mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
01ccab4012
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129032 91177308-0d34-0410-b5e6-96231b3b80d8
561 lines
20 KiB
C++
561 lines
20 KiB
C++
//===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the MC-JIT runtime dynamic linker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "dyld"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ExecutionEngine/RuntimeDyld.h"
|
|
#include "llvm/Object/MachOObject.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/Memory.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/system_error.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
|
|
// Empty out-of-line virtual destructor as the key function.
|
|
RTDyldMemoryManager::~RTDyldMemoryManager() {}
|
|
|
|
namespace llvm {
|
|
class RuntimeDyldImpl {
|
|
unsigned CPUType;
|
|
unsigned CPUSubtype;
|
|
|
|
// The MemoryManager to load objects into.
|
|
RTDyldMemoryManager *MemMgr;
|
|
|
|
|
|
// For each function, we have a MemoryBlock of it's instruction data.
|
|
StringMap<sys::MemoryBlock> Functions;
|
|
|
|
// Master symbol table. As modules are loaded and external symbols are
|
|
// resolved, their addresses are stored here.
|
|
StringMap<uint64_t> SymbolTable;
|
|
|
|
// FIXME: Should have multiple data blocks, one for each loaded chunk of
|
|
// compiled code.
|
|
sys::MemoryBlock Data;
|
|
|
|
bool HasError;
|
|
std::string ErrorStr;
|
|
|
|
// Set the error state and record an error string.
|
|
bool Error(const Twine &Msg) {
|
|
ErrorStr = Msg.str();
|
|
HasError = true;
|
|
return true;
|
|
}
|
|
|
|
void extractFunction(StringRef Name, uint8_t *StartAddress,
|
|
uint8_t *EndAddress);
|
|
bool resolveRelocation(uint32_t BaseSection, macho::RelocationEntry RE,
|
|
SmallVectorImpl<void *> &SectionBases,
|
|
SmallVectorImpl<StringRef> &SymbolNames);
|
|
bool resolveX86_64Relocation(intptr_t Address, intptr_t Value, bool isPCRel,
|
|
unsigned Type, unsigned Size);
|
|
bool resolveARMRelocation(intptr_t Address, intptr_t Value, bool isPCRel,
|
|
unsigned Type, unsigned Size);
|
|
|
|
bool loadSegment32(const MachOObject *Obj,
|
|
const MachOObject::LoadCommandInfo *SegmentLCI,
|
|
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
|
|
bool loadSegment64(const MachOObject *Obj,
|
|
const MachOObject::LoadCommandInfo *SegmentLCI,
|
|
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
|
|
|
|
public:
|
|
RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
|
|
|
|
bool loadObject(MemoryBuffer *InputBuffer);
|
|
|
|
uint64_t getSymbolAddress(StringRef Name) {
|
|
// FIXME: Just look up as a function for now. Overly simple of course.
|
|
// Work in progress.
|
|
return (uint64_t)Functions.lookup(Name).base();
|
|
}
|
|
|
|
sys::MemoryBlock getMemoryBlock() { return Data; }
|
|
|
|
// Is the linker in an error state?
|
|
bool hasError() { return HasError; }
|
|
|
|
// Mark the error condition as handled and continue.
|
|
void clearError() { HasError = false; }
|
|
|
|
// Get the error message.
|
|
StringRef getErrorString() { return ErrorStr; }
|
|
};
|
|
|
|
void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
|
|
uint8_t *EndAddress) {
|
|
// Allocate memory for the function via the memory manager.
|
|
uintptr_t Size = EndAddress - StartAddress + 1;
|
|
uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), Size);
|
|
assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) &&
|
|
"Memory manager failed to allocate enough memory!");
|
|
// Copy the function payload into the memory block.
|
|
memcpy(Mem, StartAddress, EndAddress - StartAddress + 1);
|
|
MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
|
|
// Remember where we put it.
|
|
Functions[Name] = sys::MemoryBlock(Mem, Size);
|
|
DEBUG(dbgs() << " allocated to " << Mem << "\n");
|
|
}
|
|
|
|
bool RuntimeDyldImpl::
|
|
resolveRelocation(uint32_t BaseSection, macho::RelocationEntry RE,
|
|
SmallVectorImpl<void *> &SectionBases,
|
|
SmallVectorImpl<StringRef> &SymbolNames) {
|
|
// struct relocation_info {
|
|
// int32_t r_address;
|
|
// uint32_t r_symbolnum:24,
|
|
// r_pcrel:1,
|
|
// r_length:2,
|
|
// r_extern:1,
|
|
// r_type:4;
|
|
// };
|
|
uint32_t SymbolNum = RE.Word1 & 0xffffff; // 24-bit value
|
|
bool isPCRel = (RE.Word1 >> 24) & 1;
|
|
unsigned Log2Size = (RE.Word1 >> 25) & 3;
|
|
bool isExtern = (RE.Word1 >> 27) & 1;
|
|
unsigned Type = (RE.Word1 >> 28) & 0xf;
|
|
if (RE.Word0 & macho::RF_Scattered)
|
|
return Error("NOT YET IMPLEMENTED: scattered relocations.");
|
|
|
|
// The address requiring a relocation.
|
|
intptr_t Address = (intptr_t)SectionBases[BaseSection] + RE.Word0;
|
|
|
|
// Figure out the target address of the relocation. If isExtern is true,
|
|
// this relocation references the symbol table, otherwise it references
|
|
// a section in the same object, numbered from 1 through NumSections
|
|
// (SectionBases is [0, NumSections-1]).
|
|
intptr_t Value;
|
|
if (isExtern) {
|
|
StringRef Name = SymbolNames[SymbolNum];
|
|
if (SymbolTable.lookup(Name)) {
|
|
// The symbol is in our symbol table, so we can resolve it directly.
|
|
Value = (intptr_t)SymbolTable[Name];
|
|
} else {
|
|
return Error("NOT YET IMPLEMENTED: relocations to pre-compiled code.");
|
|
}
|
|
DEBUG(dbgs() << "Resolve relocation(" << Type << ") from '" << Name
|
|
<< "' to " << format("0x%x", Address) << ".\n");
|
|
} else {
|
|
// For non-external relocations, the SymbolNum is actual a section number
|
|
// as described above.
|
|
Value = (intptr_t)SectionBases[SymbolNum - 1];
|
|
}
|
|
|
|
unsigned Size = 1 << Log2Size;
|
|
switch (CPUType) {
|
|
default: assert(0 && "Unsupported CPU type!");
|
|
case mach::CTM_x86_64:
|
|
return resolveX86_64Relocation(Address, Value, isPCRel, Type, Size);
|
|
case mach::CTM_ARM:
|
|
return resolveARMRelocation(Address, Value, isPCRel, Type, Size);
|
|
}
|
|
llvm_unreachable("");
|
|
}
|
|
|
|
bool RuntimeDyldImpl::resolveX86_64Relocation(intptr_t Address, intptr_t Value,
|
|
bool isPCRel, unsigned Type,
|
|
unsigned Size) {
|
|
// If the relocation is PC-relative, the value to be encoded is the
|
|
// pointer difference.
|
|
if (isPCRel)
|
|
// FIXME: It seems this value needs to be adjusted by 4 for an effective PC
|
|
// address. Is that expected? Only for branches, perhaps?
|
|
Value -= Address + 4;
|
|
|
|
switch(Type) {
|
|
default:
|
|
llvm_unreachable("Invalid relocation type!");
|
|
case macho::RIT_X86_64_Unsigned:
|
|
case macho::RIT_X86_64_Branch: {
|
|
// Mask in the target value a byte at a time (we don't have an alignment
|
|
// guarantee for the target address, so this is safest).
|
|
uint8_t *p = (uint8_t*)Address;
|
|
for (unsigned i = 0; i < Size; ++i) {
|
|
*p++ = (uint8_t)Value;
|
|
Value >>= 8;
|
|
}
|
|
return false;
|
|
}
|
|
case macho::RIT_X86_64_Signed:
|
|
case macho::RIT_X86_64_GOTLoad:
|
|
case macho::RIT_X86_64_GOT:
|
|
case macho::RIT_X86_64_Subtractor:
|
|
case macho::RIT_X86_64_Signed1:
|
|
case macho::RIT_X86_64_Signed2:
|
|
case macho::RIT_X86_64_Signed4:
|
|
case macho::RIT_X86_64_TLV:
|
|
return Error("Relocation type not implemented yet!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool RuntimeDyldImpl::resolveARMRelocation(intptr_t Address, intptr_t Value,
|
|
bool isPCRel, unsigned Type,
|
|
unsigned Size) {
|
|
// If the relocation is PC-relative, the value to be encoded is the
|
|
// pointer difference.
|
|
if (isPCRel) {
|
|
Value -= Address;
|
|
// ARM PCRel relocations have an effective-PC offset of two instructions
|
|
// (four bytes in Thumb mode, 8 bytes in ARM mode).
|
|
// FIXME: For now, assume ARM mode.
|
|
Value -= 8;
|
|
}
|
|
|
|
switch(Type) {
|
|
default:
|
|
case macho::RIT_Vanilla: {
|
|
llvm_unreachable("Invalid relocation type!");
|
|
// Mask in the target value a byte at a time (we don't have an alignment
|
|
// guarantee for the target address, so this is safest).
|
|
uint8_t *p = (uint8_t*)Address;
|
|
for (unsigned i = 0; i < Size; ++i) {
|
|
*p++ = (uint8_t)Value;
|
|
Value >>= 8;
|
|
}
|
|
break;
|
|
}
|
|
case macho::RIT_Pair:
|
|
case macho::RIT_Difference:
|
|
case macho::RIT_ARM_LocalDifference:
|
|
case macho::RIT_ARM_PreboundLazyPointer:
|
|
case macho::RIT_ARM_Branch24Bit: {
|
|
// Mask the value into the target address. We know instructions are
|
|
// 32-bit aligned, so we can do it all at once.
|
|
uint32_t *p = (uint32_t*)Address;
|
|
// The low two bits of the value are not encoded.
|
|
Value >>= 2;
|
|
// Mask the value to 24 bits.
|
|
Value &= 0xffffff;
|
|
// FIXME: If the destination is a Thumb function (and the instruction
|
|
// is a non-predicated BL instruction), we need to change it to a BLX
|
|
// instruction instead.
|
|
|
|
// Insert the value into the instruction.
|
|
*p = (*p & ~0xffffff) | Value;
|
|
break;
|
|
}
|
|
case macho::RIT_ARM_ThumbBranch22Bit:
|
|
case macho::RIT_ARM_ThumbBranch32Bit:
|
|
case macho::RIT_ARM_Half:
|
|
case macho::RIT_ARM_HalfDifference:
|
|
return Error("Relocation type not implemented yet!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool RuntimeDyldImpl::
|
|
loadSegment32(const MachOObject *Obj,
|
|
const MachOObject::LoadCommandInfo *SegmentLCI,
|
|
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
|
InMemoryStruct<macho::SegmentLoadCommand> Segment32LC;
|
|
Obj->ReadSegmentLoadCommand(*SegmentLCI, Segment32LC);
|
|
if (!Segment32LC)
|
|
return Error("unable to load segment load command");
|
|
|
|
// Map the segment into memory.
|
|
std::string ErrorStr;
|
|
Data = sys::Memory::AllocateRWX(Segment32LC->VMSize, 0, &ErrorStr);
|
|
if (!Data.base())
|
|
return Error("unable to allocate memory block: '" + ErrorStr + "'");
|
|
memcpy(Data.base(), Obj->getData(Segment32LC->FileOffset,
|
|
Segment32LC->FileSize).data(),
|
|
Segment32LC->FileSize);
|
|
memset((char*)Data.base() + Segment32LC->FileSize, 0,
|
|
Segment32LC->VMSize - Segment32LC->FileSize);
|
|
|
|
// Bind the section indices to addresses and record the relocations we
|
|
// need to resolve.
|
|
typedef std::pair<uint32_t, macho::RelocationEntry> RelocationMap;
|
|
SmallVector<RelocationMap, 64> Relocations;
|
|
|
|
SmallVector<void *, 16> SectionBases;
|
|
for (unsigned i = 0; i != Segment32LC->NumSections; ++i) {
|
|
InMemoryStruct<macho::Section> Sect;
|
|
Obj->ReadSection(*SegmentLCI, i, Sect);
|
|
if (!Sect)
|
|
return Error("unable to load section: '" + Twine(i) + "'");
|
|
|
|
// Remember any relocations the section has so we can resolve them later.
|
|
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
|
|
InMemoryStruct<macho::RelocationEntry> RE;
|
|
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
|
|
Relocations.push_back(RelocationMap(j, *RE));
|
|
}
|
|
|
|
// FIXME: Improve check.
|
|
// if (Sect->Flags != 0x80000400)
|
|
// return Error("unsupported section type!");
|
|
|
|
SectionBases.push_back((char*) Data.base() + Sect->Address);
|
|
}
|
|
|
|
// Bind all the symbols to address. Keep a record of the names for use
|
|
// by relocation resolution.
|
|
SmallVector<StringRef, 64> SymbolNames;
|
|
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
|
|
InMemoryStruct<macho::SymbolTableEntry> STE;
|
|
Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
|
|
if (!STE)
|
|
return Error("unable to read symbol: '" + Twine(i) + "'");
|
|
// Get the symbol name.
|
|
StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
|
|
SymbolNames.push_back(Name);
|
|
|
|
// Just skip undefined symbols. They'll be loaded from whatever
|
|
// module they come from (or system dylib) when we resolve relocations
|
|
// involving them.
|
|
if (STE->SectionIndex == 0)
|
|
continue;
|
|
|
|
unsigned Index = STE->SectionIndex - 1;
|
|
if (Index >= Segment32LC->NumSections)
|
|
return Error("invalid section index for symbol: '" + Twine() + "'");
|
|
|
|
// Get the section base address.
|
|
void *SectionBase = SectionBases[Index];
|
|
|
|
// Get the symbol address.
|
|
uint64_t Address = (uint64_t)SectionBase + STE->Value;
|
|
|
|
// FIXME: Check the symbol type and flags.
|
|
if (STE->Type != 0xF)
|
|
return Error("unexpected symbol type!");
|
|
if (STE->Flags != 0x0)
|
|
return Error("unexpected symbol type!");
|
|
|
|
DEBUG(dbgs() << "Symbol: '" << Name << "' @ " << Address << "\n");
|
|
|
|
SymbolTable[Name] = Address;
|
|
}
|
|
|
|
// Now resolve any relocations.
|
|
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
|
|
if (resolveRelocation(Relocations[i].first, Relocations[i].second,
|
|
SectionBases, SymbolNames))
|
|
return true;
|
|
}
|
|
|
|
// We've loaded the section; now mark the functions in it as executable.
|
|
// FIXME: We really should use the MemoryManager for this.
|
|
sys::Memory::setRangeExecutable(Data.base(), Data.size());
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool RuntimeDyldImpl::
|
|
loadSegment64(const MachOObject *Obj,
|
|
const MachOObject::LoadCommandInfo *SegmentLCI,
|
|
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
|
InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
|
|
Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
|
|
if (!Segment64LC)
|
|
return Error("unable to load segment load command");
|
|
|
|
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
|
|
InMemoryStruct<macho::Section64> Sect;
|
|
Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
|
|
if (!Sect)
|
|
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
|
|
|
// FIXME: Improve check.
|
|
if (Sect->Flags != 0x80000400)
|
|
return Error("unsupported section type!");
|
|
|
|
// Address and names of symbols in the section.
|
|
typedef std::pair<uint64_t, StringRef> SymbolEntry;
|
|
SmallVector<SymbolEntry, 64> Symbols;
|
|
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
|
|
InMemoryStruct<macho::Symbol64TableEntry> STE;
|
|
Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
|
|
if (!STE)
|
|
return Error("unable to read symbol: '" + Twine(i) + "'");
|
|
if (STE->SectionIndex > Segment64LC->NumSections)
|
|
return Error("invalid section index for symbol: '" + Twine() + "'");
|
|
|
|
// Just skip symbols not defined in this section.
|
|
if (STE->SectionIndex - 1 != SectNum)
|
|
continue;
|
|
|
|
// Get the symbol name.
|
|
StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
|
|
|
|
// FIXME: Check the symbol type and flags.
|
|
if (STE->Type != 0xF) // external, defined in this section.
|
|
return Error("unexpected symbol type!");
|
|
if (STE->Flags != 0x0)
|
|
return Error("unexpected symbol type!");
|
|
|
|
uint64_t BaseAddress = Sect->Address;
|
|
uint64_t Address = BaseAddress + STE->Value;
|
|
|
|
// Remember the symbol.
|
|
Symbols.push_back(SymbolEntry(Address, Name));
|
|
|
|
DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << Address << "\n");
|
|
}
|
|
// Sort the symbols by address, just in case they didn't come in that
|
|
// way.
|
|
array_pod_sort(Symbols.begin(), Symbols.end());
|
|
|
|
// Extract the function data.
|
|
uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
|
|
Segment64LC->FileSize).data();
|
|
for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
|
|
uint64_t StartOffset = Symbols[i].first;
|
|
uint64_t EndOffset = Symbols[i + 1].first - 1;
|
|
DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
|
|
<< " from [" << StartOffset << ", " << EndOffset << "]\n");
|
|
extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
|
|
}
|
|
// The last symbol we do after since the end address is calculated
|
|
// differently because there is no next symbol to reference.
|
|
uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
|
|
uint64_t EndOffset = Sect->Size - 1;
|
|
DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
|
|
<< " from [" << StartOffset << ", " << EndOffset << "]\n");
|
|
extractFunction(Symbols[Symbols.size()-1].second,
|
|
Base + StartOffset, Base + EndOffset);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RuntimeDyldImpl::loadObject(MemoryBuffer *InputBuffer) {
|
|
// If the linker is in an error state, don't do anything.
|
|
if (hasError())
|
|
return true;
|
|
// Load the Mach-O wrapper object.
|
|
std::string ErrorStr;
|
|
OwningPtr<MachOObject> Obj(
|
|
MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
|
|
if (!Obj)
|
|
return Error("unable to load object: '" + ErrorStr + "'");
|
|
|
|
// Get the CPU type information from the header.
|
|
const macho::Header &Header = Obj->getHeader();
|
|
|
|
// FIXME: Error checking that the loaded object is compatible with
|
|
// the system we're running on.
|
|
CPUType = Header.CPUType;
|
|
CPUSubtype = Header.CPUSubtype;
|
|
|
|
// Validate that the load commands match what we expect.
|
|
const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
|
|
*DysymtabLCI = 0;
|
|
for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
|
|
const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
|
|
switch (LCI.Command.Type) {
|
|
case macho::LCT_Segment:
|
|
case macho::LCT_Segment64:
|
|
if (SegmentLCI)
|
|
return Error("unexpected input object (multiple segments)");
|
|
SegmentLCI = &LCI;
|
|
break;
|
|
case macho::LCT_Symtab:
|
|
if (SymtabLCI)
|
|
return Error("unexpected input object (multiple symbol tables)");
|
|
SymtabLCI = &LCI;
|
|
break;
|
|
case macho::LCT_Dysymtab:
|
|
if (DysymtabLCI)
|
|
return Error("unexpected input object (multiple symbol tables)");
|
|
DysymtabLCI = &LCI;
|
|
break;
|
|
default:
|
|
return Error("unexpected input object (unexpected load command");
|
|
}
|
|
}
|
|
|
|
if (!SymtabLCI)
|
|
return Error("no symbol table found in object");
|
|
if (!SegmentLCI)
|
|
return Error("no symbol table found in object");
|
|
|
|
// Read and register the symbol table data.
|
|
InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
|
|
Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
|
|
if (!SymtabLC)
|
|
return Error("unable to load symbol table load command");
|
|
Obj->RegisterStringTable(*SymtabLC);
|
|
|
|
// Read the dynamic link-edit information, if present (not present in static
|
|
// objects).
|
|
if (DysymtabLCI) {
|
|
InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
|
|
Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
|
|
if (!DysymtabLC)
|
|
return Error("unable to load dynamic link-exit load command");
|
|
|
|
// FIXME: We don't support anything interesting yet.
|
|
// if (DysymtabLC->LocalSymbolsIndex != 0)
|
|
// return Error("NOT YET IMPLEMENTED: local symbol entries");
|
|
// if (DysymtabLC->ExternalSymbolsIndex != 0)
|
|
// return Error("NOT YET IMPLEMENTED: non-external symbol entries");
|
|
// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
|
|
// return Error("NOT YET IMPLEMENTED: undefined symbol entries");
|
|
}
|
|
|
|
// Load the segment load command.
|
|
if (SegmentLCI->Command.Type == macho::LCT_Segment) {
|
|
if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
|
|
return true;
|
|
} else {
|
|
if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RuntimeDyld class implementation
|
|
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *MM) {
|
|
Dyld = new RuntimeDyldImpl(MM);
|
|
}
|
|
|
|
RuntimeDyld::~RuntimeDyld() {
|
|
delete Dyld;
|
|
}
|
|
|
|
bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
|
|
return Dyld->loadObject(InputBuffer);
|
|
}
|
|
|
|
uint64_t RuntimeDyld::getSymbolAddress(StringRef Name) {
|
|
return Dyld->getSymbolAddress(Name);
|
|
}
|
|
|
|
sys::MemoryBlock RuntimeDyld::getMemoryBlock() {
|
|
return Dyld->getMemoryBlock();
|
|
}
|
|
|
|
StringRef RuntimeDyld::getErrorString() {
|
|
return Dyld->getErrorString();
|
|
}
|
|
|
|
} // end namespace llvm
|