llvm-6502/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
Dan Gohman 07f04fd574 Add an ISD::FPOW node type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42879 91177308-0d34-0410-b5e6-96231b3b80d8
2007-10-11 23:06:37 +00:00

3904 lines
139 KiB
C++

//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Constants.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;
/// makeVTList - Return an instance of the SDVTList struct initialized with the
/// specified members.
static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
SDVTList Res = {VTs, NumVTs};
return Res;
}
//===----------------------------------------------------------------------===//
// ConstantFPSDNode Class
//===----------------------------------------------------------------------===//
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
return Value.bitwiseIsEqual(V);
}
bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
const APFloat& Val) {
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
switch (VT) {
default:
return false; // These can't be represented as floating point!
// FIXME rounding mode needs to be more flexible
case MVT::f32:
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
APFloat::opOK;
case MVT::f64:
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
APFloat::opOK;
// TODO: Figure out how to test if we can use a shorter type instead!
case MVT::f80:
case MVT::f128:
case MVT::ppcf128:
return true;
}
}
//===----------------------------------------------------------------------===//
// ISD Namespace
//===----------------------------------------------------------------------===//
/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
// Look through a bit convert.
if (N->getOpcode() == ISD::BIT_CONVERT)
N = N->getOperand(0).Val;
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
// Skip over all of the undef values.
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
++i;
// Do not accept an all-undef vector.
if (i == e) return false;
// Do not accept build_vectors that aren't all constants or which have non-~0
// elements.
SDOperand NotZero = N->getOperand(i);
if (isa<ConstantSDNode>(NotZero)) {
if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
return false;
} else if (isa<ConstantFPSDNode>(NotZero)) {
MVT::ValueType VT = NotZero.getValueType();
if (VT== MVT::f64) {
if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
convertToAPInt().getZExtValue())) != (uint64_t)-1)
return false;
} else {
if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
getValueAPF().convertToAPInt().getZExtValue() !=
(uint32_t)-1)
return false;
}
} else
return false;
// Okay, we have at least one ~0 value, check to see if the rest match or are
// undefs.
for (++i; i != e; ++i)
if (N->getOperand(i) != NotZero &&
N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
// Look through a bit convert.
if (N->getOpcode() == ISD::BIT_CONVERT)
N = N->getOperand(0).Val;
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
// Skip over all of the undef values.
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
++i;
// Do not accept an all-undef vector.
if (i == e) return false;
// Do not accept build_vectors that aren't all constants or which have non-~0
// elements.
SDOperand Zero = N->getOperand(i);
if (isa<ConstantSDNode>(Zero)) {
if (!cast<ConstantSDNode>(Zero)->isNullValue())
return false;
} else if (isa<ConstantFPSDNode>(Zero)) {
if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
return false;
} else
return false;
// Okay, we have at least one ~0 value, check to see if the rest match or are
// undefs.
for (++i; i != e; ++i)
if (N->getOperand(i) != Zero &&
N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
// To perform this operation, we just need to swap the L and G bits of the
// operation.
unsigned OldL = (Operation >> 2) & 1;
unsigned OldG = (Operation >> 1) & 1;
return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
(OldL << 1) | // New G bit
(OldG << 2)); // New L bit.
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
unsigned Operation = Op;
if (isInteger)
Operation ^= 7; // Flip L, G, E bits, but not U.
else
Operation ^= 15; // Flip all of the condition bits.
if (Operation > ISD::SETTRUE2)
Operation &= ~8; // Don't let N and U bits get set.
return ISD::CondCode(Operation);
}
/// isSignedOp - For an integer comparison, return 1 if the comparison is a
/// signed operation and 2 if the result is an unsigned comparison. Return zero
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
switch (Opcode) {
default: assert(0 && "Illegal integer setcc operation!");
case ISD::SETEQ:
case ISD::SETNE: return 0;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return 1;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return 2;
}
}
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
/// returns SETCC_INVALID if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed integer setcc with an unsigned integer setcc.
return ISD::SETCC_INVALID;
unsigned Op = Op1 | Op2; // Combine all of the condition bits.
// If the N and U bits get set then the resultant comparison DOES suddenly
// care about orderedness, and is true when ordered.
if (Op > ISD::SETTRUE2)
Op &= ~16; // Clear the U bit if the N bit is set.
// Canonicalize illegal integer setcc's.
if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
Op = ISD::SETNE;
return ISD::CondCode(Op);
}
/// getSetCCAndOperation - Return the result of a logical AND between different
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns zero if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed setcc with an unsigned setcc.
return ISD::SETCC_INVALID;
// Combine all of the condition bits.
ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
// Canonicalize illegal integer setcc's.
if (isInteger) {
switch (Result) {
default: break;
case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
}
}
return Result;
}
const TargetMachine &SelectionDAG::getTarget() const {
return TLI.getTargetMachine();
}
//===----------------------------------------------------------------------===//
// SDNode Profile Support
//===----------------------------------------------------------------------===//
/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
///
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
ID.AddInteger(OpC);
}
/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
/// solely with their pointer.
void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
ID.AddPointer(VTList.VTs);
}
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
///
static void AddNodeIDOperands(FoldingSetNodeID &ID,
const SDOperand *Ops, unsigned NumOps) {
for (; NumOps; --NumOps, ++Ops) {
ID.AddPointer(Ops->Val);
ID.AddInteger(Ops->ResNo);
}
}
static void AddNodeIDNode(FoldingSetNodeID &ID,
unsigned short OpC, SDVTList VTList,
const SDOperand *OpList, unsigned N) {
AddNodeIDOpcode(ID, OpC);
AddNodeIDValueTypes(ID, VTList);
AddNodeIDOperands(ID, OpList, N);
}
/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
/// data.
static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
AddNodeIDOpcode(ID, N->getOpcode());
// Add the return value info.
AddNodeIDValueTypes(ID, N->getVTList());
// Add the operand info.
AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
// Handle SDNode leafs with special info.
switch (N->getOpcode()) {
default: break; // Normal nodes don't need extra info.
case ISD::TargetConstant:
case ISD::Constant:
ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
break;
case ISD::TargetConstantFP:
case ISD::ConstantFP: {
ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
break;
}
case ISD::TargetGlobalAddress:
case ISD::GlobalAddress:
case ISD::TargetGlobalTLSAddress:
case ISD::GlobalTLSAddress: {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
ID.AddPointer(GA->getGlobal());
ID.AddInteger(GA->getOffset());
break;
}
case ISD::BasicBlock:
ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
break;
case ISD::Register:
ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
break;
case ISD::SRCVALUE: {
SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
ID.AddPointer(SV->getValue());
ID.AddInteger(SV->getOffset());
break;
}
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::JumpTable:
case ISD::TargetJumpTable:
ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
break;
case ISD::ConstantPool:
case ISD::TargetConstantPool: {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
ID.AddInteger(CP->getAlignment());
ID.AddInteger(CP->getOffset());
if (CP->isMachineConstantPoolEntry())
CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
else
ID.AddPointer(CP->getConstVal());
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(N);
ID.AddInteger(LD->getAddressingMode());
ID.AddInteger(LD->getExtensionType());
ID.AddInteger((unsigned int)(LD->getLoadedVT()));
ID.AddPointer(LD->getSrcValue());
ID.AddInteger(LD->getSrcValueOffset());
ID.AddInteger(LD->getAlignment());
ID.AddInteger(LD->isVolatile());
break;
}
case ISD::STORE: {
StoreSDNode *ST = cast<StoreSDNode>(N);
ID.AddInteger(ST->getAddressingMode());
ID.AddInteger(ST->isTruncatingStore());
ID.AddInteger((unsigned int)(ST->getStoredVT()));
ID.AddPointer(ST->getSrcValue());
ID.AddInteger(ST->getSrcValueOffset());
ID.AddInteger(ST->getAlignment());
ID.AddInteger(ST->isVolatile());
break;
}
}
}
//===----------------------------------------------------------------------===//
// SelectionDAG Class
//===----------------------------------------------------------------------===//
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void SelectionDAG::RemoveDeadNodes() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted.
HandleSDNode Dummy(getRoot());
SmallVector<SDNode*, 128> DeadNodes;
// Add all obviously-dead nodes to the DeadNodes worklist.
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
if (I->use_empty())
DeadNodes.push_back(I);
// Process the worklist, deleting the nodes and adding their uses to the
// worklist.
while (!DeadNodes.empty()) {
SDNode *N = DeadNodes.back();
DeadNodes.pop_back();
// Take the node out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Next, brutally remove the operand list. This is safe to do, as there are
// no cycles in the graph.
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
SDNode *Operand = I->Val;
Operand->removeUser(N);
// Now that we removed this operand, see if there are no uses of it left.
if (Operand->use_empty())
DeadNodes.push_back(Operand);
}
if (N->OperandsNeedDelete)
delete[] N->OperandList;
N->OperandList = 0;
N->NumOperands = 0;
// Finally, remove N itself.
AllNodes.erase(N);
}
// If the root changed (e.g. it was a dead load, update the root).
setRoot(Dummy.getValue());
}
void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
SmallVector<SDNode*, 16> DeadNodes;
DeadNodes.push_back(N);
// Process the worklist, deleting the nodes and adding their uses to the
// worklist.
while (!DeadNodes.empty()) {
SDNode *N = DeadNodes.back();
DeadNodes.pop_back();
// Take the node out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Next, brutally remove the operand list. This is safe to do, as there are
// no cycles in the graph.
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
SDNode *Operand = I->Val;
Operand->removeUser(N);
// Now that we removed this operand, see if there are no uses of it left.
if (Operand->use_empty())
DeadNodes.push_back(Operand);
}
if (N->OperandsNeedDelete)
delete[] N->OperandList;
N->OperandList = 0;
N->NumOperands = 0;
// Finally, remove N itself.
Deleted.push_back(N);
AllNodes.erase(N);
}
}
void SelectionDAG::DeleteNode(SDNode *N) {
assert(N->use_empty() && "Cannot delete a node that is not dead!");
// First take this out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Finally, remove uses due to operands of this node, remove from the
// AllNodes list, and delete the node.
DeleteNodeNotInCSEMaps(N);
}
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
// Remove it from the AllNodes list.
AllNodes.remove(N);
// Drop all of the operands and decrement used nodes use counts.
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
I->Val->removeUser(N);
if (N->OperandsNeedDelete)
delete[] N->OperandList;
N->OperandList = 0;
N->NumOperands = 0;
delete N;
}
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it. This is useful when we're about to delete or repurpose
/// the node. We don't want future request for structurally identical nodes
/// to return N anymore.
void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
bool Erased = false;
switch (N->getOpcode()) {
case ISD::HANDLENODE: return; // noop.
case ISD::STRING:
Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
break;
case ISD::CONDCODE:
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
"Cond code doesn't exist!");
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
break;
case ISD::ExternalSymbol:
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::TargetExternalSymbol:
Erased =
TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::VALUETYPE:
Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
break;
default:
// Remove it from the CSE Map.
Erased = CSEMap.RemoveNode(N);
break;
}
#ifndef NDEBUG
// Verify that the node was actually in one of the CSE maps, unless it has a
// flag result (which cannot be CSE'd) or is one of the special cases that are
// not subject to CSE.
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
!N->isTargetOpcode()) {
N->dump(this);
cerr << "\n";
assert(0 && "Node is not in map!");
}
#endif
}
/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
/// has been taken out and modified in some way. If the specified node already
/// exists in the CSE maps, do not modify the maps, but return the existing node
/// instead. If it doesn't exist, add it and return null.
///
SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
assert(N->getNumOperands() && "This is a leaf node!");
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
return 0; // Never add these nodes.
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Flag)
return 0; // Never CSE anything that produces a flag.
SDNode *New = CSEMap.GetOrInsertNode(N);
if (New != N) return New; // Node already existed.
return 0;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
void *&InsertPos) {
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
return 0; // Never add these nodes.
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Flag)
return 0; // Never CSE anything that produces a flag.
SDOperand Ops[] = { Op };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
SDOperand Op1, SDOperand Op2,
void *&InsertPos) {
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
return 0; // Never add these nodes.
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Flag)
return 0; // Never CSE anything that produces a flag.
SDOperand Ops[] = { Op1, Op2 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
const SDOperand *Ops,unsigned NumOps,
void *&InsertPos) {
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
return 0; // Never add these nodes.
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Flag)
return 0; // Never CSE anything that produces a flag.
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
ID.AddInteger(LD->getAddressingMode());
ID.AddInteger(LD->getExtensionType());
ID.AddInteger((unsigned int)(LD->getLoadedVT()));
ID.AddPointer(LD->getSrcValue());
ID.AddInteger(LD->getSrcValueOffset());
ID.AddInteger(LD->getAlignment());
ID.AddInteger(LD->isVolatile());
} else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ID.AddInteger(ST->getAddressingMode());
ID.AddInteger(ST->isTruncatingStore());
ID.AddInteger((unsigned int)(ST->getStoredVT()));
ID.AddPointer(ST->getSrcValue());
ID.AddInteger(ST->getSrcValueOffset());
ID.AddInteger(ST->getAlignment());
ID.AddInteger(ST->isVolatile());
}
return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
}
SelectionDAG::~SelectionDAG() {
while (!AllNodes.empty()) {
SDNode *N = AllNodes.begin();
N->SetNextInBucket(0);
if (N->OperandsNeedDelete)
delete [] N->OperandList;
N->OperandList = 0;
N->NumOperands = 0;
AllNodes.pop_front();
}
}
SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
if (Op.getValueType() == VT) return Op;
int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
return getNode(ISD::AND, Op.getValueType(), Op,
getConstant(Imm, Op.getValueType()));
}
SDOperand SelectionDAG::getString(const std::string &Val) {
StringSDNode *&N = StringNodes[Val];
if (!N) {
N = new StringSDNode(Val);
AllNodes.push_back(N);
}
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
// Mask out any bits that are not valid for this constant.
Val &= MVT::getIntVTBitMask(VT);
unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(Val);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new ConstantSDNode(isT, Val, VT);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
bool isTarget) {
assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
MVT::ValueType EltVT =
MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
// Do the map lookup using the actual bit pattern for the floating point
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
// we don't have issues with SNANs.
unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
ID.AddAPFloat(V);
void *IP = 0;
SDNode *N = NULL;
if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
if (!MVT::isVector(VT))
return SDOperand(N, 0);
if (!N) {
N = new ConstantFPSDNode(isTarget, V, EltVT);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
}
SDOperand Result(N, 0);
if (MVT::isVector(VT)) {
SmallVector<SDOperand, 8> Ops;
Ops.assign(MVT::getVectorNumElements(VT), Result);
Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
}
return Result;
}
SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
bool isTarget) {
MVT::ValueType EltVT =
MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
if (EltVT==MVT::f32)
return getConstantFP(APFloat((float)Val), VT, isTarget);
else
return getConstantFP(APFloat(Val), VT, isTarget);
}
SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
MVT::ValueType VT, int Offset,
bool isTargetGA) {
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
unsigned Opc;
if (GVar && GVar->isThreadLocal())
Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
else
Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddPointer(GV);
ID.AddInteger(Offset);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
bool isTarget) {
unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(FI);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(JTI);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
unsigned Alignment, int Offset,
bool isTarget) {
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(Alignment);
ID.AddInteger(Offset);
ID.AddPointer(C);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
MVT::ValueType VT,
unsigned Alignment, int Offset,
bool isTarget) {
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(Alignment);
ID.AddInteger(Offset);
C->AddSelectionDAGCSEId(ID);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
ID.AddPointer(MBB);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new BasicBlockSDNode(MBB);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
if ((unsigned)VT >= ValueTypeNodes.size())
ValueTypeNodes.resize(VT+1);
if (ValueTypeNodes[VT] == 0) {
ValueTypeNodes[VT] = new VTSDNode(VT);
AllNodes.push_back(ValueTypeNodes[VT]);
}
return SDOperand(ValueTypeNodes[VT], 0);
}
SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDOperand(N, 0);
N = new ExternalSymbolSDNode(false, Sym, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
MVT::ValueType VT) {
SDNode *&N = TargetExternalSymbols[Sym];
if (N) return SDOperand(N, 0);
N = new ExternalSymbolSDNode(true, Sym, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
if ((unsigned)Cond >= CondCodeNodes.size())
CondCodeNodes.resize(Cond+1);
if (CondCodeNodes[Cond] == 0) {
CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
AllNodes.push_back(CondCodeNodes[Cond]);
}
return SDOperand(CondCodeNodes[Cond], 0);
}
SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
ID.AddInteger(RegNo);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new RegisterSDNode(RegNo, VT);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
assert((!V || isa<PointerType>(V->getType())) &&
"SrcValue is not a pointer?");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
ID.AddPointer(V);
ID.AddInteger(Offset);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new SrcValueSDNode(V, Offset);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
SDOperand N2, ISD::CondCode Cond) {
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return getConstant(0, VT);
case ISD::SETTRUE:
case ISD::SETTRUE2: return getConstant(1, VT);
case ISD::SETOEQ:
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETONE:
case ISD::SETO:
case ISD::SETUO:
case ISD::SETUEQ:
case ISD::SETUNE:
assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
break;
}
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
uint64_t C2 = N2C->getValue();
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
uint64_t C1 = N1C->getValue();
// Sign extend the operands if required
if (ISD::isSignedIntSetCC(Cond)) {
C1 = N1C->getSignExtended();
C2 = N2C->getSignExtended();
}
switch (Cond) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETEQ: return getConstant(C1 == C2, VT);
case ISD::SETNE: return getConstant(C1 != C2, VT);
case ISD::SETULT: return getConstant(C1 < C2, VT);
case ISD::SETUGT: return getConstant(C1 > C2, VT);
case ISD::SETULE: return getConstant(C1 <= C2, VT);
case ISD::SETUGE: return getConstant(C1 >= C2, VT);
case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
}
}
}
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
switch (Cond) {
default: break;
case ISD::SETEQ: if (R==APFloat::cmpUnordered)
return getNode(ISD::UNDEF, VT);
// fall through
case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
case ISD::SETNE: if (R==APFloat::cmpUnordered)
return getNode(ISD::UNDEF, VT);
// fall through
case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpLessThan, VT);
case ISD::SETLT: if (R==APFloat::cmpUnordered)
return getNode(ISD::UNDEF, VT);
// fall through
case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
case ISD::SETGT: if (R==APFloat::cmpUnordered)
return getNode(ISD::UNDEF, VT);
// fall through
case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
case ISD::SETLE: if (R==APFloat::cmpUnordered)
return getNode(ISD::UNDEF, VT);
// fall through
case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual, VT);
case ISD::SETGE: if (R==APFloat::cmpUnordered)
return getNode(ISD::UNDEF, VT);
// fall through
case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual, VT);
case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual, VT);
case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan, VT);
case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpUnordered, VT);
case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
}
} else {
// Ensure that the constant occurs on the RHS.
return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
}
// Could not fold it.
return SDOperand();
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
unsigned Depth) const {
// The masks are not wide enough to represent this type! Should use APInt.
if (Op.getValueType() == MVT::i128)
return false;
uint64_t KnownZero, KnownOne;
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
}
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
/// processing.
void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
uint64_t &KnownZero, uint64_t &KnownOne,
unsigned Depth) const {
KnownZero = KnownOne = 0; // Don't know anything.
if (Depth == 6 || Mask == 0)
return; // Limit search depth.
// The masks are not wide enough to represent this type! Should use APInt.
if (Op.getValueType() == MVT::i128)
return;
uint64_t KnownZero2, KnownOne2;
switch (Op.getOpcode()) {
case ISD::Constant:
// We know all of the bits for a constant!
KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
KnownZero = ~KnownOne & Mask;
return;
case ISD::AND:
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Mask &= ~KnownZero;
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
return;
case ISD::OR:
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Mask &= ~KnownOne;
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
case ISD::XOR: {
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
return;
}
case ISD::SELECT:
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case ISD::SELECT_CC:
ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case ISD::SETCC:
// If we know the result of a setcc has the top bits zero, use this info.
if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
return;
case ISD::SHL:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= SA->getValue();
KnownOne <<= SA->getValue();
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
}
return;
case ISD::SRL:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
MVT::ValueType VT = Op.getValueType();
unsigned ShAmt = SA->getValue();
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero &= TypeMask;
KnownOne &= TypeMask;
KnownZero >>= ShAmt;
KnownOne >>= ShAmt;
uint64_t HighBits = (1ULL << ShAmt)-1;
HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
KnownZero |= HighBits; // High bits known zero.
}
return;
case ISD::SRA:
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
MVT::ValueType VT = Op.getValueType();
unsigned ShAmt = SA->getValue();
// Compute the new bits that are at the top now.
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
// If any of the demanded bits are produced by the sign extension, we also
// demand the input sign bit.
uint64_t HighBits = (1ULL << ShAmt)-1;
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
if (HighBits & Mask)
InDemandedMask |= MVT::getIntVTSignBit(VT);
ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero &= TypeMask;
KnownOne &= TypeMask;
KnownZero >>= ShAmt;
KnownOne >>= ShAmt;
// Handle the sign bits.
uint64_t SignBit = MVT::getIntVTSignBit(VT);
SignBit >>= ShAmt; // Adjust to where it is now in the mask.
if (KnownZero & SignBit) {
KnownZero |= HighBits; // New bits are known zero.
} else if (KnownOne & SignBit) {
KnownOne |= HighBits; // New bits are known one.
}
}
return;
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
// If the sign extended bits are demanded, we know that the sign
// bit is demanded.
if (NewBits)
InputDemandedBits |= InSignBit;
ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
if (KnownZero & InSignBit) { // Input sign bit known clear
KnownZero |= NewBits;
KnownOne &= ~NewBits;
} else if (KnownOne & InSignBit) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
}
return;
}
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP: {
MVT::ValueType VT = Op.getValueType();
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
KnownOne = 0;
return;
}
case ISD::LOAD: {
if (ISD::isZEXTLoad(Op.Val)) {
LoadSDNode *LD = cast<LoadSDNode>(Op);
MVT::ValueType VT = LD->getLoadedVT();
KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
}
return;
}
case ISD::ZERO_EXTEND: {
uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
uint64_t NewBits = (~InMask) & Mask;
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
KnownOne, Depth+1);
KnownZero |= NewBits & Mask;
KnownOne &= ~NewBits;
return;
}
case ISD::SIGN_EXTEND: {
MVT::ValueType InVT = Op.getOperand(0).getValueType();
unsigned InBits = MVT::getSizeInBits(InVT);
uint64_t InMask = MVT::getIntVTBitMask(InVT);
uint64_t InSignBit = 1ULL << (InBits-1);
uint64_t NewBits = (~InMask) & Mask;
uint64_t InDemandedBits = Mask & InMask;
// If any of the sign extended bits are demanded, we know that the sign
// bit is demanded.
if (NewBits & Mask)
InDemandedBits |= InSignBit;
ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
KnownOne, Depth+1);
// If the sign bit is known zero or one, the top bits match.
if (KnownZero & InSignBit) {
KnownZero |= NewBits;
KnownOne &= ~NewBits;
} else if (KnownOne & InSignBit) {
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Otherwise, top bits aren't known.
KnownOne &= ~NewBits;
KnownZero &= ~NewBits;
}
return;
}
case ISD::ANY_EXTEND: {
MVT::ValueType VT = Op.getOperand(0).getValueType();
ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
KnownZero, KnownOne, Depth+1);
return;
}
case ISD::TRUNCATE: {
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
KnownZero &= OutMask;
KnownOne &= OutMask;
break;
}
case ISD::AssertZext: {
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
uint64_t InMask = MVT::getIntVTBitMask(VT);
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
KnownOne, Depth+1);
KnownZero |= (~InMask) & Mask;
return;
}
case ISD::ADD: {
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the low clear bits
// common to both LHS & RHS. For example, 8+(X<<3) is known to have the
// low 3 bits clear.
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
CountTrailingZeros_64(~KnownZero2));
KnownZero = (1ULL << KnownZeroOut) - 1;
KnownOne = 0;
return;
}
case ISD::SUB: {
ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
if (!CLHS) return;
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
MVT::ValueType VT = CLHS->getValueType(0);
if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the output
// top bits are zero, because we now know that the output is from [0-C].
if ((KnownZero & MaskV) == MaskV) {
unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
KnownOne = 0; // No one bits known.
} else {
KnownZero = KnownOne = 0; // Otherwise, nothing known.
}
}
return;
}
default:
// Allow the target to implement this method for its nodes.
if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
}
return;
}
}
/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits. We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information. For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
MVT::ValueType VT = Op.getValueType();
assert(MVT::isInteger(VT) && "Invalid VT!");
unsigned VTBits = MVT::getSizeInBits(VT);
unsigned Tmp, Tmp2;
if (Depth == 6)
return 1; // Limit search depth.
switch (Op.getOpcode()) {
default: break;
case ISD::AssertSext:
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
return VTBits-Tmp+1;
case ISD::AssertZext:
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
return VTBits-Tmp;
case ISD::Constant: {
uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
// If negative, invert the bits, then look at it.
if (Val & MVT::getIntVTSignBit(VT))
Val = ~Val;
// Shift the bits so they are the leading bits in the int64_t.
Val <<= 64-VTBits;
// Return # leading zeros. We use 'min' here in case Val was zero before
// shifting. We don't want to return '64' as for an i32 "0".
return std::min(VTBits, CountLeadingZeros_64(Val));
}
case ISD::SIGN_EXTEND:
Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
case ISD::SIGN_EXTEND_INREG:
// Max of the input and what this extends.
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
Tmp = VTBits-Tmp+1;
Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
return std::max(Tmp, Tmp2);
case ISD::SRA:
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
// SRA X, C -> adds C sign bits.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Tmp += C->getValue();
if (Tmp > VTBits) Tmp = VTBits;
}
return Tmp;
case ISD::SHL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (C->getValue() >= VTBits || // Bad shift.
C->getValue() >= Tmp) break; // Shifted all sign bits out.
return Tmp - C->getValue();
}
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR: // NOT is handled here.
// Logical binary ops preserve the number of sign bits.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
return std::min(Tmp, Tmp2);
case ISD::SELECT:
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
return std::min(Tmp, Tmp2);
case ISD::SETCC:
// If setcc returns 0/-1, all bits are sign bits.
if (TLI.getSetCCResultContents() ==
TargetLowering::ZeroOrNegativeOneSetCCResult)
return VTBits;
break;
case ISD::ROTL:
case ISD::ROTR:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned RotAmt = C->getValue() & (VTBits-1);
// Handle rotate right by N like a rotate left by 32-N.
if (Op.getOpcode() == ISD::ROTR)
RotAmt = (VTBits-RotAmt) & (VTBits-1);
// If we aren't rotating out all of the known-in sign bits, return the
// number that are left. This handles rotl(sext(x), 1) for example.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp > RotAmt+1) return Tmp-RotAmt;
}
break;
case ISD::ADD:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
if (CRHS->isAllOnesValue()) {
uint64_t KnownZero, KnownOne;
uint64_t Mask = MVT::getIntVTBitMask(VT);
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero|1) == Mask)
return VTBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (KnownZero & MVT::getIntVTSignBit(VT))
return Tmp;
}
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
break;
case ISD::SUB:
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
if (CLHS->getValue() == 0) {
uint64_t KnownZero, KnownOne;
uint64_t Mask = MVT::getIntVTBitMask(VT);
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero|1) == Mask)
return VTBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
if (KnownZero & MVT::getIntVTSignBit(VT))
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
break;
case ISD::TRUNCATE:
// FIXME: it's tricky to do anything useful for this, but it is an important
// case for targets like X86.
break;
}
// Handle LOADX separately here. EXTLOAD case will fallthrough.
if (Op.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(Op);
unsigned ExtType = LD->getExtensionType();
switch (ExtType) {
default: break;
case ISD::SEXTLOAD: // '17' bits known
Tmp = MVT::getSizeInBits(LD->getLoadedVT());
return VTBits-Tmp+1;
case ISD::ZEXTLOAD: // '16' bits known
Tmp = MVT::getSizeInBits(LD->getLoadedVT());
return VTBits-Tmp;
}
}
// Allow the target to implement this method for its nodes.
if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) {
unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
if (NumBits > 1) return NumBits;
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
uint64_t KnownZero, KnownOne;
uint64_t Mask = MVT::getIntVTBitMask(VT);
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
uint64_t SignBit = MVT::getIntVTSignBit(VT);
if (KnownZero & SignBit) { // SignBit is 0
Mask = KnownZero;
} else if (KnownOne & SignBit) { // SignBit is 1;
Mask = KnownOne;
} else {
// Nothing known.
return 1;
}
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
// the number of identical bits in the top of the input value.
Mask ^= ~0ULL;
Mask <<= 64-VTBits;
// Return # leading zeros. We use 'min' here in case Val was zero before
// shifting. We don't want to return '64' as for an i32 "0".
return std::min(VTBits, CountLeadingZeros_64(Mask));
}
/// getNode - Gets or creates the specified node.
///
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Operand) {
unsigned Tmp1;
// Constant fold unary operations with an integer constant operand.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
uint64_t Val = C->getValue();
switch (Opcode) {
default: break;
case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND: return getConstant(Val, VT);
case ISD::TRUNCATE: return getConstant(Val, VT);
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: {
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
(void)apf.convertFromZeroExtendedInteger(&Val,
MVT::getSizeInBits(Operand.getValueType()),
Opcode==ISD::SINT_TO_FP,
APFloat::rmNearestTiesToEven);
return getConstantFP(apf, VT);
}
case ISD::BIT_CONVERT:
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
return getConstantFP(BitsToFloat(Val), VT);
else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
return getConstantFP(BitsToDouble(Val), VT);
break;
case ISD::BSWAP:
switch(VT) {
default: assert(0 && "Invalid bswap!"); break;
case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
}
break;
case ISD::CTPOP:
switch(VT) {
default: assert(0 && "Invalid ctpop!"); break;
case MVT::i1: return getConstant(Val != 0, VT);
case MVT::i8:
Tmp1 = (unsigned)Val & 0xFF;
return getConstant(CountPopulation_32(Tmp1), VT);
case MVT::i16:
Tmp1 = (unsigned)Val & 0xFFFF;
return getConstant(CountPopulation_32(Tmp1), VT);
case MVT::i32:
return getConstant(CountPopulation_32((unsigned)Val), VT);
case MVT::i64:
return getConstant(CountPopulation_64(Val), VT);
}
case ISD::CTLZ:
switch(VT) {
default: assert(0 && "Invalid ctlz!"); break;
case MVT::i1: return getConstant(Val == 0, VT);
case MVT::i8:
Tmp1 = (unsigned)Val & 0xFF;
return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
case MVT::i16:
Tmp1 = (unsigned)Val & 0xFFFF;
return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
case MVT::i32:
return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
case MVT::i64:
return getConstant(CountLeadingZeros_64(Val), VT);
}
case ISD::CTTZ:
switch(VT) {
default: assert(0 && "Invalid cttz!"); break;
case MVT::i1: return getConstant(Val == 0, VT);
case MVT::i8:
Tmp1 = (unsigned)Val | 0x100;
return getConstant(CountTrailingZeros_32(Tmp1), VT);
case MVT::i16:
Tmp1 = (unsigned)Val | 0x10000;
return getConstant(CountTrailingZeros_32(Tmp1), VT);
case MVT::i32:
return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
case MVT::i64:
return getConstant(CountTrailingZeros_64(Val), VT);
}
}
}
// Constant fold unary operations with a floating point constant operand.
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
APFloat V = C->getValueAPF(); // make copy
switch (Opcode) {
case ISD::FNEG:
V.changeSign();
return getConstantFP(V, VT);
case ISD::FABS:
V.clearSign();
return getConstantFP(V, VT);
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
VT==MVT::f64 ? APFloat::IEEEdouble :
VT==MVT::f80 ? APFloat::x87DoubleExtended :
VT==MVT::f128 ? APFloat::IEEEquad :
APFloat::Bogus,
APFloat::rmNearestTiesToEven);
return getConstantFP(V, VT);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
integerPart x;
assert(integerPartWidth >= 64);
// FIXME need to be more flexible about rounding mode.
APFloat::opStatus s = V.convertToInteger(&x, 64U,
Opcode==ISD::FP_TO_SINT,
APFloat::rmTowardZero);
if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
break;
return getConstant(x, VT);
}
case ISD::BIT_CONVERT:
if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
return getConstant(V.convertToAPInt().getZExtValue(), VT);
break;
}
}
unsigned OpOpcode = Operand.Val->getOpcode();
switch (Opcode) {
case ISD::TokenFactor:
return Operand; // Factor of one node? No factor.
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
assert(MVT::isFloatingPoint(VT) &&
MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
break;
case ISD::SIGN_EXTEND:
assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
"Invalid SIGN_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
break;
case ISD::ZERO_EXTEND:
assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
"Invalid ZERO_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
break;
case ISD::ANY_EXTEND:
assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
"Invalid ANY_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
// (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
break;
case ISD::TRUNCATE:
assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
"Invalid TRUNCATE!");
if (Operand.getValueType() == VT) return Operand; // noop truncate
assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
if (OpOpcode == ISD::TRUNCATE)
return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND) {
// If the source is smaller than the dest, we still need an extend.
if (Operand.Val->getOperand(0).getValueType() < VT)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
else if (Operand.Val->getOperand(0).getValueType() > VT)
return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
else
return Operand.Val->getOperand(0);
}
break;
case ISD::BIT_CONVERT:
// Basic sanity checking.
assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
&& "Cannot BIT_CONVERT between types of different sizes!");
if (VT == Operand.getValueType()) return Operand; // noop conversion.
if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
if (OpOpcode == ISD::UNDEF)
return getNode(ISD::UNDEF, VT);
break;
case ISD::SCALAR_TO_VECTOR:
assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
MVT::getVectorElementType(VT) == Operand.getValueType() &&
"Illegal SCALAR_TO_VECTOR node!");
break;
case ISD::FNEG:
if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
Operand.Val->getOperand(0));
if (OpOpcode == ISD::FNEG) // --X -> X
return Operand.Val->getOperand(0);
break;
case ISD::FABS:
if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
break;
}
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Flag) { // Don't CSE flag producing nodes
FoldingSetNodeID ID;
SDOperand Ops[1] = { Operand };
AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
N = new UnarySDNode(Opcode, VTs, Operand);
CSEMap.InsertNode(N, IP);
} else {
N = new UnarySDNode(Opcode, VTs, Operand);
}
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2) {
#ifndef NDEBUG
switch (Opcode) {
case ISD::TokenFactor:
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
N2.getValueType() == MVT::Other && "Invalid token factor!");
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::UDIV:
case ISD::UREM:
case ISD::MULHU:
case ISD::MULHS:
assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
// fall through
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SDIV:
case ISD::SREM:
assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
// fall through.
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
assert(N1.getValueType() == VT &&
MVT::isFloatingPoint(N1.getValueType()) &&
MVT::isFloatingPoint(N2.getValueType()) &&
"Invalid FCOPYSIGN!");
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
assert(VT == N1.getValueType() &&
"Shift operators return type must be the same as their first arg");
assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
VT != MVT::i1 && "Shifts only work on integers");
break;
case ISD::FP_ROUND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg round!");
assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
"Cannot FP_ROUND_INREG integer types");
assert(EVT <= VT && "Not rounding down!");
break;
}
case ISD::AssertSext:
case ISD::AssertZext:
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
"Cannot *_EXTEND_INREG FP types");
assert(EVT <= VT && "Not extending!");
}
default: break;
}
#endif
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
if (N1C) {
if (Opcode == ISD::SIGN_EXTEND_INREG) {
int64_t Val = N1C->getValue();
unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
Val <<= 64-FromBits;
Val >>= 64-FromBits;
return getConstant(Val, VT);
}
if (N2C) {
uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
switch (Opcode) {
case ISD::ADD: return getConstant(C1 + C2, VT);
case ISD::SUB: return getConstant(C1 - C2, VT);
case ISD::MUL: return getConstant(C1 * C2, VT);
case ISD::UDIV:
if (C2) return getConstant(C1 / C2, VT);
break;
case ISD::UREM :
if (C2) return getConstant(C1 % C2, VT);
break;
case ISD::SDIV :
if (C2) return getConstant(N1C->getSignExtended() /
N2C->getSignExtended(), VT);
break;
case ISD::SREM :
if (C2) return getConstant(N1C->getSignExtended() %
N2C->getSignExtended(), VT);
break;
case ISD::AND : return getConstant(C1 & C2, VT);
case ISD::OR : return getConstant(C1 | C2, VT);
case ISD::XOR : return getConstant(C1 ^ C2, VT);
case ISD::SHL : return getConstant(C1 << C2, VT);
case ISD::SRL : return getConstant(C1 >> C2, VT);
case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
case ISD::ROTL :
return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
VT);
case ISD::ROTR :
return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
VT);
default: break;
}
} else { // Cannonicalize constant to RHS if commutative
if (isCommutativeBinOp(Opcode)) {
std::swap(N1C, N2C);
std::swap(N1, N2);
}
}
}
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
if (N1CFP) {
if (N2CFP) {
APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
APFloat::opStatus s;
switch (Opcode) {
case ISD::FADD:
s = V1.add(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FSUB:
s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FMUL:
s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FDIV:
s = V1.divide(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
return getConstantFP(V1, VT);
break;
case ISD::FREM :
s = V1.mod(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
return getConstantFP(V1, VT);
break;
case ISD::FCOPYSIGN:
V1.copySign(V2);
return getConstantFP(V1, VT);
default: break;
}
} else { // Cannonicalize constant to RHS if commutative
if (isCommutativeBinOp(Opcode)) {
std::swap(N1CFP, N2CFP);
std::swap(N1, N2);
}
}
}
// Canonicalize an UNDEF to the RHS, even over a constant.
if (N1.getOpcode() == ISD::UNDEF) {
if (isCommutativeBinOp(Opcode)) {
std::swap(N1, N2);
} else {
switch (Opcode) {
case ISD::FP_ROUND_INREG:
case ISD::SIGN_EXTEND_INREG:
case ISD::SUB:
case ISD::FSUB:
case ISD::FDIV:
case ISD::FREM:
case ISD::SRA:
return N1; // fold op(undef, arg2) -> undef
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
case ISD::SRL:
case ISD::SHL:
if (!MVT::isVector(VT))
return getConstant(0, VT); // fold op(undef, arg2) -> 0
// For vectors, we can't easily build an all zero vector, just return
// the LHS.
return N2;
}
}
}
// Fold a bunch of operators when the RHS is undef.
if (N2.getOpcode() == ISD::UNDEF) {
switch (Opcode) {
case ISD::ADD:
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUB:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
case ISD::XOR:
return N2; // fold op(arg1, undef) -> undef
case ISD::MUL:
case ISD::AND:
case ISD::SRL:
case ISD::SHL:
if (!MVT::isVector(VT))
return getConstant(0, VT); // fold op(arg1, undef) -> 0
// For vectors, we can't easily build an all zero vector, just return
// the LHS.
return N1;
case ISD::OR:
if (!MVT::isVector(VT))
return getConstant(MVT::getIntVTBitMask(VT), VT);
// For vectors, we can't easily build an all one vector, just return
// the LHS.
return N1;
case ISD::SRA:
return N1;
}
}
// Fold operations.
switch (Opcode) {
case ISD::TokenFactor:
// Fold trivial token factors.
if (N1.getOpcode() == ISD::EntryToken) return N2;
if (N2.getOpcode() == ISD::EntryToken) return N1;
break;
case ISD::AND:
// (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
// worth handling here.
if (N2C && N2C->getValue() == 0)
return N2;
break;
case ISD::OR:
case ISD::XOR:
// (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
// worth handling here.
if (N2C && N2C->getValue() == 0)
return N1;
break;
case ISD::FP_ROUND_INREG:
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
break;
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
if (EVT == VT) return N1; // Not actually extending
break;
}
case ISD::EXTRACT_VECTOR_ELT:
assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
// EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
// expanding copies of large vectors from registers.
if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
N1.getNumOperands() > 0) {
unsigned Factor =
MVT::getVectorNumElements(N1.getOperand(0).getValueType());
return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
N1.getOperand(N2C->getValue() / Factor),
getConstant(N2C->getValue() % Factor, N2.getValueType()));
}
// EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
// expanding large vector constants.
if (N1.getOpcode() == ISD::BUILD_VECTOR)
return N1.getOperand(N2C->getValue());
// EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
// operations are lowered to scalars.
if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
if (IEC == N2C)
return N1.getOperand(1);
else
return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
}
break;
case ISD::EXTRACT_ELEMENT:
assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
// EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
// 64-bit integers into 32-bit parts. Instead of building the extract of
// the BUILD_PAIR, only to have legalize rip it apart, just do it now.
if (N1.getOpcode() == ISD::BUILD_PAIR)
return N1.getOperand(N2C->getValue());
// EXTRACT_ELEMENT of a constant int is also very common.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
return getConstant(C->getValue() >> Shift, VT);
}
break;
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
#if 0
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, VT, N1, N2.getOperand(0));
else if (N2.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = MVT::getSizeInBits(VT);
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, VT, N1, N2.getOperand(0));
}
break;
#endif
}
// Memoize this node if possible.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Flag) {
SDOperand Ops[] = { N1, N2 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
N = new BinarySDNode(Opcode, VTs, N1, N2);
CSEMap.InsertNode(N, IP);
} else {
N = new BinarySDNode(Opcode, VTs, N1, N2);
}
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3) {
// Perform various simplifications.
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
switch (Opcode) {
case ISD::SETCC: {
// Use FoldSetCC to simplify SETCC's.
SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
if (Simp.Val) return Simp;
break;
}
case ISD::SELECT:
if (N1C)
if (N1C->getValue())
return N2; // select true, X, Y -> X
else
return N3; // select false, X, Y -> Y
if (N2 == N3) return N2; // select C, X, X -> X
break;
case ISD::BRCOND:
if (N2C)
if (N2C->getValue()) // Unconditional branch
return getNode(ISD::BR, MVT::Other, N1, N3);
else
return N1; // Never-taken branch
break;
case ISD::VECTOR_SHUFFLE:
assert(VT == N1.getValueType() && VT == N2.getValueType() &&
MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
N3.getOpcode() == ISD::BUILD_VECTOR &&
MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
"Illegal VECTOR_SHUFFLE node!");
break;
case ISD::BIT_CONVERT:
// Fold bit_convert nodes from a type to themselves.
if (N1.getValueType() == VT)
return N1;
break;
}
// Memoize node if it doesn't produce a flag.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Flag) {
SDOperand Ops[] = { N1, N2, N3 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
CSEMap.InsertNode(N, IP);
} else {
N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
}
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3,
SDOperand N4) {
SDOperand Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, VT, Ops, 4);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3,
SDOperand N4, SDOperand N5) {
SDOperand Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, VT, Ops, 5);
}
SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
SDOperand Chain, SDOperand Ptr,
const Value *SV, int SVOffset,
bool isVolatile, unsigned Alignment) {
if (Alignment == 0) { // Ensure that codegen never sees alignment 0
const Type *Ty = 0;
if (VT != MVT::iPTR) {
Ty = MVT::getTypeForValueType(VT);
} else if (SV) {
const PointerType *PT = dyn_cast<PointerType>(SV->getType());
assert(PT && "Value for load must be a pointer");
Ty = PT->getElementType();
}
assert(Ty && "Could not get type information for load");
Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
}
SDVTList VTs = getVTList(VT, MVT::Other);
SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
SDOperand Ops[] = { Chain, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
ID.AddInteger(ISD::UNINDEXED);
ID.AddInteger(ISD::NON_EXTLOAD);
ID.AddInteger((unsigned int)VT);
ID.AddPointer(SV);
ID.AddInteger(SVOffset);
ID.AddInteger(Alignment);
ID.AddInteger(isVolatile);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
isVolatile);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
SDOperand Chain, SDOperand Ptr,
const Value *SV,
int SVOffset, MVT::ValueType EVT,
bool isVolatile, unsigned Alignment) {
// If they are asking for an extending load from/to the same thing, return a
// normal load.
if (VT == EVT)
ExtType = ISD::NON_EXTLOAD;
if (MVT::isVector(VT))
assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
else
assert(EVT < VT && "Should only be an extending load, not truncating!");
assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
"Cannot sign/zero extend a FP/Vector load!");
assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
"Cannot convert from FP to Int or Int -> FP!");
if (Alignment == 0) { // Ensure that codegen never sees alignment 0
const Type *Ty = 0;
if (VT != MVT::iPTR) {
Ty = MVT::getTypeForValueType(VT);
} else if (SV) {
const PointerType *PT = dyn_cast<PointerType>(SV->getType());
assert(PT && "Value for load must be a pointer");
Ty = PT->getElementType();
}
assert(Ty && "Could not get type information for load");
Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
}
SDVTList VTs = getVTList(VT, MVT::Other);
SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
SDOperand Ops[] = { Chain, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
ID.AddInteger(ISD::UNINDEXED);
ID.AddInteger(ExtType);
ID.AddInteger((unsigned int)EVT);
ID.AddPointer(SV);
ID.AddInteger(SVOffset);
ID.AddInteger(Alignment);
ID.AddInteger(isVolatile);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
SV, SVOffset, Alignment, isVolatile);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand
SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
SDOperand Offset, ISD::MemIndexedMode AM) {
LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
"Load is already a indexed load!");
MVT::ValueType VT = OrigLoad.getValueType();
SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
SDOperand Ops[] = { LD->getChain(), Base, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
ID.AddInteger(AM);
ID.AddInteger(LD->getExtensionType());
ID.AddInteger((unsigned int)(LD->getLoadedVT()));
ID.AddPointer(LD->getSrcValue());
ID.AddInteger(LD->getSrcValueOffset());
ID.AddInteger(LD->getAlignment());
ID.AddInteger(LD->isVolatile());
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new LoadSDNode(Ops, VTs, AM,
LD->getExtensionType(), LD->getLoadedVT(),
LD->getSrcValue(), LD->getSrcValueOffset(),
LD->getAlignment(), LD->isVolatile());
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
SDOperand Ptr, const Value *SV, int SVOffset,
bool isVolatile, unsigned Alignment) {
MVT::ValueType VT = Val.getValueType();
if (Alignment == 0) { // Ensure that codegen never sees alignment 0
const Type *Ty = 0;
if (VT != MVT::iPTR) {
Ty = MVT::getTypeForValueType(VT);
} else if (SV) {
const PointerType *PT = dyn_cast<PointerType>(SV->getType());
assert(PT && "Value for store must be a pointer");
Ty = PT->getElementType();
}
assert(Ty && "Could not get type information for store");
Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
}
SDVTList VTs = getVTList(MVT::Other);
SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
SDOperand Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
ID.AddInteger(ISD::UNINDEXED);
ID.AddInteger(false);
ID.AddInteger((unsigned int)VT);
ID.AddPointer(SV);
ID.AddInteger(SVOffset);
ID.AddInteger(Alignment);
ID.AddInteger(isVolatile);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
VT, SV, SVOffset, Alignment, isVolatile);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
SDOperand Ptr, const Value *SV,
int SVOffset, MVT::ValueType SVT,
bool isVolatile, unsigned Alignment) {
MVT::ValueType VT = Val.getValueType();
bool isTrunc = VT != SVT;
assert(VT > SVT && "Not a truncation?");
assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
"Can't do FP-INT conversion!");
if (Alignment == 0) { // Ensure that codegen never sees alignment 0
const Type *Ty = 0;
if (VT != MVT::iPTR) {
Ty = MVT::getTypeForValueType(VT);
} else if (SV) {
const PointerType *PT = dyn_cast<PointerType>(SV->getType());
assert(PT && "Value for store must be a pointer");
Ty = PT->getElementType();
}
assert(Ty && "Could not get type information for store");
Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
}
SDVTList VTs = getVTList(MVT::Other);
SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
SDOperand Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
ID.AddInteger(ISD::UNINDEXED);
ID.AddInteger(isTrunc);
ID.AddInteger((unsigned int)SVT);
ID.AddPointer(SV);
ID.AddInteger(SVOffset);
ID.AddInteger(Alignment);
ID.AddInteger(isVolatile);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
SVT, SV, SVOffset, Alignment, isVolatile);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand
SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
SDOperand Offset, ISD::MemIndexedMode AM) {
StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
"Store is already a indexed store!");
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
ID.AddInteger(AM);
ID.AddInteger(ST->isTruncatingStore());
ID.AddInteger((unsigned int)(ST->getStoredVT()));
ID.AddPointer(ST->getSrcValue());
ID.AddInteger(ST->getSrcValueOffset());
ID.AddInteger(ST->getAlignment());
ID.AddInteger(ST->isVolatile());
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
SDNode *N = new StoreSDNode(Ops, VTs, AM,
ST->isTruncatingStore(), ST->getStoredVT(),
ST->getSrcValue(), ST->getSrcValueOffset(),
ST->getAlignment(), ST->isVolatile());
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
SDOperand Chain, SDOperand Ptr,
SDOperand SV) {
SDOperand Ops[] = { Chain, Ptr, SV };
return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
const SDOperand *Ops, unsigned NumOps) {
switch (NumOps) {
case 0: return getNode(Opcode, VT);
case 1: return getNode(Opcode, VT, Ops[0]);
case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
switch (Opcode) {
default: break;
case ISD::SELECT_CC: {
assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
"LHS and RHS of condition must have same type!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"True and False arms of SelectCC must have same type!");
assert(Ops[2].getValueType() == VT &&
"select_cc node must be of same type as true and false value!");
break;
}
case ISD::BR_CC: {
assert(NumOps == 5 && "BR_CC takes 5 operands!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"LHS/RHS of comparison should match types!");
break;
}
}
// Memoize nodes.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Flag) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
N = new SDNode(Opcode, VTs, Ops, NumOps);
CSEMap.InsertNode(N, IP);
} else {
N = new SDNode(Opcode, VTs, Ops, NumOps);
}
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode,
std::vector<MVT::ValueType> &ResultTys,
const SDOperand *Ops, unsigned NumOps) {
return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
Ops, NumOps);
}
SDOperand SelectionDAG::getNode(unsigned Opcode,
const MVT::ValueType *VTs, unsigned NumVTs,
const SDOperand *Ops, unsigned NumOps) {
if (NumVTs == 1)
return getNode(Opcode, VTs[0], Ops, NumOps);
return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
const SDOperand *Ops, unsigned NumOps) {
if (VTList.NumVTs == 1)
return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
switch (Opcode) {
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
#if 0
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
case ISD::SHL_PARTS:
if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
else if (N3.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = MVT::getSizeInBits(VT)*2;
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
}
break;
#endif
}
// Memoize the node unless it returns a flag.
SDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDOperand(E, 0);
if (NumOps == 1)
N = new UnarySDNode(Opcode, VTList, Ops[0]);
else if (NumOps == 2)
N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
else if (NumOps == 3)
N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
else
N = new SDNode(Opcode, VTList, Ops, NumOps);
CSEMap.InsertNode(N, IP);
} else {
if (NumOps == 1)
N = new UnarySDNode(Opcode, VTList, Ops[0]);
else if (NumOps == 2)
N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
else if (NumOps == 3)
N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
else
N = new SDNode(Opcode, VTList, Ops, NumOps);
}
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
return getNode(Opcode, VTList, 0, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
SDOperand N1) {
SDOperand Ops[] = { N1 };
return getNode(Opcode, VTList, Ops, 1);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
SDOperand N1, SDOperand N2) {
SDOperand Ops[] = { N1, N2 };
return getNode(Opcode, VTList, Ops, 2);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
SDOperand N1, SDOperand N2, SDOperand N3) {
SDOperand Ops[] = { N1, N2, N3 };
return getNode(Opcode, VTList, Ops, 3);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
SDOperand N1, SDOperand N2, SDOperand N3,
SDOperand N4) {
SDOperand Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, VTList, Ops, 4);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
SDOperand N1, SDOperand N2, SDOperand N3,
SDOperand N4, SDOperand N5) {
SDOperand Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, VTList, Ops, 5);
}
SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
if (!MVT::isExtendedVT(VT))
return makeVTList(SDNode::getValueTypeList(VT), 1);
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
E = VTList.end(); I != E; ++I) {
if (I->size() == 1 && (*I)[0] == VT)
return makeVTList(&(*I)[0], 1);
}
std::vector<MVT::ValueType> V;
V.push_back(VT);
VTList.push_front(V);
return makeVTList(&(*VTList.begin())[0], 1);
}
SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
E = VTList.end(); I != E; ++I) {
if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
return makeVTList(&(*I)[0], 2);
}
std::vector<MVT::ValueType> V;
V.push_back(VT1);
V.push_back(VT2);
VTList.push_front(V);
return makeVTList(&(*VTList.begin())[0], 2);
}
SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
MVT::ValueType VT3) {
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
E = VTList.end(); I != E; ++I) {
if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
(*I)[2] == VT3)
return makeVTList(&(*I)[0], 3);
}
std::vector<MVT::ValueType> V;
V.push_back(VT1);
V.push_back(VT2);
V.push_back(VT3);
VTList.push_front(V);
return makeVTList(&(*VTList.begin())[0], 3);
}
SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
switch (NumVTs) {
case 0: assert(0 && "Cannot have nodes without results!");
case 1: return getVTList(VTs[0]);
case 2: return getVTList(VTs[0], VTs[1]);
case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
default: break;
}
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
E = VTList.end(); I != E; ++I) {
if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
bool NoMatch = false;
for (unsigned i = 2; i != NumVTs; ++i)
if (VTs[i] != (*I)[i]) {
NoMatch = true;
break;
}
if (!NoMatch)
return makeVTList(&*I->begin(), NumVTs);
}
VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
return makeVTList(&*VTList.begin()->begin(), NumVTs);
}
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, SDOperand Op) {
SDNode *N = InN.Val;
assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op == N->getOperand(0)) return InN;
// See if the modified node already exists.
void *InsertPos = 0;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
return SDOperand(Existing, InN.ResNo);
// Nope it doesn't. Remove the node from it's current place in the maps.
if (InsertPos)
RemoveNodeFromCSEMaps(N);
// Now we update the operands.
N->OperandList[0].Val->removeUser(N);
Op.Val->addUser(N);
N->OperandList[0] = Op;
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return InN;
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
SDNode *N = InN.Val;
assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
return InN; // No operands changed, just return the input node.
// See if the modified node already exists.
void *InsertPos = 0;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
return SDOperand(Existing, InN.ResNo);
// Nope it doesn't. Remove the node from it's current place in the maps.
if (InsertPos)
RemoveNodeFromCSEMaps(N);
// Now we update the operands.
if (N->OperandList[0] != Op1) {
N->OperandList[0].Val->removeUser(N);
Op1.Val->addUser(N);
N->OperandList[0] = Op1;
}
if (N->OperandList[1] != Op2) {
N->OperandList[1].Val->removeUser(N);
Op2.Val->addUser(N);
N->OperandList[1] = Op2;
}
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return InN;
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
SDOperand Ops[] = { Op1, Op2, Op3 };
return UpdateNodeOperands(N, Ops, 3);
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4) {
SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
return UpdateNodeOperands(N, Ops, 4);
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5) {
SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
return UpdateNodeOperands(N, Ops, 5);
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
SDNode *N = InN.Val;
assert(N->getNumOperands() == NumOps &&
"Update with wrong number of operands");
// Check to see if there is no change.
bool AnyChange = false;
for (unsigned i = 0; i != NumOps; ++i) {
if (Ops[i] != N->getOperand(i)) {
AnyChange = true;
break;
}
}
// No operands changed, just return the input node.
if (!AnyChange) return InN;
// See if the modified node already exists.
void *InsertPos = 0;
if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
return SDOperand(Existing, InN.ResNo);
// Nope it doesn't. Remove the node from it's current place in the maps.
if (InsertPos)
RemoveNodeFromCSEMaps(N);
// Now we update the operands.
for (unsigned i = 0; i != NumOps; ++i) {
if (N->OperandList[i] != Ops[i]) {
N->OperandList[i].Val->removeUser(N);
Ops[i].Val->addUser(N);
N->OperandList[i] = Ops[i];
}
}
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return InN;
}
/// MorphNodeTo - This frees the operands of the current node, resets the
/// opcode, types, and operands to the specified value. This should only be
/// used by the SelectionDAG class.
void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
const SDOperand *Ops, unsigned NumOps) {
NodeType = Opc;
ValueList = L.VTs;
NumValues = L.NumVTs;
// Clear the operands list, updating used nodes to remove this from their
// use list.
for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
I->Val->removeUser(this);
// If NumOps is larger than the # of operands we currently have, reallocate
// the operand list.
if (NumOps > NumOperands) {
if (OperandsNeedDelete)
delete [] OperandList;
OperandList = new SDOperand[NumOps];
OperandsNeedDelete = true;
}
// Assign the new operands.
NumOperands = NumOps;
for (unsigned i = 0, e = NumOps; i != e; ++i) {
OperandList[i] = Ops[i];
SDNode *N = OperandList[i].Val;
N->Uses.push_back(this);
}
}
/// SelectNodeTo - These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
///
/// Note that SelectNodeTo returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT) {
SDVTList VTs = getVTList(VT);
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
void *IP = 0;
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return ON;
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
CSEMap.InsertNode(N, IP);
return N;
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1) {
// If an identical node already exists, use it.
SDVTList VTs = getVTList(VT);
SDOperand Ops[] = { Op1 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
void *IP = 0;
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return ON;
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
CSEMap.InsertNode(N, IP);
return N;
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2) {
// If an identical node already exists, use it.
SDVTList VTs = getVTList(VT);
SDOperand Ops[] = { Op1, Op2 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
void *IP = 0;
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return ON;
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
CSEMap.InsertNode(N, IP); // Memoize the new node.
return N;
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3) {
// If an identical node already exists, use it.
SDVTList VTs = getVTList(VT);
SDOperand Ops[] = { Op1, Op2, Op3 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
void *IP = 0;
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return ON;
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
CSEMap.InsertNode(N, IP); // Memoize the new node.
return N;
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, const SDOperand *Ops,
unsigned NumOps) {
// If an identical node already exists, use it.
SDVTList VTs = getVTList(VT);
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
void *IP = 0;
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return ON;
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
CSEMap.InsertNode(N, IP); // Memoize the new node.
return N;
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op1, SDOperand Op2) {
SDVTList VTs = getVTList(VT1, VT2);
FoldingSetNodeID ID;
SDOperand Ops[] = { Op1, Op2 };
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
void *IP = 0;
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return ON;
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
CSEMap.InsertNode(N, IP); // Memoize the new node.
return N;
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op1, SDOperand Op2,
SDOperand Op3) {
// If an identical node already exists, use it.
SDVTList VTs = getVTList(VT1, VT2);
SDOperand Ops[] = { Op1, Op2, Op3 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
void *IP = 0;
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return ON;
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
CSEMap.InsertNode(N, IP); // Memoize the new node.
return N;
}
/// getTargetNode - These are used for target selectors to create a new node
/// with specified return type(s), target opcode, and operands.
///
/// Note that getTargetNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2,
SDOperand Op3) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
const SDOperand *Ops, unsigned NumOps) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2) {
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
SDOperand Op;
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1) {
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1,
SDOperand Op2) {
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
SDOperand Ops[] = { Op1, Op2 };
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1,
SDOperand Op2, SDOperand Op3) {
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
SDOperand Ops[] = { Op1, Op2, Op3 };
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2,
const SDOperand *Ops, unsigned NumOps) {
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, MVT::ValueType VT3,
SDOperand Op1, SDOperand Op2) {
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
SDOperand Ops[] = { Op1, Op2 };
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, MVT::ValueType VT3,
SDOperand Op1, SDOperand Op2,
SDOperand Op3) {
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
SDOperand Ops[] = { Op1, Op2, Op3 };
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, MVT::ValueType VT3,
const SDOperand *Ops, unsigned NumOps) {
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, MVT::ValueType VT3,
MVT::ValueType VT4,
const SDOperand *Ops, unsigned NumOps) {
std::vector<MVT::ValueType> VTList;
VTList.push_back(VT1);
VTList.push_back(VT2);
VTList.push_back(VT3);
VTList.push_back(VT4);
const MVT::ValueType *VTs = getNodeValueTypes(VTList);
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
std::vector<MVT::ValueType> &ResultTys,
const SDOperand *Ops, unsigned NumOps) {
const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
Ops, NumOps).Val;
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From/To have a single result value.
///
void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
std::vector<SDNode*> *Deleted) {
SDNode *From = FromN.Val, *To = ToN.Val;
assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
"Cannot replace with this method!");
assert(From != To && "Cannot replace uses of with self");
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
I != E; ++I)
if (I->Val == From) {
From->removeUser(U);
I->Val = To;
To->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From/To have matching types and numbers of result
/// values.
///
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
std::vector<SDNode*> *Deleted) {
assert(From != To && "Cannot replace uses of with self");
assert(From->getNumValues() == To->getNumValues() &&
"Cannot use this version of ReplaceAllUsesWith!");
if (From->getNumValues() == 1) { // If possible, use the faster version.
ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
return;
}
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
I != E; ++I)
if (I->Val == From) {
From->removeUser(U);
I->Val = To;
To->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version can replace From with any result values. To must match the
/// number and types of values returned by From.
void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
const SDOperand *To,
std::vector<SDNode*> *Deleted) {
if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
// Degenerate case handled above.
ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
return;
}
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
I != E; ++I)
if (I->Val == From) {
const SDOperand &ToOp = To[I->ResNo];
From->removeUser(U);
*I = ToOp;
ToOp.Val->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.Val alone. The Deleted vector is
/// handled the same was as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
std::vector<SDNode*> &Deleted) {
assert(From != To && "Cannot replace a value with itself");
// Handle the simple, trivial, case efficiently.
if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
ReplaceAllUsesWith(From, To, &Deleted);
return;
}
// Get all of the users of From.Val. We want these in a nice,
// deterministically ordered and uniqued set, so we use a SmallSetVector.
SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
while (!Users.empty()) {
// We know that this user uses some value of From. If it is the right
// value, update it.
SDNode *User = Users.back();
Users.pop_back();
for (SDOperand *Op = User->OperandList,
*E = User->OperandList+User->NumOperands; Op != E; ++Op) {
if (*Op == From) {
// Okay, we know this user needs to be updated. Remove its old self
// from the CSE maps.
RemoveNodeFromCSEMaps(User);
// Update all operands that match "From".
for (; Op != E; ++Op) {
if (*Op == From) {
From.Val->removeUser(User);
*Op = To;
To.Val->addUser(User);
}
}
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
unsigned NumDeleted = Deleted.size();
ReplaceAllUsesWith(User, Existing, &Deleted);
// User is now dead.
Deleted.push_back(User);
DeleteNodeNotInCSEMaps(User);
// We have to be careful here, because ReplaceAllUsesWith could have
// deleted a user of From, which means there may be dangling pointers
// in the "Users" setvector. Scan over the deleted node pointers and
// remove them from the setvector.
for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
Users.remove(Deleted[i]);
}
break; // Exit the operand scanning loop.
}
}
}
}
/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
/// their allnodes order. It returns the maximum id.
unsigned SelectionDAG::AssignNodeIds() {
unsigned Id = 0;
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
SDNode *N = I;
N->setNodeId(Id++);
}
return Id;
}
/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
/// based on their topological order. It returns the maximum id and a vector
/// of the SDNodes* in assigned order by reference.
unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
unsigned DAGSize = AllNodes.size();
std::vector<unsigned> InDegree(DAGSize);
std::vector<SDNode*> Sources;
// Use a two pass approach to avoid using a std::map which is slow.
unsigned Id = 0;
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
SDNode *N = I;
N->setNodeId(Id++);
unsigned Degree = N->use_size();
InDegree[N->getNodeId()] = Degree;
if (Degree == 0)
Sources.push_back(N);
}
TopOrder.clear();
while (!Sources.empty()) {
SDNode *N = Sources.back();
Sources.pop_back();
TopOrder.push_back(N);
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
SDNode *P = I->Val;
unsigned Degree = --InDegree[P->getNodeId()];
if (Degree == 0)
Sources.push_back(P);
}
}
// Second pass, assign the actual topological order as node ids.
Id = 0;
for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
TI != TE; ++TI)
(*TI)->setNodeId(Id++);
return Id;
}
//===----------------------------------------------------------------------===//
// SDNode Class
//===----------------------------------------------------------------------===//
// Out-of-line virtual method to give class a home.
void SDNode::ANCHOR() {}
void UnarySDNode::ANCHOR() {}
void BinarySDNode::ANCHOR() {}
void TernarySDNode::ANCHOR() {}
void HandleSDNode::ANCHOR() {}
void StringSDNode::ANCHOR() {}
void ConstantSDNode::ANCHOR() {}
void ConstantFPSDNode::ANCHOR() {}
void GlobalAddressSDNode::ANCHOR() {}
void FrameIndexSDNode::ANCHOR() {}
void JumpTableSDNode::ANCHOR() {}
void ConstantPoolSDNode::ANCHOR() {}
void BasicBlockSDNode::ANCHOR() {}
void SrcValueSDNode::ANCHOR() {}
void RegisterSDNode::ANCHOR() {}
void ExternalSymbolSDNode::ANCHOR() {}
void CondCodeSDNode::ANCHOR() {}
void VTSDNode::ANCHOR() {}
void LoadSDNode::ANCHOR() {}
void StoreSDNode::ANCHOR() {}
HandleSDNode::~HandleSDNode() {
SDVTList VTs = { 0, 0 };
MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
}
GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
MVT::ValueType VT, int o)
: SDNode(isa<GlobalVariable>(GA) &&
cast<GlobalVariable>(GA)->isThreadLocal() ?
// Thread Local
(isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
// Non Thread Local
(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
getSDVTList(VT)), Offset(o) {
TheGlobal = const_cast<GlobalValue*>(GA);
}
/// Profile - Gather unique data for the node.
///
void SDNode::Profile(FoldingSetNodeID &ID) {
AddNodeIDNode(ID, this);
}
/// getValueTypeList - Return a pointer to the specified value type.
///
MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
VTs[VT] = VT;
return &VTs[VT];
}
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
// If there is only one value, this is easy.
if (getNumValues() == 1)
return use_size() == NUses;
if (use_size() < NUses) return false;
SDOperand TheValue(const_cast<SDNode *>(this), Value);
SmallPtrSet<SDNode*, 32> UsersHandled;
for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
SDNode *User = *UI;
if (User->getNumOperands() == 1 ||
UsersHandled.insert(User)) // First time we've seen this?
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
if (User->getOperand(i) == TheValue) {
if (NUses == 0)
return false; // too many uses
--NUses;
}
}
// Found exactly the right number of uses?
return NUses == 0;
}
/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
if (use_size() == 0) return false;
SDOperand TheValue(const_cast<SDNode *>(this), Value);
SmallPtrSet<SDNode*, 32> UsersHandled;
for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
SDNode *User = *UI;
if (User->getNumOperands() == 1 ||
UsersHandled.insert(User)) // First time we've seen this?
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
if (User->getOperand(i) == TheValue) {
return true;
}
}
return false;
}
/// isOnlyUse - Return true if this node is the only use of N.
///
bool SDNode::isOnlyUse(SDNode *N) const {
bool Seen = false;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDNode *User = *I;
if (User == this)
Seen = true;
else
return false;
}
return Seen;
}
/// isOperand - Return true if this node is an operand of N.
///
bool SDOperand::isOperand(SDNode *N) const {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (*this == N->getOperand(i))
return true;
return false;
}
bool SDNode::isOperand(SDNode *N) const {
for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
if (this == N->OperandList[i].Val)
return true;
return false;
}
static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
SmallPtrSet<SDNode *, 32> &Visited) {
if (found || !Visited.insert(N))
return;
for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
SDNode *Op = N->getOperand(i).Val;
if (Op == P) {
found = true;
return;
}
findPredecessor(Op, P, found, Visited);
}
}
/// isPredecessor - Return true if this node is a predecessor of N. This node
/// is either an operand of N or it can be reached by recursively traversing
/// up the operands.
/// NOTE: this is an expensive method. Use it carefully.
bool SDNode::isPredecessor(SDNode *N) const {
SmallPtrSet<SDNode *, 32> Visited;
bool found = false;
findPredecessor(N, this, found, Visited);
return found;
}
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
assert(Num < NumOperands && "Invalid child # of SDNode!");
return cast<ConstantSDNode>(OperandList[Num])->getValue();
}
std::string SDNode::getOperationName(const SelectionDAG *G) const {
switch (getOpcode()) {
default:
if (getOpcode() < ISD::BUILTIN_OP_END)
return "<<Unknown DAG Node>>";
else {
if (G) {
if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
TargetLowering &TLI = G->getTargetLoweringInfo();
const char *Name =
TLI.getTargetNodeName(getOpcode());
if (Name) return Name;
}
return "<<Unknown Target Node>>";
}
case ISD::PCMARKER: return "PCMarker";
case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
case ISD::SRCVALUE: return "SrcValue";
case ISD::EntryToken: return "EntryToken";
case ISD::TokenFactor: return "TokenFactor";
case ISD::AssertSext: return "AssertSext";
case ISD::AssertZext: return "AssertZext";
case ISD::STRING: return "String";
case ISD::BasicBlock: return "BasicBlock";
case ISD::VALUETYPE: return "ValueType";
case ISD::Register: return "Register";
case ISD::Constant: return "Constant";
case ISD::ConstantFP: return "ConstantFP";
case ISD::GlobalAddress: return "GlobalAddress";
case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
case ISD::FrameIndex: return "FrameIndex";
case ISD::JumpTable: return "JumpTable";
case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
case ISD::RETURNADDR: return "RETURNADDR";
case ISD::FRAMEADDR: return "FRAMEADDR";
case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
case ISD::EHSELECTION: return "EHSELECTION";
case ISD::EH_RETURN: return "EH_RETURN";
case ISD::ConstantPool: return "ConstantPool";
case ISD::ExternalSymbol: return "ExternalSymbol";
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
return Intrinsic::getName((Intrinsic::ID)IID);
}
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN: {
unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
return Intrinsic::getName((Intrinsic::ID)IID);
}
case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
case ISD::TargetConstant: return "TargetConstant";
case ISD::TargetConstantFP:return "TargetConstantFP";
case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
case ISD::TargetFrameIndex: return "TargetFrameIndex";
case ISD::TargetJumpTable: return "TargetJumpTable";
case ISD::TargetConstantPool: return "TargetConstantPool";
case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
case ISD::CopyToReg: return "CopyToReg";
case ISD::CopyFromReg: return "CopyFromReg";
case ISD::UNDEF: return "undef";
case ISD::MERGE_VALUES: return "merge_values";
case ISD::INLINEASM: return "inlineasm";
case ISD::LABEL: return "label";
case ISD::HANDLENODE: return "handlenode";
case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
case ISD::CALL: return "call";
// Unary operators
case ISD::FABS: return "fabs";
case ISD::FNEG: return "fneg";
case ISD::FSQRT: return "fsqrt";
case ISD::FSIN: return "fsin";
case ISD::FCOS: return "fcos";
case ISD::FPOWI: return "fpowi";
case ISD::FPOW: return "fpow";
// Binary operators
case ISD::ADD: return "add";
case ISD::SUB: return "sub";
case ISD::MUL: return "mul";
case ISD::MULHU: return "mulhu";
case ISD::MULHS: return "mulhs";
case ISD::SDIV: return "sdiv";
case ISD::UDIV: return "udiv";
case ISD::SREM: return "srem";
case ISD::UREM: return "urem";
case ISD::SMUL_LOHI: return "smul_lohi";
case ISD::UMUL_LOHI: return "umul_lohi";
case ISD::SDIVREM: return "sdivrem";
case ISD::UDIVREM: return "divrem";
case ISD::AND: return "and";
case ISD::OR: return "or";
case ISD::XOR: return "xor";
case ISD::SHL: return "shl";
case ISD::SRA: return "sra";
case ISD::SRL: return "srl";
case ISD::ROTL: return "rotl";
case ISD::ROTR: return "rotr";
case ISD::FADD: return "fadd";
case ISD::FSUB: return "fsub";
case ISD::FMUL: return "fmul";
case ISD::FDIV: return "fdiv";
case ISD::FREM: return "frem";
case ISD::FCOPYSIGN: return "fcopysign";
case ISD::SETCC: return "setcc";
case ISD::SELECT: return "select";
case ISD::SELECT_CC: return "select_cc";
case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
case ISD::CONCAT_VECTORS: return "concat_vectors";
case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
case ISD::CARRY_FALSE: return "carry_false";
case ISD::ADDC: return "addc";
case ISD::ADDE: return "adde";
case ISD::SUBC: return "subc";
case ISD::SUBE: return "sube";
case ISD::SHL_PARTS: return "shl_parts";
case ISD::SRA_PARTS: return "sra_parts";
case ISD::SRL_PARTS: return "srl_parts";
case ISD::EXTRACT_SUBREG: return "extract_subreg";
case ISD::INSERT_SUBREG: return "insert_subreg";
// Conversion operators.
case ISD::SIGN_EXTEND: return "sign_extend";
case ISD::ZERO_EXTEND: return "zero_extend";
case ISD::ANY_EXTEND: return "any_extend";
case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
case ISD::TRUNCATE: return "truncate";
case ISD::FP_ROUND: return "fp_round";
case ISD::FP_ROUND_INREG: return "fp_round_inreg";
case ISD::FP_EXTEND: return "fp_extend";
case ISD::SINT_TO_FP: return "sint_to_fp";
case ISD::UINT_TO_FP: return "uint_to_fp";
case ISD::FP_TO_SINT: return "fp_to_sint";
case ISD::FP_TO_UINT: return "fp_to_uint";
case ISD::BIT_CONVERT: return "bit_convert";
// Control flow instructions
case ISD::BR: return "br";
case ISD::BRIND: return "brind";
case ISD::BR_JT: return "br_jt";
case ISD::BRCOND: return "brcond";
case ISD::BR_CC: return "br_cc";
case ISD::RET: return "ret";
case ISD::CALLSEQ_START: return "callseq_start";
case ISD::CALLSEQ_END: return "callseq_end";
// Other operators
case ISD::LOAD: return "load";
case ISD::STORE: return "store";
case ISD::VAARG: return "vaarg";
case ISD::VACOPY: return "vacopy";
case ISD::VAEND: return "vaend";
case ISD::VASTART: return "vastart";
case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
case ISD::EXTRACT_ELEMENT: return "extract_element";
case ISD::BUILD_PAIR: return "build_pair";
case ISD::STACKSAVE: return "stacksave";
case ISD::STACKRESTORE: return "stackrestore";
// Block memory operations.
case ISD::MEMSET: return "memset";
case ISD::MEMCPY: return "memcpy";
case ISD::MEMMOVE: return "memmove";
// Bit manipulation
case ISD::BSWAP: return "bswap";
case ISD::CTPOP: return "ctpop";
case ISD::CTTZ: return "cttz";
case ISD::CTLZ: return "ctlz";
// Debug info
case ISD::LOCATION: return "location";
case ISD::DEBUG_LOC: return "debug_loc";
// Trampolines
case ISD::TRAMPOLINE: return "trampoline";
case ISD::CONDCODE:
switch (cast<CondCodeSDNode>(this)->get()) {
default: assert(0 && "Unknown setcc condition!");
case ISD::SETOEQ: return "setoeq";
case ISD::SETOGT: return "setogt";
case ISD::SETOGE: return "setoge";
case ISD::SETOLT: return "setolt";
case ISD::SETOLE: return "setole";
case ISD::SETONE: return "setone";
case ISD::SETO: return "seto";
case ISD::SETUO: return "setuo";
case ISD::SETUEQ: return "setue";
case ISD::SETUGT: return "setugt";
case ISD::SETUGE: return "setuge";
case ISD::SETULT: return "setult";
case ISD::SETULE: return "setule";
case ISD::SETUNE: return "setune";
case ISD::SETEQ: return "seteq";
case ISD::SETGT: return "setgt";
case ISD::SETGE: return "setge";
case ISD::SETLT: return "setlt";
case ISD::SETLE: return "setle";
case ISD::SETNE: return "setne";
}
}
}
const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
switch (AM) {
default:
return "";
case ISD::PRE_INC:
return "<pre-inc>";
case ISD::PRE_DEC:
return "<pre-dec>";
case ISD::POST_INC:
return "<post-inc>";
case ISD::POST_DEC:
return "<post-dec>";
}
}
void SDNode::dump() const { dump(0); }
void SDNode::dump(const SelectionDAG *G) const {
cerr << (void*)this << ": ";
for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
if (i) cerr << ",";
if (getValueType(i) == MVT::Other)
cerr << "ch";
else
cerr << MVT::getValueTypeString(getValueType(i));
}
cerr << " = " << getOperationName(G);
cerr << " ";
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
if (i) cerr << ", ";
cerr << (void*)getOperand(i).Val;
if (unsigned RN = getOperand(i).ResNo)
cerr << ":" << RN;
}
if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
cerr << "<" << CSDN->getValue() << ">";
} else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
else {
cerr << "<APFloat(";
CSDN->getValueAPF().convertToAPInt().dump();
cerr << ")>";
}
} else if (const GlobalAddressSDNode *GADN =
dyn_cast<GlobalAddressSDNode>(this)) {
int offset = GADN->getOffset();
cerr << "<";
WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
if (offset > 0)
cerr << " + " << offset;
else
cerr << " " << offset;
} else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
cerr << "<" << FIDN->getIndex() << ">";
} else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
cerr << "<" << JTDN->getIndex() << ">";
} else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
int offset = CP->getOffset();
if (CP->isMachineConstantPoolEntry())
cerr << "<" << *CP->getMachineCPVal() << ">";
else
cerr << "<" << *CP->getConstVal() << ">";
if (offset > 0)
cerr << " + " << offset;
else
cerr << " " << offset;
} else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
cerr << "<";
const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
if (LBB)
cerr << LBB->getName() << " ";
cerr << (const void*)BBDN->getBasicBlock() << ">";
} else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
} else {
cerr << " #" << R->getReg();
}
} else if (const ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(this)) {
cerr << "'" << ES->getSymbol() << "'";
} else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
if (M->getValue())
cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
else
cerr << "<null:" << M->getOffset() << ">";
} else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
cerr << ":" << MVT::getValueTypeString(N->getVT());
} else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
bool doExt = true;
switch (LD->getExtensionType()) {
default: doExt = false; break;
case ISD::EXTLOAD:
cerr << " <anyext ";
break;
case ISD::SEXTLOAD:
cerr << " <sext ";
break;
case ISD::ZEXTLOAD:
cerr << " <zext ";
break;
}
if (doExt)
cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
const char *AM = getIndexedModeName(LD->getAddressingMode());
if (*AM)
cerr << " " << AM;
} else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
if (ST->isTruncatingStore())
cerr << " <trunc "
<< MVT::getValueTypeString(ST->getStoredVT()) << ">";
const char *AM = getIndexedModeName(ST->getAddressingMode());
if (*AM)
cerr << " " << AM;
}
}
static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (N->getOperand(i).Val->hasOneUse())
DumpNodes(N->getOperand(i).Val, indent+2, G);
else
cerr << "\n" << std::string(indent+2, ' ')
<< (void*)N->getOperand(i).Val << ": <multiple use>";
cerr << "\n" << std::string(indent, ' ');
N->dump(G);
}
void SelectionDAG::dump() const {
cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
std::vector<const SDNode*> Nodes;
for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
I != E; ++I)
Nodes.push_back(I);
std::sort(Nodes.begin(), Nodes.end());
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
DumpNodes(Nodes[i], 2, this);
}
if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
cerr << "\n\n";
}
const Type *ConstantPoolSDNode::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}