llvm-6502/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
Duncan Sands 03228089d5 Rename SetCCResultContents to BooleanContents. In
practice these booleans are mostly produced by SetCC,
however the concept is more general.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59911 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-23 15:47:28 +00:00

1048 lines
40 KiB
C++

//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file performs vector type splitting and scalarization for LegalizeTypes.
// Scalarization is the act of changing a computation in an illegal one-element
// vector type to be a computation in its scalar element type. For example,
// implementing <1 x f32> arithmetic in a scalar f32 register. This is needed
// as a base case when scalarizing vector arithmetic like <4 x f32>, which
// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
// types.
// Splitting is the act of changing a computation in an invalid vector type to
// be a computation in multiple vectors of a smaller type. For example,
// implementing <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Result Vector Scalarization: <1 x ty> -> ty.
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
cerr << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ScalarizeVectorResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to scalarize the result of this operator!");
abort();
case ISD::BIT_CONVERT: R = ScalarizeVecRes_BIT_CONVERT(N); break;
case ISD::BUILD_VECTOR: R = N->getOperand(0); break;
case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break;
case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
case ISD::VSETCC: R = ScalarizeVecRes_VSETCC(N); break;
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::FABS:
case ISD::FCOS:
case ISD::FNEG:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP: R = ScalarizeVecRes_UnaryOp(N); break;
case ISD::ADD:
case ISD::AND:
case ISD::FADD:
case ISD::FDIV:
case ISD::FMUL:
case ISD::FPOW:
case ISD::FREM:
case ISD::FSUB:
case ISD::MUL:
case ISD::OR:
case ISD::SDIV:
case ISD::SREM:
case ISD::SUB:
case ISD::UDIV:
case ISD::UREM:
case ISD::XOR: R = ScalarizeVecRes_BinOp(N); break;
}
// If R is null, the sub-method took care of registering the result.
if (R.getNode())
SetScalarizedVector(SDValue(N, ResNo), R);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
MVT NewVT = N->getValueType(0).getVectorElementType();
return DAG.getNode(ISD::BIT_CONVERT, NewVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
MVT NewVT = N->getValueType(0).getVectorElementType();
SDValue Op0 = GetScalarizedVector(N->getOperand(0));
return DAG.getConvertRndSat(NewVT, Op0, DAG.getValueType(NewVT),
DAG.getValueType(Op0.getValueType()),
N->getOperand(3),
N->getOperand(4),
cast<CvtRndSatSDNode>(N)->getCvtCode());
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
N->getValueType(0).getVectorElementType(),
N->getOperand(0), N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::FPOWI, Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
// The value to insert may have a wider type than the vector element type,
// so be sure to truncate it to the element type if necessary.
SDValue Op = N->getOperand(1);
MVT EltVT = N->getValueType(0).getVectorElementType();
if (Op.getValueType() != EltVT)
// FIXME: Can this happen for floating point types?
Op = DAG.getNode(ISD::TRUNCATE, EltVT, Op);
return Op;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
assert(N->isUnindexed() && "Indexed vector load?");
SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getExtensionType(),
N->getValueType(0).getVectorElementType(),
N->getChain(), N->getBasePtr(),
DAG.getNode(ISD::UNDEF,
N->getBasePtr().getValueType()),
N->getSrcValue(), N->getSrcValueOffset(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->getAlignment());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
return Result;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
// Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
MVT DestVT = N->getValueType(0).getVectorElementType();
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), DestVT, Op);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
return N->getOperand(0);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(1));
return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0), LHS,
GetScalarizedVector(N->getOperand(2)));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(2));
return DAG.getNode(ISD::SELECT_CC, LHS.getValueType(),
N->getOperand(0), N->getOperand(1),
LHS, GetScalarizedVector(N->getOperand(3)),
N->getOperand(4));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
return DAG.getNode(ISD::UNDEF, N->getValueType(0).getVectorElementType());
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
// Figure out if the scalar is the LHS or RHS and return it.
SDValue Arg = N->getOperand(2).getOperand(0);
if (Arg.getOpcode() == ISD::UNDEF)
return DAG.getNode(ISD::UNDEF, N->getValueType(0).getVectorElementType());
unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
return GetScalarizedVector(N->getOperand(Op));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
MVT NVT = N->getValueType(0).getVectorElementType();
MVT SVT = TLI.getSetCCResultType(LHS);
// Turn it into a scalar SETCC.
SDValue Res = DAG.getNode(ISD::SETCC, SVT, LHS, RHS, N->getOperand(2));
// VSETCC always returns a sign-extended value, while SETCC may not. The
// SETCC result type may not match the vector element type. Correct these.
if (NVT.bitsLE(SVT)) {
// The SETCC result type is bigger than the vector element type.
// Ensure the SETCC result is sign-extended.
if (TLI.getBooleanContents() !=
TargetLowering::ZeroOrNegativeOneBooleanContent)
Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, SVT, Res,
DAG.getValueType(MVT::i1));
// Truncate to the final type.
return DAG.getNode(ISD::TRUNCATE, NVT, Res);
} else {
// The SETCC result type is smaller than the vector element type.
// If the SetCC result is not sign-extended, chop it down to MVT::i1.
if (TLI.getBooleanContents() !=
TargetLowering::ZeroOrNegativeOneBooleanContent)
Res = DAG.getNode(ISD::TRUNCATE, MVT::i1, Res);
// Sign extend to the final type.
return DAG.getNode(ISD::SIGN_EXTEND, NVT, Res);
}
}
//===----------------------------------------------------------------------===//
// Operand Vector Scalarization <1 x ty> -> ty.
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
cerr << "\n");
SDValue Res = SDValue();
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ScalarizeVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to scalarize this operator's operand!");
abort();
case ISD::BIT_CONVERT:
Res = ScalarizeVecOp_BIT_CONVERT(N); break;
case ISD::CONCAT_VECTORS:
Res = ScalarizeVecOp_CONCAT_VECTORS(N); break;
case ISD::EXTRACT_VECTOR_ELT:
Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::STORE:
Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Check to see if any
// operands are new, and if so, mark them.
if (Res.getNode() == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of promotion and allows us to visit
// any new operands to N.
ReanalyzeNode(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
/// to be scalarized, it must be <1 x ty>. Convert the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
SDValue Elt = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Elt);
}
/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
/// use a BUILD_VECTOR instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
SmallVector<SDValue, 8> Ops(N->getNumOperands());
for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
Ops[i] = GetScalarizedVector(N->getOperand(i));
return DAG.getNode(ISD::BUILD_VECTOR, N->getValueType(0),
&Ops[0], Ops.size());
}
/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
/// index.
SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
return GetScalarizedVector(N->getOperand(0));
}
/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
/// scalarized, it must be <1 x ty>. Just store the element.
SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
assert(N->isUnindexed() && "Indexed store of one-element vector?");
assert(OpNo == 1 && "Do not know how to scalarize this operand!");
if (N->isTruncatingStore())
return DAG.getTruncStore(N->getChain(),
GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(),
N->getSrcValue(), N->getSrcValueOffset(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->getAlignment());
return DAG.getStore(N->getChain(), GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
N->isVolatile(), N->getAlignment());
}
//===----------------------------------------------------------------------===//
// Result Vector Splitting
//===----------------------------------------------------------------------===//
/// SplitVectorResult - This method is called when the specified result of the
/// specified node is found to need vector splitting. At this point, the node
/// may also have invalid operands or may have other results that need
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
SDValue Lo, Hi;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "SplitVectorResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to split the result of this operator!");
abort();
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::BIT_CONVERT: SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
case ISD::CONVERT_RNDSAT: SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
case ISD::LOAD: SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);break;
case ISD::VECTOR_SHUFFLE: SplitVecRes_VECTOR_SHUFFLE(N, Lo, Hi); break;
case ISD::VSETCC: SplitVecRes_VSETCC(N, Lo, Hi); break;
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::FNEG:
case ISD::FABS:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP: SplitVecRes_UnaryOp(N, Lo, Hi); break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::FDIV:
case ISD::FPOW:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::UREM:
case ISD::SREM:
case ISD::FREM: SplitVecRes_BinOp(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.getNode())
SetSplitVector(SDValue(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
SDValue RHSLo, RHSHi;
GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
Lo = DAG.getNode(N->getOpcode(), LHSLo.getValueType(), LHSLo, RHSLo);
Hi = DAG.getNode(N->getOpcode(), LHSHi.getValueType(), LHSHi, RHSHi);
}
void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// We know the result is a vector. The input may be either a vector or a
// scalar value.
MVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
SDValue InOp = N->getOperand(0);
MVT InVT = InOp.getValueType();
// Handle some special cases efficiently.
switch (getTypeAction(InVT)) {
default:
assert(false && "Unknown type action!");
case Legal:
case PromoteInteger:
case SoftenFloat:
case ScalarizeVector:
break;
case ExpandInteger:
case ExpandFloat:
// A scalar to vector conversion, where the scalar needs expansion.
// If the vector is being split in two then we can just convert the
// expanded pieces.
if (LoVT == HiVT) {
GetExpandedOp(InOp, Lo, Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
return;
}
break;
case SplitVector:
// If the input is a vector that needs to be split, convert each split
// piece of the input now.
GetSplitVector(InOp, Lo, Hi);
Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
return;
}
// In the general case, convert the input to an integer and split it by hand.
MVT LoIntVT = MVT::getIntegerVT(LoVT.getSizeInBits());
MVT HiIntVT = MVT::getIntegerVT(HiVT.getSizeInBits());
if (TLI.isBigEndian())
std::swap(LoIntVT, HiIntVT);
SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
}
void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
MVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
unsigned LoNumElts = LoVT.getVectorNumElements();
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
Lo = DAG.getNode(ISD::BUILD_VECTOR, LoVT, &LoOps[0], LoOps.size());
SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
Hi = DAG.getNode(ISD::BUILD_VECTOR, HiVT, &HiOps[0], HiOps.size());
}
void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
unsigned NumSubvectors = N->getNumOperands() / 2;
if (NumSubvectors == 1) {
Lo = N->getOperand(0);
Hi = N->getOperand(1);
return;
}
MVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
Lo = DAG.getNode(ISD::CONCAT_VECTORS, LoVT, &LoOps[0], LoOps.size());
SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
Hi = DAG.getNode(ISD::CONCAT_VECTORS, HiVT, &HiOps[0], HiOps.size());
}
void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
MVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
SDValue VLo, VHi;
GetSplitVector(N->getOperand(0), VLo, VHi);
SDValue DTyOpLo = DAG.getValueType(LoVT);
SDValue DTyOpHi = DAG.getValueType(HiVT);
SDValue STyOpLo = DAG.getValueType(VLo.getValueType());
SDValue STyOpHi = DAG.getValueType(VHi.getValueType());
SDValue RndOp = N->getOperand(3);
SDValue SatOp = N->getOperand(4);
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
Lo = DAG.getConvertRndSat(LoVT, VLo, DTyOpLo, STyOpLo, RndOp, SatOp, CvtCode);
Hi = DAG.getConvertRndSat(HiVT, VHi, DTyOpHi, STyOpHi, RndOp, SatOp, CvtCode);
}
void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
MVT IdxVT = Idx.getValueType();
MVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
// The indices are not guaranteed to be a multiple of the new vector
// size unless the original vector type was split in two.
assert(LoVT == HiVT && "Non power-of-two vectors not supported!");
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, LoVT, Vec, Idx);
Idx = DAG.getNode(ISD::ADD, IdxVT, Idx,
DAG.getConstant(LoVT.getVectorNumElements(), IdxVT));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, HiVT, Vec, Idx);
}
void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
SDValue &Hi) {
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FPOWI, Lo.getValueType(), Lo, N->getOperand(1));
Hi = DAG.getNode(ISD::FPOWI, Hi.getValueType(), Hi, N->getOperand(1));
}
void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Elt = N->getOperand(1);
SDValue Idx = N->getOperand(2);
GetSplitVector(Vec, Lo, Hi);
if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
unsigned IdxVal = CIdx->getZExtValue();
unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
if (IdxVal < LoNumElts)
Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, Lo.getValueType(), Lo, Elt, Idx);
else
Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, Hi.getValueType(), Hi, Elt,
DAG.getIntPtrConstant(IdxVal - LoNumElts));
return;
}
// Spill the vector to the stack.
MVT VecVT = Vec.getValueType();
MVT EltVT = VecVT.getVectorElementType();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0);
// Store the new element. This may be larger than the vector element type,
// so use a truncating store.
SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
Store = DAG.getTruncStore(Store, Elt, EltPtr, NULL, 0, EltVT);
// Reload the vector from the stack.
SDValue Load = DAG.getLoad(VecVT, Store, StackPtr, NULL, 0);
// Split it.
SplitVecRes_LOAD(cast<LoadSDNode>(Load.getNode()), Lo, Hi);
}
void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
MVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, LoVT, N->getOperand(0));
Hi = DAG.getNode(ISD::UNDEF, HiVT);
}
void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
SDValue &Hi) {
assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
MVT LoVT, HiVT;
GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Ch = LD->getChain();
SDValue Ptr = LD->getBasePtr();
SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType());
const Value *SV = LD->getSrcValue();
int SVOffset = LD->getSrcValueOffset();
MVT MemoryVT = LD->getMemoryVT();
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
MVT LoMemVT, HiMemVT;
GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, Ch, Ptr, Offset,
SV, SVOffset, LoMemVT, isVolatile, Alignment);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
SVOffset += IncrementSize;
Alignment = MinAlign(Alignment, IncrementSize);
Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, Ch, Ptr, Offset,
SV, SVOffset, HiMemVT, isVolatile, Alignment);
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(LD, 1), Ch);
}
void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// Get the dest types - they may not match the input types, e.g. int_to_fp.
MVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
// Split the input.
MVT InVT = N->getOperand(0).getValueType();
switch (getTypeAction(InVT)) {
default: assert(0 && "Unexpected type action!");
case Legal: {
assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
LoVT.getVectorNumElements());
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, InNVT, N->getOperand(0),
DAG.getIntPtrConstant(0));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, InNVT, N->getOperand(0),
DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
break;
}
case SplitVector:
GetSplitVector(N->getOperand(0), Lo, Hi);
break;
}
Lo = DAG.getNode(N->getOpcode(), LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), HiVT, Hi);
}
void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// The low and high parts of the original input give four input vectors.
SDValue Inputs[4];
GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
MVT NewVT = Inputs[0].getValueType();
unsigned NewElts = NewVT.getVectorNumElements();
assert(NewVT == Inputs[1].getValueType() &&
"Non power-of-two vectors not supported!");
// If Lo or Hi uses elements from at most two of the four input vectors, then
// express it as a vector shuffle of those two inputs. Otherwise extract the
// input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
SDValue Mask = N->getOperand(2);
MVT IdxVT = Mask.getValueType().getVectorElementType();
SmallVector<SDValue, 16> Ops;
Ops.reserve(NewElts);
for (unsigned High = 0; High < 2; ++High) {
SDValue &Output = High ? Hi : Lo;
// Build a shuffle mask for the output, discovering on the fly which
// input vectors to use as shuffle operands (recorded in InputUsed).
// If building a suitable shuffle vector proves too hard, then bail
// out with useBuildVector set.
unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
unsigned FirstMaskIdx = High * NewElts;
bool useBuildVector = false;
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
SDValue Arg = Mask.getOperand(FirstMaskIdx + MaskOffset);
// The mask element. This indexes into the input.
unsigned Idx = Arg.getOpcode() == ISD::UNDEF ?
-1U : cast<ConstantSDNode>(Arg)->getZExtValue();
// The input vector this mask element indexes into.
unsigned Input = Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element does not index into any input vector.
Ops.push_back(DAG.getNode(ISD::UNDEF, IdxVT));
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Find or create a shuffle vector operand to hold this input.
unsigned OpNo;
for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
if (InputUsed[OpNo] == Input) {
// This input vector is already an operand.
break;
} else if (InputUsed[OpNo] == -1U) {
// Create a new operand for this input vector.
InputUsed[OpNo] = Input;
break;
}
}
if (OpNo >= array_lengthof(InputUsed)) {
// More than two input vectors used! Give up on trying to create a
// shuffle vector. Insert all elements into a BUILD_VECTOR instead.
useBuildVector = true;
break;
}
// Add the mask index for the new shuffle vector.
Ops.push_back(DAG.getConstant(Idx + OpNo * NewElts, IdxVT));
}
if (useBuildVector) {
MVT EltVT = NewVT.getVectorElementType();
Ops.clear();
// Extract the input elements by hand.
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
SDValue Arg = Mask.getOperand(FirstMaskIdx + MaskOffset);
// The mask element. This indexes into the input.
unsigned Idx = Arg.getOpcode() == ISD::UNDEF ?
-1U : cast<ConstantSDNode>(Arg)->getZExtValue();
// The input vector this mask element indexes into.
unsigned Input = Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element is "undef" or indexes off the end of the input.
Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT));
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Extract the vector element by hand.
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT,
Inputs[Input], DAG.getIntPtrConstant(Idx)));
}
// Construct the Lo/Hi output using a BUILD_VECTOR.
Output = DAG.getNode(ISD::BUILD_VECTOR, NewVT, &Ops[0], Ops.size());
} else if (InputUsed[0] == -1U) {
// No input vectors were used! The result is undefined.
Output = DAG.getNode(ISD::UNDEF, NewVT);
} else {
// At least one input vector was used. Create a new shuffle vector.
SDValue NewMask = DAG.getNode(ISD::BUILD_VECTOR,
MVT::getVectorVT(IdxVT, Ops.size()),
&Ops[0], Ops.size());
SDValue Op0 = Inputs[InputUsed[0]];
// If only one input was used, use an undefined vector for the other.
SDValue Op1 = InputUsed[1] == -1U ?
DAG.getNode(ISD::UNDEF, NewVT) : Inputs[InputUsed[1]];
Output = DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, Op0, Op1, NewMask);
}
Ops.clear();
}
}
void DAGTypeLegalizer::SplitVecRes_VSETCC(SDNode *N, SDValue &Lo,
SDValue &Hi) {
MVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
SDValue LL, LH, RL, RH;
GetSplitVector(N->getOperand(0), LL, LH);
GetSplitVector(N->getOperand(1), RL, RH);
Lo = DAG.getNode(ISD::VSETCC, LoVT, LL, RL, N->getOperand(2));
Hi = DAG.getNode(ISD::VSETCC, HiVT, LH, RH, N->getOperand(2));
}
//===----------------------------------------------------------------------===//
// Operand Vector Splitting
//===----------------------------------------------------------------------===//
/// SplitVectorOperand - This method is called when the specified operand of the
/// specified node is found to need vector splitting. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
SDValue Res = SDValue();
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "SplitVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to split this operator's operand!");
abort();
case ISD::BIT_CONVERT: Res = SplitVecOp_BIT_CONVERT(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::STORE: Res = SplitVecOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
case ISD::VECTOR_SHUFFLE: Res = SplitVecOp_VECTOR_SHUFFLE(N, OpNo);break;
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP: Res = SplitVecOp_UnaryOp(N); break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Check to see if any
// operands are new, and if so, mark them.
if (Res.getNode() == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of promotion and allows us to visit
// any new operands to N.
ReanalyzeNode(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
// The result has a legal vector type, but the input needs splitting.
MVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
assert(Lo.getValueType() == Hi.getValueType() &&
"Returns legal non-power-of-two vector type?");
MVT InVT = Lo.getValueType();
MVT OutVT = MVT::getVectorVT(ResVT.getVectorElementType(),
InVT.getVectorNumElements());
Lo = DAG.getNode(N->getOpcode(), OutVT, Lo);
Hi = DAG.getNode(N->getOpcode(), OutVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, ResVT, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
// For example, i64 = BIT_CONVERT v4i16 on alpha. Typically the vector will
// end up being split all the way down to individual components. Convert the
// split pieces into integers and reassemble.
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0),
JoinIntegers(Lo, Hi));
}
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
// We know that the extracted result type is legal. For now, assume the index
// is a constant.
MVT SubVT = N->getValueType(0);
SDValue Idx = N->getOperand(1);
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal < LoElts) {
assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
"Extracted subvector crosses vector split!");
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SubVT, Lo, Idx);
} else {
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SubVT, Hi,
DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
}
}
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
MVT VecVT = Vec.getValueType();
if (isa<ConstantSDNode>(Idx)) {
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
SDValue Lo, Hi;
GetSplitVector(Vec, Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
if (IdxVal < LoElts)
return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
else
return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
DAG.getConstant(IdxVal - LoElts,
Idx.getValueType()));
}
// Store the vector to the stack.
MVT EltVT = VecVT.getVectorElementType();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0);
// Load back the required element.
StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
return DAG.getLoad(EltVT, Store, StackPtr, NULL, 0);
}
SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
assert(N->isUnindexed() && "Indexed store of vector?");
assert(OpNo == 1 && "Can only split the stored value");
bool isTruncating = N->isTruncatingStore();
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
MVT MemoryVT = N->getMemoryVT();
unsigned Alignment = N->getAlignment();
bool isVol = N->isVolatile();
SDValue Lo, Hi;
GetSplitVector(N->getOperand(1), Lo, Hi);
MVT LoMemVT, HiMemVT;
GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
if (isTruncating)
Lo = DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
LoMemVT, isVol, Alignment);
else
Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
isVol, Alignment);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
if (isTruncating)
Hi = DAG.getTruncStore(Ch, Hi, Ptr,
N->getSrcValue(), SVOffset+IncrementSize,
HiMemVT,
isVol, MinAlign(Alignment, IncrementSize));
else
Hi = DAG.getStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
isVol, MinAlign(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Shuffle source type differs from result type?");
SDValue Mask = N->getOperand(2);
unsigned MaskLength = Mask.getValueType().getVectorNumElements();
unsigned LargestMaskEntryPlusOne = 2 * MaskLength;
unsigned MinimumBitWidth = Log2_32_Ceil(LargestMaskEntryPlusOne);
// Look for a legal vector type to place the mask values in.
// Note that there may not be *any* legal vector-of-integer
// type for which the element type is legal!
for (MVT::SimpleValueType EltVT = MVT::FIRST_INTEGER_VALUETYPE;
EltVT <= MVT::LAST_INTEGER_VALUETYPE;
// Integer values types are consecutively numbered. Exploit this.
EltVT = MVT::SimpleValueType(EltVT + 1)) {
// Is the element type big enough to hold the values?
if (MVT(EltVT).getSizeInBits() < MinimumBitWidth)
// Nope.
continue;
// Is the vector type legal?
MVT VecVT = MVT::getVectorVT(EltVT, MaskLength);
if (!isTypeLegal(VecVT))
// Nope.
continue;
// If the element type is not legal, find a larger legal type to use for
// the BUILD_VECTOR operands. This is an ugly hack, but seems to work!
// FIXME: The real solution is to change VECTOR_SHUFFLE into a variadic
// node where the shuffle mask is a list of integer operands, #2 .. #2+n.
for (MVT::SimpleValueType OpVT = EltVT; OpVT <= MVT::LAST_INTEGER_VALUETYPE;
// Integer values types are consecutively numbered. Exploit this.
OpVT = MVT::SimpleValueType(OpVT + 1)) {
if (!isTypeLegal(OpVT))
continue;
// Success! Rebuild the vector using the legal types.
SmallVector<SDValue, 16> Ops(MaskLength);
for (unsigned i = 0; i < MaskLength; ++i) {
SDValue Arg = Mask.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) {
Ops[i] = DAG.getNode(ISD::UNDEF, OpVT);
} else {
uint64_t Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
Ops[i] = DAG.getConstant(Idx, OpVT);
}
}
return DAG.UpdateNodeOperands(SDValue(N,0),
N->getOperand(0), N->getOperand(1),
DAG.getNode(ISD::BUILD_VECTOR,
VecVT, &Ops[0], Ops.size()));
}
// Continuing is pointless - failure is certain.
break;
}
assert(false && "Failed to find an appropriate mask type!");
return SDValue(N, 0);
}