeback,
S, E);
}
return 0;
}
/// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn],"
/// we will parse the following (were +/- means that a plus or minus is
/// optional):
/// +/-Rm
/// +/-Rm, shift
/// #offset
/// we return false on success or an error otherwise.
bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative,
bool &OffsetRegShifted,
enum ShiftType &ShiftType,
const MCExpr *&ShiftAmount,
const MCExpr *&Offset,
bool &OffsetIsReg,
int &OffsetRegNum,
SMLoc &E) {
Negative = false;
OffsetRegShifted = false;
OffsetIsReg = false;
OffsetRegNum = -1;
const AsmToken &NextTok = Parser.getTok();
E = NextTok.getLoc();
if (NextTok.is(AsmToken::Plus))
Parser.Lex(); // Eat plus token.
else if (NextTok.is(AsmToken::Minus)) {
Negative = true;
Parser.Lex(); // Eat minus token
}
// See if there is a register following the "[Rn," or "[Rn]," we have so far.
const AsmToken &OffsetRegTok = Parser.getTok();
if (OffsetRegTok.is(AsmToken::Identifier)) {
if (ARMOperand *Op = MaybeParseRegister(false)) {
OffsetIsReg = true;
E = Op->getEndLoc();
OffsetRegNum = Op->getReg();
delete Op;
}
}
// If we parsed a register as the offset then their can be a shift after that
if (OffsetRegNum != -1) {
// Look for a comma then a shift
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Comma)) {
Parser.Lex(); // Eat comma token.
const AsmToken &Tok = Parser.getTok();
if (ParseShift(ShiftType, ShiftAmount, E))
return Error(Tok.getLoc(), "shift expected");
OffsetRegShifted = true;
}
}
else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm"
// Look for #offset following the "[Rn," or "[Rn],"
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
if (getParser().ParseExpression(Offset))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
}
return false;
}
/// ParseShift as one of these two:
/// ( lsl | lsr | asr | ror ) , # shift_amount
/// rrx
/// and returns true if it parses a shift otherwise it returns false.
bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount,
SMLoc &E) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return true;
StringRef ShiftName = Tok.getString();
if (ShiftName == "lsl" || ShiftName == "LSL")
St = Lsl;
else if (ShiftName == "lsr" || ShiftName == "LSR")
St = Lsr;
else if (ShiftName == "asr" || ShiftName == "ASR")
St = Asr;
else if (ShiftName == "ror" || ShiftName == "ROR")
St = Ror;
else if (ShiftName == "rrx" || ShiftName == "RRX")
St = Rrx;
else
return true;
Parser.Lex(); // Eat shift type token.
// Rrx stands alone.
if (St == Rrx)
return false;
// Otherwise, there must be a '#' and a shift amount.
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
if (getParser().ParseExpression(ShiftAmount))
return true;
return false;
}
/// Parse a arm instruction operand. For now this parses the operand regardless
/// of the mnemonic.
ARMOperand *ARMAsmParser::ParseOperand() {
SMLoc S, E;
switch (getLexer().getKind()) {
case AsmToken::Identifier:
if (ARMOperand *Op = MaybeParseRegister(true))
return Op;
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = Parser.getTok().getLoc();
if (getParser().ParseExpression(IdVal))
return 0;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
return ARMOperand::CreateImm(IdVal, S, E);
case AsmToken::LBrac:
return ParseMemory();
case AsmToken::LCurly:
return ParseRegisterList();
case AsmToken::Hash:
// #42 -> immediate.
// TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
S = Parser.getTok().getLoc();
Parser.Lex();
const MCExpr *ImmVal;
if (getParser().ParseExpression(ImmVal))
return 0;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
return ARMOperand::CreateImm(ImmVal, S, E);
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return 0;
}
}
/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Head = Name.slice(Start, Next);
// Determine the predicate, if any.
//
// FIXME: We need a way to check whether a prefix supports predication,
// otherwise we will end up with an ambiguity for instructions that happen to
// end with a predicate name.
unsigned CC = StringSwitch<unsigned>(Head.substr(Head.size()-2))
.Case("eq", ARMCC::EQ)
.Case("ne", ARMCC::NE)
.Case("hs", ARMCC::HS)
.Case("lo", ARMCC::LO)
.Case("mi", ARMCC::MI)
.Case("pl", ARMCC::PL)
.Case("vs", ARMCC::VS)
.Case("vc", ARMCC::VC)
.Case("hi", ARMCC::HI)
.Case("ls", ARMCC::LS)
.Case("ge", ARMCC::GE)
.Case("lt", ARMCC::LT)
.Case("gt", ARMCC::GT)
.Case("le", ARMCC::LE)
.Case("al", ARMCC::AL)
.Default(~0U);
if (CC != ~0U)
Head = Head.slice(0, Head.size() - 2);
else
CC = ARMCC::AL;
Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), NameLoc));
// Add the remaining tokens in the mnemonic.
while (Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
Head = Name.slice(Start, Next);
Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
}
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ARMOperand *Op = ParseOperand())
Operands.push_back(Op);
else {
Parser.EatToEndOfStatement();
return true;
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (ARMOperand *Op = ParseOperand())
Operands.push_back(Op);
else {
Parser.EatToEndOfStatement();
return true;
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
Parser.EatToEndOfStatement();
return TokError("unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool ARMAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out) {
MCInst Inst;
unsigned ErrorInfo;
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo)) {
case Match_Success:
Out.EmitInstruction(Inst);
return false;
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "unrecognized instruction mnemonic");
}
llvm_unreachable("Implement any new match types added!");
}
/// ParseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(4, DirectiveID.getLoc());
else if (IDVal == ".thumb")
return ParseDirectiveThumb(DirectiveID.getLoc());
else if (IDVal == ".thumb_func")
return ParseDirectiveThumbFunc(DirectiveID.getLoc());
else if (IDVal == ".code")
return ParseDirectiveCode(DirectiveID.getLoc());
else if (IDVal == ".syntax")
return ParseDirectiveSyntax(DirectiveID.getLoc());
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// ParseDirectiveThumb
/// ::= .thumb
bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// TODO: set thumb mode
// TODO: tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveThumbFunc
/// ::= .thumbfunc symbol_name
bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
return Error(L, "unexpected token in .syntax directive");
Parser.Lex(); // Consume the identifier token.
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// TODO: mark symbol as a thumb symbol
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveSyntax
/// ::= .syntax unified | divided
bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(L, "unexpected token in .syntax directive");
StringRef Mode = Tok.getString();
if (Mode == "unified" || Mode == "UNIFIED")
Parser.Lex();
else if (Mode == "divided" || Mode == "DIVIDED")
Parser.Lex();
else
return Error(L, "unrecognized syntax mode in .syntax directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveCode
/// ::= .code 16 | 32
bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Integer))
return Error(L, "unexpected token in .code directive");
int64_t Val = Parser.getTok().getIntVal();
if (Val == 16)
Parser.Lex();
else if (Val == 32)
Parser.Lex();
else
return Error(L, "invalid operand to .code directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
extern "C" void LLVMInitializeARMAsmLexer();
/// Force static initialization.
extern "C" void LLVMInitializeARMAsmParser() {
RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
LLVMInitializeARMAsmLexer();
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "ARMGenAsmMatcher.inc"