llvm-6502/lib/CodeGen/PostRASchedulerList.cpp
2009-02-06 17:43:24 +00:00

812 lines
30 KiB
C++

//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "post-RA-sched"
#include "ScheduleDAGInstrs.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <map>
using namespace llvm;
STATISTIC(NumNoops, "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
static cl::opt<bool>
EnableAntiDepBreaking("break-anti-dependencies",
cl::desc("Break post-RA scheduling anti-dependencies"),
cl::init(true), cl::Hidden);
static cl::opt<bool>
EnablePostRAHazardAvoidance("avoid-hazards",
cl::desc("Enable simple hazard-avoidance"),
cl::init(true), cl::Hidden);
namespace {
class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
public:
static char ID;
PostRAScheduler() : MachineFunctionPass(&ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
const char *getPassName() const {
return "Post RA top-down list latency scheduler";
}
bool runOnMachineFunction(MachineFunction &Fn);
};
char PostRAScheduler::ID = 0;
class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
/// AvailableQueue - The priority queue to use for the available SUnits.
///
LatencyPriorityQueue AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands becomes available, the instruction is
/// added to the AvailableQueue.
std::vector<SUnit*> PendingQueue;
/// Topo - A topological ordering for SUnits.
ScheduleDAGTopologicalSort Topo;
/// AllocatableSet - The set of allocatable registers.
/// We'll be ignoring anti-dependencies on non-allocatable registers,
/// because they may not be safe to break.
const BitVector AllocatableSet;
/// HazardRec - The hazard recognizer to use.
ScheduleHazardRecognizer *HazardRec;
public:
SchedulePostRATDList(MachineFunction &MF,
const MachineLoopInfo &MLI,
const MachineDominatorTree &MDT,
ScheduleHazardRecognizer *HR)
: ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
AllocatableSet(TRI->getAllocatableSet(MF)),
HazardRec(HR) {}
~SchedulePostRATDList() {
delete HazardRec;
}
void Schedule();
private:
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void ListScheduleTopDown();
bool BreakAntiDependencies();
};
/// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
/// a coarse classification and attempts to avoid that instructions of
/// a given class aren't grouped too densely together.
class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
/// Class - A simple classification for SUnits.
enum Class {
Other, Load, Store
};
/// Window - The Class values of the most recently issued
/// instructions.
Class Window[8];
/// getClass - Classify the given SUnit.
Class getClass(const SUnit *SU) {
const MachineInstr *MI = SU->getInstr();
const TargetInstrDesc &TID = MI->getDesc();
if (TID.mayLoad())
return Load;
if (TID.mayStore())
return Store;
return Other;
}
/// Step - Rotate the existing entries in Window and insert the
/// given class value in position as the most recent.
void Step(Class C) {
std::copy(Window+1, array_endof(Window), Window);
Window[array_lengthof(Window)-1] = C;
}
public:
SimpleHazardRecognizer() : Window() {}
virtual HazardType getHazardType(SUnit *SU) {
Class C = getClass(SU);
if (C == Other)
return NoHazard;
unsigned Score = 0;
for (unsigned i = 0; i != array_lengthof(Window); ++i)
if (Window[i] == C)
Score += i + 1;
if (Score > array_lengthof(Window) * 2)
return Hazard;
return NoHazard;
}
virtual void EmitInstruction(SUnit *SU) {
Step(getClass(SU));
}
virtual void AdvanceCycle() {
Step(Other);
}
};
}
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
DOUT << "PostRAScheduler\n";
const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
new SimpleHazardRecognizer :
new ScheduleHazardRecognizer();
SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
// Loop over all of the basic blocks
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// Schedule each sequence of instructions not interrupted by a label
// or anything else that effectively needs to shut down scheduling.
MachineBasicBlock::iterator Current = MBB->end(), Top = MBB->begin();
for (MachineBasicBlock::iterator I = Current; I != Top; ) {
MachineInstr *MI = --I;
if (MI->getDesc().isTerminator() || MI->isLabel()) {
Scheduler.Run(0, MBB, next(I), Current);
Scheduler.EmitSchedule();
Current = I;
}
}
Scheduler.Run(0, MBB, Top, Current);
Scheduler.EmitSchedule();
}
return true;
}
/// Schedule - Schedule the DAG using list scheduling.
void SchedulePostRATDList::Schedule() {
DOUT << "********** List Scheduling **********\n";
// Build the scheduling graph.
BuildSchedGraph();
if (EnableAntiDepBreaking) {
if (BreakAntiDependencies()) {
// We made changes. Update the dependency graph.
// Theoretically we could update the graph in place:
// When a live range is changed to use a different register, remove
// the def's anti-dependence *and* output-dependence edges due to
// that register, and add new anti-dependence and output-dependence
// edges based on the next live range of the register.
SUnits.clear();
BuildSchedGraph();
}
}
AvailableQueue.initNodes(SUnits);
ListScheduleTopDown();
AvailableQueue.releaseState();
}
/// getInstrOperandRegClass - Return register class of the operand of an
/// instruction of the specified TargetInstrDesc.
static const TargetRegisterClass*
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
const TargetInstrDesc &II, unsigned Op) {
if (Op >= II.getNumOperands())
return NULL;
if (II.OpInfo[Op].isLookupPtrRegClass())
return TRI->getPointerRegClass();
return TRI->getRegClass(II.OpInfo[Op].RegClass);
}
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
/// critical path.
static SDep *CriticalPathStep(SUnit *SU) {
SDep *Next = 0;
unsigned NextDepth = 0;
// Find the predecessor edge with the greatest depth.
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
P != PE; ++P) {
SUnit *PredSU = P->getSUnit();
unsigned PredLatency = P->getLatency();
unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
// In the case of a latency tie, prefer an anti-dependency edge over
// other types of edges.
if (NextDepth < PredTotalLatency ||
(NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
NextDepth = PredTotalLatency;
Next = &*P;
}
}
return Next;
}
/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
/// of the ScheduleDAG and break them by renaming registers.
///
bool SchedulePostRATDList::BreakAntiDependencies() {
// The code below assumes that there is at least one instruction,
// so just duck out immediately if the block is empty.
if (SUnits.empty()) return false;
// Find the node at the bottom of the critical path.
SUnit *Max = 0;
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
SUnit *SU = &SUnits[i];
if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
Max = SU;
}
DOUT << "Critical path has total latency "
<< (Max->getDepth() + Max->Latency) << "\n";
// Track progress along the critical path through the SUnit graph as we walk
// the instructions.
SUnit *CriticalPathSU = Max;
MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
// For live regs that are only used in one register class in a live range,
// the register class. If the register is not live, the corresponding value
// is null. If the register is live but used in multiple register classes,
// the corresponding value is -1 casted to a pointer.
const TargetRegisterClass *
Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
// Map registers to all their references within a live range.
std::multimap<unsigned, MachineOperand *> RegRefs;
// The index of the most recent kill (proceding bottom-up), or ~0u if
// the register is not live.
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
std::fill(KillIndices, array_endof(KillIndices), ~0u);
// The index of the most recent complete def (proceding bottom up), or ~0u if
// the register is live.
unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
std::fill(DefIndices, array_endof(DefIndices), BB->size());
// Determine the live-out physregs for this block.
if (BB->back().getDesc().isReturn())
// In a return block, examine the function live-out regs.
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
E = MRI.liveout_end(); I != E; ++I) {
unsigned Reg = *I;
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
KillIndices[Reg] = BB->size();
DefIndices[Reg] = ~0u;
// Repeat, for all aliases.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
KillIndices[AliasReg] = BB->size();
DefIndices[AliasReg] = ~0u;
}
}
else
// In a non-return block, examine the live-in regs of all successors.
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
SE = BB->succ_end(); SI != SE; ++SI)
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
E = (*SI)->livein_end(); I != E; ++I) {
unsigned Reg = *I;
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
KillIndices[Reg] = BB->size();
DefIndices[Reg] = ~0u;
// Repeat, for all aliases.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
KillIndices[AliasReg] = BB->size();
DefIndices[AliasReg] = ~0u;
}
}
// Consider callee-saved registers as live-out, since we're running after
// prologue/epilogue insertion so there's no way to add additional
// saved registers.
//
// TODO: If the callee saves and restores these, then we can potentially
// use them between the save and the restore. To do that, we could scan
// the exit blocks to see which of these registers are defined.
// Alternatively, callee-saved registers that aren't saved and restored
// could be marked live-in in every block.
for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
unsigned Reg = *I;
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
KillIndices[Reg] = BB->size();
DefIndices[Reg] = ~0u;
// Repeat, for all aliases.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
KillIndices[AliasReg] = BB->size();
DefIndices[AliasReg] = ~0u;
}
}
// Consider this pattern:
// A = ...
// ... = A
// A = ...
// ... = A
// A = ...
// ... = A
// A = ...
// ... = A
// There are three anti-dependencies here, and without special care,
// we'd break all of them using the same register:
// A = ...
// ... = A
// B = ...
// ... = B
// B = ...
// ... = B
// B = ...
// ... = B
// because at each anti-dependence, B is the first register that
// isn't A which is free. This re-introduces anti-dependencies
// at all but one of the original anti-dependencies that we were
// trying to break. To avoid this, keep track of the most recent
// register that each register was replaced with, avoid avoid
// using it to repair an anti-dependence on the same register.
// This lets us produce this:
// A = ...
// ... = A
// B = ...
// ... = B
// C = ...
// ... = C
// B = ...
// ... = B
// This still has an anti-dependence on B, but at least it isn't on the
// original critical path.
//
// TODO: If we tracked more than one register here, we could potentially
// fix that remaining critical edge too. This is a little more involved,
// because unlike the most recent register, less recent registers should
// still be considered, though only if no other registers are available.
unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
// Attempt to break anti-dependence edges on the critical path. Walk the
// instructions from the bottom up, tracking information about liveness
// as we go to help determine which registers are available.
bool Changed = false;
unsigned Count = SUnits.size() - 1;
for (MachineBasicBlock::iterator I = End, E = Begin;
I != E; --Count) {
MachineInstr *MI = --I;
// After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
// dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
// is left behind appearing to clobber the super-register, while the
// subregister needs to remain live. So we just ignore them.
if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
continue;
// Check if this instruction has a dependence on the critical path that
// is an anti-dependence that we may be able to break. If it is, set
// AntiDepReg to the non-zero register associated with the anti-dependence.
//
// We limit our attention to the critical path as a heuristic to avoid
// breaking anti-dependence edges that aren't going to significantly
// impact the overall schedule. There are a limited number of registers
// and we want to save them for the important edges.
//
// TODO: Instructions with multiple defs could have multiple
// anti-dependencies. The current code here only knows how to break one
// edge per instruction. Note that we'd have to be able to break all of
// the anti-dependencies in an instruction in order to be effective.
unsigned AntiDepReg = 0;
if (MI == CriticalPathMI) {
if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
SUnit *NextSU = Edge->getSUnit();
// Only consider anti-dependence edges.
if (Edge->getKind() == SDep::Anti) {
AntiDepReg = Edge->getReg();
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
// Don't break anti-dependencies on non-allocatable registers.
if (!AllocatableSet.test(AntiDepReg))
AntiDepReg = 0;
else {
// If the SUnit has other dependencies on the SUnit that it
// anti-depends on, don't bother breaking the anti-dependency
// since those edges would prevent such units from being
// scheduled past each other regardless.
//
// Also, if there are dependencies on other SUnits with the
// same register as the anti-dependency, don't attempt to
// break it.
for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
PE = CriticalPathSU->Preds.end(); P != PE; ++P)
if (P->getSUnit() == NextSU ?
(P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
(P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
AntiDepReg = 0;
break;
}
}
}
CriticalPathSU = NextSU;
CriticalPathMI = CriticalPathSU->getInstr();
} else {
// We've reached the end of the critical path.
CriticalPathSU = 0;
CriticalPathMI = 0;
}
}
// Scan the register operands for this instruction and update
// Classes and RegRefs.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
const TargetRegisterClass *NewRC =
getInstrOperandRegClass(TRI, MI->getDesc(), i);
// If this instruction has a use of AntiDepReg, breaking it
// is invalid.
if (MO.isUse() && AntiDepReg == Reg)
AntiDepReg = 0;
// For now, only allow the register to be changed if its register
// class is consistent across all uses.
if (!Classes[Reg] && NewRC)
Classes[Reg] = NewRC;
else if (!NewRC || Classes[Reg] != NewRC)
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
// Now check for aliases.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
// If an alias of the reg is used during the live range, give up.
// Note that this allows us to skip checking if AntiDepReg
// overlaps with any of the aliases, among other things.
unsigned AliasReg = *Alias;
if (Classes[AliasReg]) {
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
}
}
// If we're still willing to consider this register, note the reference.
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
RegRefs.insert(std::make_pair(Reg, &MO));
}
// Determine AntiDepReg's register class, if it is live and is
// consistently used within a single class.
const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
assert((AntiDepReg == 0 || RC != NULL) &&
"Register should be live if it's causing an anti-dependence!");
if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
AntiDepReg = 0;
// Look for a suitable register to use to break the anti-depenence.
//
// TODO: Instead of picking the first free register, consider which might
// be the best.
if (AntiDepReg != 0) {
for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
RE = RC->allocation_order_end(MF); R != RE; ++R) {
unsigned NewReg = *R;
// Don't replace a register with itself.
if (NewReg == AntiDepReg) continue;
// Don't replace a register with one that was recently used to repair
// an anti-dependence with this AntiDepReg, because that would
// re-introduce that anti-dependence.
if (NewReg == LastNewReg[AntiDepReg]) continue;
// If NewReg is dead and NewReg's most recent def is not before
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
"Kill and Def maps aren't consistent for AntiDepReg!");
assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
"Kill and Def maps aren't consistent for NewReg!");
if (KillIndices[NewReg] == ~0u &&
Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
DOUT << "Breaking anti-dependence edge on "
<< TRI->getName(AntiDepReg)
<< " with " << RegRefs.count(AntiDepReg) << " references"
<< " using " << TRI->getName(NewReg) << "!\n";
// Update the references to the old register to refer to the new
// register.
std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
std::multimap<unsigned, MachineOperand *>::iterator>
Range = RegRefs.equal_range(AntiDepReg);
for (std::multimap<unsigned, MachineOperand *>::iterator
Q = Range.first, QE = Range.second; Q != QE; ++Q)
Q->second->setReg(NewReg);
// We just went back in time and modified history; the
// liveness information for the anti-depenence reg is now
// inconsistent. Set the state as if it were dead.
Classes[NewReg] = Classes[AntiDepReg];
DefIndices[NewReg] = DefIndices[AntiDepReg];
KillIndices[NewReg] = KillIndices[AntiDepReg];
Classes[AntiDepReg] = 0;
DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
KillIndices[AntiDepReg] = ~0u;
RegRefs.erase(AntiDepReg);
Changed = true;
LastNewReg[AntiDepReg] = NewReg;
break;
}
}
}
// Update liveness.
// Proceding upwards, registers that are defed but not used in this
// instruction are now dead.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (!MO.isDef()) continue;
// Ignore two-addr defs.
if (MI->isRegReDefinedByTwoAddr(i)) continue;
DefIndices[Reg] = Count;
KillIndices[Reg] = ~0u;
Classes[Reg] = 0;
RegRefs.erase(Reg);
// Repeat, for all subregs.
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
*Subreg; ++Subreg) {
unsigned SubregReg = *Subreg;
DefIndices[SubregReg] = Count;
KillIndices[SubregReg] = ~0u;
Classes[SubregReg] = 0;
RegRefs.erase(SubregReg);
}
// Conservatively mark super-registers as unusable.
for (const unsigned *Super = TRI->getSuperRegisters(Reg);
*Super; ++Super) {
unsigned SuperReg = *Super;
Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
}
}
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (!MO.isUse()) continue;
const TargetRegisterClass *NewRC =
getInstrOperandRegClass(TRI, MI->getDesc(), i);
// For now, only allow the register to be changed if its register
// class is consistent across all uses.
if (!Classes[Reg] && NewRC)
Classes[Reg] = NewRC;
else if (!NewRC || Classes[Reg] != NewRC)
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
RegRefs.insert(std::make_pair(Reg, &MO));
// It wasn't previously live but now it is, this is a kill.
if (KillIndices[Reg] == ~0u) {
KillIndices[Reg] = Count;
DefIndices[Reg] = ~0u;
}
// Repeat, for all aliases.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
if (KillIndices[AliasReg] == ~0u) {
KillIndices[AliasReg] = Count;
DefIndices[AliasReg] = ~0u;
}
}
}
}
assert(Count == ~0u && "Count mismatch!");
return Changed;
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
--SuccSU->NumPredsLeft;
#ifndef NDEBUG
if (SuccSU->NumPredsLeft < 0) {
cerr << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
cerr << " has been released too many times!\n";
assert(0);
}
#endif
// Compute how many cycles it will be before this actually becomes
// available. This is the max of the start time of all predecessors plus
// their latencies.
SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
if (SuccSU->NumPredsLeft == 0) {
PendingQueue.push_back(SuccSU);
}
}
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DOUT << "*** Scheduling [" << CurCycle << "]: ";
DEBUG(SU->dump(this));
Sequence.push_back(SU);
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
SU->setDepthToAtLeast(CurCycle);
// Top down: release successors.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I)
ReleaseSucc(SU, &*I);
SU->isScheduled = true;
AvailableQueue.ScheduledNode(SU);
}
/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void SchedulePostRATDList::ListScheduleTopDown() {
unsigned CurCycle = 0;
// All leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (SUnits[i].Preds.empty()) {
AvailableQueue.push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady;
Sequence.reserve(SUnits.size());
while (!AvailableQueue.empty() || !PendingQueue.empty()) {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
unsigned MinDepth = ~0u;
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
if (PendingQueue[i]->getDepth() <= CurCycle) {
AvailableQueue.push(PendingQueue[i]);
PendingQueue[i]->isAvailable = true;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
} else if (PendingQueue[i]->getDepth() < MinDepth)
MinDepth = PendingQueue[i]->getDepth();
}
// If there are no instructions available, don't try to issue anything, and
// don't advance the hazard recognizer.
if (AvailableQueue.empty()) {
CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
continue;
}
SUnit *FoundSUnit = 0;
bool HasNoopHazards = false;
while (!AvailableQueue.empty()) {
SUnit *CurSUnit = AvailableQueue.pop();
ScheduleHazardRecognizer::HazardType HT =
HazardRec->getHazardType(CurSUnit);
if (HT == ScheduleHazardRecognizer::NoHazard) {
FoundSUnit = CurSUnit;
break;
}
// Remember if this is a noop hazard.
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
NotReady.push_back(CurSUnit);
}
// Add the nodes that aren't ready back onto the available list.
if (!NotReady.empty()) {
AvailableQueue.push_all(NotReady);
NotReady.clear();
}
// If we found a node to schedule, do it now.
if (FoundSUnit) {
ScheduleNodeTopDown(FoundSUnit, CurCycle);
HazardRec->EmitInstruction(FoundSUnit);
// If this is a pseudo-op node, we don't want to increment the current
// cycle.
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
++CurCycle;
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem, just advance
// the current cycle and try again.
DOUT << "*** Advancing cycle, no work to do\n";
HazardRec->AdvanceCycle();
++NumStalls;
++CurCycle;
} else {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
DOUT << "*** Emitting noop\n";
HazardRec->EmitNoop();
Sequence.push_back(0); // NULL here means noop
++NumNoops;
++CurCycle;
}
}
#ifndef NDEBUG
VerifySchedule(/*isBottomUp=*/false);
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createPostRAScheduler() {
return new PostRAScheduler();
}