llvm-6502/lib/Transforms/IPO/Inliner.cpp
Chris Lattner cf5933a716 Fix the inliner to be deterministic, not letting its output depend on the
relative location of Function objects in memory.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14260 91177308-0d34-0410-b5e6-96231b3b80d8
2004-06-20 04:11:48 +00:00

218 lines
8.5 KiB
C++

//===- Inliner.cpp - Code common to all inliners --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the mechanics required to implement inlining without
// missing any calls and updating the call graph. The decisions of which calls
// are profitable to inline are implemented elsewhere.
//
//===----------------------------------------------------------------------===//
#include "Inliner.h"
#include "llvm/Constants.h" // ConstantPointerRef should die
#include "llvm/Module.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "Support/CommandLine.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include <set>
using namespace llvm;
namespace {
Statistic<> NumInlined("inline", "Number of functions inlined");
Statistic<> NumDeleted("inline", "Number of functions deleted because all callers found");
cl::opt<unsigned> // FIXME: 200 is VERY conservative
InlineLimit("inline-threshold", cl::Hidden, cl::init(200),
cl::desc("Control the amount of inlining to perform (default = 200)"));
}
Inliner::Inliner() : InlineThreshold(InlineLimit) {}
// InlineCallIfPossible - If it is possible to inline the specified call site,
// do so and update the CallGraph for this operation.
static bool InlineCallIfPossible(CallSite CS, CallGraph &CG,
const std::set<Function*> &SCCFunctions) {
Function *Caller = CS.getInstruction()->getParent()->getParent();
Function *Callee = CS.getCalledFunction();
if (!InlineFunction(CS)) return false;
// Update the call graph by deleting the edge from Callee to Caller
CallGraphNode *CalleeNode = CG[Callee];
CallGraphNode *CallerNode = CG[Caller];
CallerNode->removeCallEdgeTo(CalleeNode);
// Since we inlined all uninlined call sites in the callee into the caller,
// add edges from the caller to all of the callees of the callee.
for (CallGraphNode::iterator I = CalleeNode->begin(),
E = CalleeNode->end(); I != E; ++I)
CallerNode->addCalledFunction(*I);
// If we inlined the last possible call site to the function,
// delete the function body now.
if (Callee->use_empty() && Callee->hasInternalLinkage() &&
!SCCFunctions.count(Callee)) {
DEBUG(std::cerr << " -> Deleting dead function: "
<< Callee->getName() << "\n");
// Remove any call graph edges from the callee to its callees.
while (CalleeNode->begin() != CalleeNode->end())
CalleeNode->removeCallEdgeTo(*(CalleeNode->end()-1));
// Removing the node for callee from the call graph and delete it.
delete CG.removeFunctionFromModule(CalleeNode);
++NumDeleted;
}
return true;
}
bool Inliner::runOnSCC(const std::vector<CallGraphNode*> &SCC) {
CallGraph &CG = getAnalysis<CallGraph>();
std::set<Function*> SCCFunctions;
DEBUG(std::cerr << "Inliner visiting SCC:");
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
Function *F = SCC[i]->getFunction();
if (F) SCCFunctions.insert(F);
DEBUG(std::cerr << " " << (F ? F->getName() : "INDIRECTNODE"));
}
// Scan through and identify all call sites ahead of time so that we only
// inline call sites in the original functions, not call sites that result
// from inlining other functions.
std::vector<CallSite> CallSites;
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
if (Function *F = SCC[i]->getFunction())
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
CallSite CS = CallSite::get(I);
if (CS.getInstruction() && (!CS.getCalledFunction() ||
!CS.getCalledFunction()->isExternal()))
CallSites.push_back(CS);
}
DEBUG(std::cerr << ": " << CallSites.size() << " call sites.\n");
// Now that we have all of the call sites, move the ones to functions in the
// current SCC to the end of the list.
unsigned FirstCallInSCC = CallSites.size();
for (unsigned i = 0; i < FirstCallInSCC; ++i)
if (Function *F = CallSites[i].getCalledFunction())
if (SCCFunctions.count(F))
std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
// Now that we have all of the call sites, loop over them and inline them if
// it looks profitable to do so.
bool Changed = false;
bool LocalChange;
do {
LocalChange = false;
// Iterate over the outer loop because inlining functions can cause indirect
// calls to become direct calls.
for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi)
if (Function *Callee = CallSites[CSi].getCalledFunction()) {
// Calls to external functions are never inlinable.
if (Callee->isExternal() ||
CallSites[CSi].getInstruction()->getParent()->getParent() ==Callee){
std::swap(CallSites[CSi], CallSites.back());
CallSites.pop_back();
--CSi;
continue;
}
// If the policy determines that we should inline this function,
// try to do so.
CallSite CS = CallSites[CSi];
int InlineCost = getInlineCost(CS);
if (InlineCost >= (int)InlineThreshold) {
DEBUG(std::cerr << " NOT Inlining: cost=" << InlineCost
<< ", Call: " << *CS.getInstruction());
} else {
DEBUG(std::cerr << " Inlining: cost=" << InlineCost
<< ", Call: " << *CS.getInstruction());
Function *Caller = CS.getInstruction()->getParent()->getParent();
// Attempt to inline the function...
if (InlineCallIfPossible(CS, CG, SCCFunctions)) {
// Remove this call site from the list.
std::swap(CallSites[CSi], CallSites.back());
CallSites.pop_back();
--CSi;
++NumInlined;
Changed = true;
LocalChange = true;
}
}
}
} while (LocalChange);
return Changed;
}
// doFinalization - Remove now-dead linkonce functions at the end of
// processing to avoid breaking the SCC traversal.
bool Inliner::doFinalization(CallGraph &CG) {
std::set<CallGraphNode*> FunctionsToRemove;
// Scan for all of the functions, looking for ones that should now be removed
// from the program. Insert the dead ones in the FunctionsToRemove set.
for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
CallGraphNode *CGN = I->second;
Function *F = CGN ? CGN->getFunction() : 0;
// If the only remaining use of the function is a dead constant
// pointer ref, remove it.
if (F && F->hasOneUse())
if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(F->use_back()))
if (CPR->use_empty()) {
CPR->destroyConstant();
if (F->hasInternalLinkage()) {
// There *MAY* be an edge from the external call node to this
// function. If so, remove it.
CallGraphNode *EN = CG.getExternalCallingNode();
CallGraphNode::iterator I = std::find(EN->begin(), EN->end(), CGN);
if (I != EN->end()) EN->removeCallEdgeTo(CGN);
}
}
if (F && (F->hasLinkOnceLinkage() || F->hasInternalLinkage()) &&
F->use_empty()) {
// Remove any call graph edges from the function to its callees.
while (CGN->begin() != CGN->end())
CGN->removeCallEdgeTo(*(CGN->end()-1));
// If the function has external linkage (basically if it's a linkonce
// function) remove the edge from the external node to the callee node.
if (!F->hasInternalLinkage())
CG.getExternalCallingNode()->removeCallEdgeTo(CGN);
// Removing the node for callee from the call graph and delete it.
FunctionsToRemove.insert(CGN);
}
}
// Now that we know which functions to delete, do so. We didn't want to do
// this inline, because that would invalidate our CallGraph::iterator
// objects. :(
bool Changed = false;
for (std::set<CallGraphNode*>::iterator I = FunctionsToRemove.begin(),
E = FunctionsToRemove.end(); I != E; ++I) {
delete CG.removeFunctionFromModule(*I);
++NumDeleted;
Changed = true;
}
return Changed;
}