llvm-6502/lib/CodeGen/RegAllocBigBlock.cpp
Dan Gohman b8cab9227a Fix command-line option printing to print two spaces where needed,
instead of requiring all "short description" strings to begin with
two spaces. This makes these strings less mysterious, and it fixes
some cases where short description strings mistakenly did not
begin with two spaces.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57521 91177308-0d34-0410-b5e6-96231b3b80d8
2008-10-14 20:25:08 +00:00

892 lines
34 KiB
C++

//===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the RABigBlock class
//
//===----------------------------------------------------------------------===//
// This register allocator is derived from RegAllocLocal.cpp. Like it, this
// allocator works on one basic block at a time, oblivious to others.
// However, the algorithm used here is suited for long blocks of
// instructions - registers are spilled by greedily choosing those holding
// values that will not be needed for the longest amount of time. This works
// particularly well for blocks with 10 or more times as many instructions
// as machine registers, but can be used for general code.
//
//===----------------------------------------------------------------------===//
//
// TODO: - automagically invoke linearscan for (groups of) small BBs?
// - break ties when picking regs? (probably not worth it in a
// JIT context)
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
static RegisterRegAlloc
bigBlockRegAlloc("bigblock", "Big-block register allocator",
createBigBlockRegisterAllocator);
namespace {
/// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap
/// keys.
struct VRegKeyInfo {
static inline unsigned getEmptyKey() { return -1U; }
static inline unsigned getTombstoneKey() { return -2U; }
static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
static unsigned getHashValue(const unsigned &Key) { return Key; }
};
/// This register allocator is derived from RegAllocLocal.cpp. Like it, this
/// allocator works on one basic block at a time, oblivious to others.
/// However, the algorithm used here is suited for long blocks of
/// instructions - registers are spilled by greedily choosing those holding
/// values that will not be needed for the longest amount of time. This works
/// particularly well for blocks with 10 or more times as many instructions
/// as machine registers, but can be used for general code.
///
/// TODO: - automagically invoke linearscan for (groups of) small BBs?
/// - break ties when picking regs? (probably not worth it in a
/// JIT context)
///
class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
public:
static char ID;
RABigBlock() : MachineFunctionPass(&ID) {}
private:
/// TM - For getting at TargetMachine info
///
const TargetMachine *TM;
/// MF - Our generic MachineFunction pointer
///
MachineFunction *MF;
/// RegInfo - For dealing with machine register info (aliases, folds
/// etc)
const TargetRegisterInfo *RegInfo;
typedef SmallVector<unsigned, 2> VRegTimes;
/// VRegReadTable - maps VRegs in a BB to the set of times they are read
///
DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable;
/// VRegReadIdx - keeps track of the "current time" in terms of
/// positions in VRegReadTable
DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx;
/// StackSlotForVirtReg - Maps virtual regs to the frame index where these
/// values are spilled.
IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg;
/// Virt2PhysRegMap - This map contains entries for each virtual register
/// that is currently available in a physical register.
IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
/// PhysRegsUsed - This array is effectively a map, containing entries for
/// each physical register that currently has a value (ie, it is in
/// Virt2PhysRegMap). The value mapped to is the virtual register
/// corresponding to the physical register (the inverse of the
/// Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
/// because it is used by a future instruction, and to -2 if it is not
/// allocatable. If the entry for a physical register is -1, then the
/// physical register is "not in the map".
///
std::vector<int> PhysRegsUsed;
/// VirtRegModified - This bitset contains information about which virtual
/// registers need to be spilled back to memory when their registers are
/// scavenged. If a virtual register has simply been rematerialized, there
/// is no reason to spill it to memory when we need the register back.
///
std::vector<int> VirtRegModified;
/// MBBLastInsnTime - the number of the the last instruction in MBB
///
int MBBLastInsnTime;
/// MBBCurTime - the number of the the instruction being currently processed
///
int MBBCurTime;
unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
return Virt2PhysRegMap[VirtReg];
}
unsigned &getVirt2StackSlot(unsigned VirtReg) {
return StackSlotForVirtReg[VirtReg];
}
/// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset
///
void markVirtRegModified(unsigned Reg, bool Val = true) {
assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
Reg -= TargetRegisterInfo::FirstVirtualRegister;
if (VirtRegModified.size() <= Reg)
VirtRegModified.resize(Reg+1);
VirtRegModified[Reg] = Val;
}
/// isVirtRegModified - Lets us query the VirtRegModified bitset
///
bool isVirtRegModified(unsigned Reg) const {
assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
&& "Illegal virtual register!");
return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
}
public:
/// getPassName - returns the BigBlock allocator's name
///
virtual const char *getPassName() const {
return "BigBlock Register Allocator";
}
/// getAnalaysisUsage - declares the required analyses
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// runOnMachineFunction - Register allocate the whole function
///
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
///
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// FillVRegReadTable - Fill out the table of vreg read times given a BB
///
void FillVRegReadTable(MachineBasicBlock &MBB);
/// areRegsEqual - This method returns true if the specified registers are
/// related to each other. To do this, it checks to see if they are equal
/// or if the first register is in the alias set of the second register.
///
bool areRegsEqual(unsigned R1, unsigned R2) const {
if (R1 == R2) return true;
for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
*AliasSet; ++AliasSet) {
if (*AliasSet == R1) return true;
}
return false;
}
/// getStackSpaceFor - This returns the frame index of the specified virtual
/// register on the stack, allocating space if necessary.
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void removePhysReg(unsigned PhysReg);
/// spillVirtReg - This method spills the value specified by PhysReg into
/// the virtual register slot specified by VirtReg. It then updates the RA
/// data structures to indicate the fact that PhysReg is now available.
///
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
unsigned VirtReg, unsigned PhysReg);
/// spillPhysReg - This method spills the specified physical register into
/// the virtual register slot associated with it. If OnlyVirtRegs is set to
/// true, then the request is ignored if the physical register does not
/// contain a virtual register.
///
void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned PhysReg, bool OnlyVirtRegs = false);
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
/// isPhysRegAvailable - Return true if the specified physical register is
/// free and available for use. This also includes checking to see if
/// aliased registers are all free...
///
bool isPhysRegAvailable(unsigned PhysReg) const;
/// getFreeReg - Look to see if there is a free register available in the
/// specified register class. If not, return 0.
///
unsigned getFreeReg(const TargetRegisterClass *RC);
/// chooseReg - Pick a physical register to hold the specified
/// virtual register by choosing the one which will be read furthest
/// in the future.
///
unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned VirtReg);
/// reloadVirtReg - This method transforms the specified specified virtual
/// register use to refer to a physical register. This method may do this
/// in one of several ways: if the register is available in a physical
/// register already, it uses that physical register. If the value is not
/// in a physical register, and if there are physical registers available,
/// it loads it into a register. If register pressure is high, and it is
/// possible, it tries to fold the load of the virtual register into the
/// instruction itself. It avoids doing this if register pressure is low to
/// improve the chance that subsequent instructions can use the reloaded
/// value. This method returns the modified instruction.
///
MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum);
};
char RABigBlock::ID = 0;
}
/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
// Find the location Reg would belong...
int FrameIdx = getVirt2StackSlot(VirtReg);
if (FrameIdx)
return FrameIdx - 1; // Already has space allocated?
// Allocate a new stack object for this spill location...
FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
RC->getAlignment());
// Assign the slot...
getVirt2StackSlot(VirtReg) = FrameIdx + 1;
return FrameIdx;
}
/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void RABigBlock::removePhysReg(unsigned PhysReg) {
PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
}
/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg. It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned PhysReg) {
assert(VirtReg && "Spilling a physical register is illegal!"
" Must not have appropriate kill for the register or use exists beyond"
" the intended one.");
DOUT << " Spilling register " << RegInfo->getName(PhysReg)
<< " containing %reg" << VirtReg;
const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
if (!isVirtRegModified(VirtReg))
DOUT << " which has not been modified, so no store necessary!";
// Otherwise, there is a virtual register corresponding to this physical
// register. We only need to spill it into its stack slot if it has been
// modified.
if (isVirtRegModified(VirtReg)) {
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
DOUT << " to stack slot #" << FrameIndex;
TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC);
++NumStores; // Update statistics
}
getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
DOUT << "\n";
removePhysReg(PhysReg);
}
/// spillPhysReg - This method spills the specified physical register into the
/// virtual register slot associated with it. If OnlyVirtRegs is set to true,
/// then the request is ignored if the physical register does not contain a
/// virtual register.
///
void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned PhysReg, bool OnlyVirtRegs) {
if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
} else {
// If the selected register aliases any other registers, we must make
// sure that one of the aliases isn't alive.
for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
*AliasSet; ++AliasSet)
if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
PhysRegsUsed[*AliasSet] != -2) // If allocatable.
if (PhysRegsUsed[*AliasSet])
spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
}
}
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
// Update information to note the fact that this register was just used, and
// it holds VirtReg.
PhysRegsUsed[PhysReg] = VirtReg;
getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
}
/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use. This also includes checking to see if aliased
/// registers are all free...
///
bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
if (PhysRegsUsed[PhysReg] != -1) return false;
// If the selected register aliases any other allocated registers, it is
// not free!
for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
*AliasSet; ++AliasSet)
if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
return false; // Can't use this reg then.
return true;
}
/// getFreeReg - Look to see if there is a free register available in the
/// specified register class. If not, return 0.
///
unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
// Get iterators defining the range of registers that are valid to allocate in
// this class, which also specifies the preferred allocation order.
TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
for (; RI != RE; ++RI)
if (isPhysRegAvailable(*RI)) { // Is reg unused?
assert(*RI != 0 && "Cannot use register!");
return *RI; // Found an unused register!
}
return 0;
}
/// chooseReg - Pick a physical register to hold the specified
/// virtual register by choosing the one whose value will be read
/// furthest in the future.
///
unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned VirtReg) {
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
// First check to see if we have a free register of the requested type...
unsigned PhysReg = getFreeReg(RC);
// If we didn't find an unused register, find the one which will be
// read at the most distant point in time.
if (PhysReg == 0) {
unsigned delay=0, longest_delay=0;
VRegTimes* ReadTimes;
unsigned curTime = MBBCurTime;
// for all physical regs in the RC,
for(TargetRegisterClass::iterator pReg = RC->begin();
pReg != RC->end(); ++pReg) {
// how long until they're read?
if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
if(ReadTimes && !ReadTimes->empty()) {
unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]];
while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) {
++pt;
}
if(pt < ReadTimes->size())
delay = (*ReadTimes)[pt] - curTime;
else
delay = MBBLastInsnTime + 1 - curTime;
} else {
// This register is only defined, but never
// read in this MBB. Therefore the next read
// happens after the end of this MBB
delay = MBBLastInsnTime + 1 - curTime;
}
if(delay > longest_delay) {
longest_delay = delay;
PhysReg = *pReg;
}
}
}
if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose
// a register to spill by looking through the
// read timetable, so now we just spill the
// first allocatable register we find.
// for all physical regs in the RC,
for(TargetRegisterClass::iterator pReg = RC->begin();
pReg != RC->end(); ++pReg) {
// if we find a register we can spill
if(PhysRegsUsed[*pReg]>=-1)
PhysReg = *pReg; // choose it to be spilled
}
}
assert(PhysReg && "couldn't choose a register to spill :( ");
// TODO: assert that RC->contains(PhysReg) / handle aliased registers?
// since we needed to look in the table we need to spill this register.
spillPhysReg(MBB, I, PhysReg);
}
// assign the vreg to our chosen physical register
assignVirtToPhysReg(VirtReg, PhysReg);
return PhysReg; // and return it
}
/// reloadVirtReg - This method transforms an instruction with a virtual
/// register use to one that references a physical register. It does this as
/// follows:
///
/// 1) If the register is already in a physical register, it uses it.
/// 2) Otherwise, if there is a free physical register, it uses that.
/// 3) Otherwise, it calls chooseReg() to get the physical register
/// holding the most distantly needed value, generating a spill in
/// the process.
///
/// This method returns the modified instruction.
MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum) {
unsigned VirtReg = MI->getOperand(OpNum).getReg();
const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
// If the virtual register is already available in a physical register,
// just update the instruction and return.
if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
MI->getOperand(OpNum).setReg(PR);
return MI;
}
// Otherwise, if we have free physical registers available to hold the
// value, use them.
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
unsigned PhysReg = getFreeReg(RC);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
if (PhysReg) { // we have a free register, so use it.
assignVirtToPhysReg(VirtReg, PhysReg);
} else { // no free registers available.
// try to fold the spill into the instruction
SmallVector<unsigned, 2> Ops;
Ops.push_back(OpNum);
if(MachineInstr* FMI = TII->foldMemoryOperand(*MF, MI, Ops, FrameIndex)) {
++NumFolded;
FMI->copyKillDeadInfo(MI);
return MBB.insert(MBB.erase(MI), FMI);
}
// determine which of the physical registers we'll kill off, since we
// couldn't fold.
PhysReg = chooseReg(MBB, MI, VirtReg);
}
// this virtual register is now unmodified (since we just reloaded it)
markVirtRegModified(VirtReg, false);
DOUT << " Reloading %reg" << VirtReg << " into "
<< RegInfo->getName(PhysReg) << "\n";
// Add move instruction(s)
TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
++NumLoads; // Update statistics
MF->getRegInfo().setPhysRegUsed(PhysReg);
MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
return MI;
}
/// Fill out the vreg read timetable. Since ReadTime increases
/// monotonically, the individual readtime sets will be sorted
/// in ascending order.
void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator MII;
unsigned ReadTime;
for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
MachineInstr *MI = MII;
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& MO = MI->getOperand(i);
// look for vreg reads..
if (MO.isReg() && !MO.isDef() && MO.getReg() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
// ..and add them to the read table.
VRegTimes* &Times = VRegReadTable[MO.getReg()];
if(!VRegReadTable[MO.getReg()]) {
Times = new VRegTimes;
VRegReadIdx[MO.getReg()] = 0;
}
Times->push_back(ReadTime);
}
}
}
MBBLastInsnTime = ReadTime;
for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin();
Reads != VRegReadTable.end(); ++Reads) {
if(Reads->second) {
DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n";
}
}
}
/// isReadModWriteImplicitKill - True if this is an implicit kill for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
MO.isDef() && !MO.isDead())
return true;
}
return false;
}
/// isReadModWriteImplicitDef - True if this is an implicit def for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
!MO.isDef() && MO.isKill())
return true;
}
return false;
}
void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator MII = MBB.begin();
const TargetInstrInfo &TII = *TM->getInstrInfo();
DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
// If this is the first basic block in the machine function, add live-in
// registers as active.
if (&MBB == &*MF->begin()) {
for (MachineRegisterInfo::livein_iterator
I = MF->getRegInfo().livein_begin(),
E = MF->getRegInfo().livein_end(); I != E; ++I) {
unsigned Reg = I->first;
MF->getRegInfo().setPhysRegUsed(Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
*AliasSet; ++AliasSet) {
if (PhysRegsUsed[*AliasSet] != -2) {
PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
MF->getRegInfo().setPhysRegUsed(*AliasSet);
}
}
}
}
// Otherwise, sequentially allocate each instruction in the MBB.
MBBCurTime = -1;
while (MII != MBB.end()) {
MachineInstr *MI = MII++;
MBBCurTime++;
const TargetInstrDesc &TID = MI->getDesc();
DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI;
DOUT << " Regs have values: ";
for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
DOUT << "[" << RegInfo->getName(i)
<< ",%reg" << PhysRegsUsed[i] << "] ";
DOUT << "\n");
SmallVector<unsigned, 8> Kills;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isKill()) {
if (!MO.isImplicit())
Kills.push_back(MO.getReg());
else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
// These are extra physical register kills when a sub-register
// is defined (def of a sub-register is a read/mod/write of the
// larger registers). Ignore.
Kills.push_back(MO.getReg());
}
}
// Get the used operands into registers. This has the potential to spill
// incoming values if we are out of registers. Note that we completely
// ignore physical register uses here. We assume that if an explicit
// physical register is referenced by the instruction, that it is guaranteed
// to be live-in, or the input is badly hosed.
//
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& MO = MI->getOperand(i);
// here we are looking for only used operands (never def&use)
if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg()))
MI = reloadVirtReg(MBB, MI, i);
}
// If this instruction is the last user of this register, kill the
// value, freeing the register being used, so it doesn't need to be
// spilled to memory.
//
for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
unsigned VirtReg = Kills[i];
unsigned PhysReg = VirtReg;
if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
// If the virtual register was never materialized into a register, it
// might not be in the map, but it won't hurt to zero it out anyway.
unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
PhysReg = PhysRegSlot;
PhysRegSlot = 0;
} else if (PhysRegsUsed[PhysReg] == -2) {
// Unallocatable register dead, ignore.
continue;
} else {
assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
"Silently clearing a virtual register?");
}
if (PhysReg) {
DOUT << " Last use of " << RegInfo->getName(PhysReg)
<< "[%reg" << VirtReg <<"], removing it from live set\n";
removePhysReg(PhysReg);
for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg);
*AliasSet; ++AliasSet) {
if (PhysRegsUsed[*AliasSet] != -2) {
DOUT << " Last use of "
<< RegInfo->getName(*AliasSet)
<< "[%reg" << VirtReg <<"], removing it from live set\n";
removePhysReg(*AliasSet);
}
}
}
}
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
unsigned Reg = MO.getReg();
if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
// These are extra physical register defs when a sub-register
// is defined (def of a sub-register is a read/mod/write of the
// larger registers). Ignore.
if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
MF->getRegInfo().setPhysRegUsed(Reg);
spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
PhysRegsUsed[Reg] = 0; // It is free and reserved now
for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
*AliasSet; ++AliasSet) {
if (PhysRegsUsed[*AliasSet] != -2) {
PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
MF->getRegInfo().setPhysRegUsed(*AliasSet);
}
}
}
}
// Loop over the implicit defs, spilling them as well.
if (TID.getImplicitDefs()) {
for (const unsigned *ImplicitDefs = TID.getImplicitDefs();
*ImplicitDefs; ++ImplicitDefs) {
unsigned Reg = *ImplicitDefs;
if (PhysRegsUsed[Reg] != -2) {
spillPhysReg(MBB, MI, Reg, true);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
}
MF->getRegInfo().setPhysRegUsed(Reg);
for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
*AliasSet; ++AliasSet) {
if (PhysRegsUsed[*AliasSet] != -2) {
PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
MF->getRegInfo().setPhysRegUsed(*AliasSet);
}
}
}
}
SmallVector<unsigned, 8> DeadDefs;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isDead())
DeadDefs.push_back(MO.getReg());
}
// Okay, we have allocated all of the source operands and spilled any values
// that would be destroyed by defs of this instruction. Loop over the
// explicit defs and assign them to a register, spilling incoming values if
// we need to scavenge a register.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() && MO.getReg() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned DestVirtReg = MO.getReg();
unsigned DestPhysReg;
// If DestVirtReg already has a value, use it.
if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
MF->getRegInfo().setPhysRegUsed(DestPhysReg);
markVirtRegModified(DestVirtReg);
MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
}
}
// If this instruction defines any registers that are immediately dead,
// kill them now.
//
for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
unsigned VirtReg = DeadDefs[i];
unsigned PhysReg = VirtReg;
if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
PhysReg = PhysRegSlot;
assert(PhysReg != 0);
PhysRegSlot = 0;
} else if (PhysRegsUsed[PhysReg] == -2) {
// Unallocatable register dead, ignore.
continue;
}
if (PhysReg) {
DOUT << " Register " << RegInfo->getName(PhysReg)
<< " [%reg" << VirtReg
<< "] is never used, removing it frame live list\n";
removePhysReg(PhysReg);
for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
*AliasSet; ++AliasSet) {
if (PhysRegsUsed[*AliasSet] != -2) {
DOUT << " Register " << RegInfo->getName(*AliasSet)
<< " [%reg" << *AliasSet
<< "] is never used, removing it frame live list\n";
removePhysReg(*AliasSet);
}
}
}
}
// Finally, if this is a noop copy instruction, zap it.
unsigned SrcReg, DstReg;
if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg)
MBB.erase(MI);
}
MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
// Spill all physical registers holding virtual registers now.
for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
if (unsigned VirtReg = PhysRegsUsed[i])
spillVirtReg(MBB, MI, VirtReg, i);
else
removePhysReg(i);
}
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
DOUT << "Machine Function " << "\n";
MF = &Fn;
TM = &Fn.getTarget();
RegInfo = TM->getRegisterInfo();
PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
// At various places we want to efficiently check to see whether a register
// is allocatable. To handle this, we mark all unallocatable registers as
// being pinned down, permanently.
{
BitVector Allocable = RegInfo->getAllocatableSet(Fn);
for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
if (!Allocable[i])
PhysRegsUsed[i] = -2; // Mark the reg unallocable.
}
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg());
StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg());
VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() -
TargetRegisterInfo::FirstVirtualRegister + 1, 0);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// fill out the read timetable
FillVRegReadTable(*MBB);
// use it to allocate the BB
AllocateBasicBlock(*MBB);
// clear it
VRegReadTable.clear();
}
StackSlotForVirtReg.clear();
PhysRegsUsed.clear();
VirtRegModified.clear();
Virt2PhysRegMap.clear();
return true;
}
FunctionPass *llvm::createBigBlockRegisterAllocator() {
return new RABigBlock();
}