1
0
mirror of https://github.com/jscrane/r65emu.git synced 2024-07-23 00:29:02 +00:00

cosmetic changes

This commit is contained in:
Stephen Crane 2014-11-10 14:16:45 +00:00
parent 0c87474d58
commit 5e5116229b
12 changed files with 393 additions and 388 deletions

69
acia.h
View File

@ -1,39 +1,40 @@
/*
* acia.h -- ACIA device
*/
#ifndef __ACIA_H__
#define __ACIA_H__
struct acia {
// status bits returned by operator byte
//
static const byte rdrf = 1 << 0;
static const byte tdre = 1 << 1;
static const byte dcd = 1 << 2;
static const byte cts = 1 << 3;
static const byte fe = 1 << 4;
static const byte ovrn = 1 << 5;
static const byte pc = 1 << 6;
static const byte irq = 1 << 7;
// control operations (four combinable groups)
//
static const byte cd1 = 0x00; // divide by 1
static const byte cd16 = 0x01; // divide by 16
static const byte cd64 = 0x02; // divide by 64
static const byte reset = 0x03; // master reset
static const byte ws7e2 = 0 << 2; // parity
static const byte ws7o2 = 1 << 2;
static const byte ws7e1 = 2 << 2;
static const byte ws7o1 = 3 << 2;
static const byte ws8n2 = 4 << 2;
static const byte ws8n1 = 5 << 2;
static const byte ws8e1 = 6 << 2;
static const byte ws8o1 = 7 << 2;
// status bits returned by operator byte
//
static const byte rdrf = 1 << 0;
static const byte tdre = 1 << 1;
static const byte dcd = 1 << 2;
static const byte cts = 1 << 3;
static const byte fe = 1 << 4;
static const byte ovrn = 1 << 5;
static const byte pc = 1 << 6;
static const byte irq = 1 << 7;
static const byte lrts_dti = 0 << 5; // /rts, disable trans irq
static const byte lrts_eti = 1 << 5; // /rts, enable
static const byte hrts_dti = 2 << 5; // rts, disable
static const byte lrts_dti_brk = 3 << 5; // /rts, disable, send brk
// control operations (four combinable groups)
//
static const byte cd1 = 0x00; // divide by 1
static const byte cd16 = 0x01; // divide by 16
static const byte cd64 = 0x02; // divide by 64
static const byte reset = 0x03; // master reset
static const byte ws7e2 = 0 << 2; // parity
static const byte ws7o2 = 1 << 2;
static const byte ws7e1 = 2 << 2;
static const byte ws7o1 = 3 << 2;
static const byte ws8n2 = 4 << 2;
static const byte ws8n1 = 5 << 2;
static const byte ws8e1 = 6 << 2;
static const byte ws8o1 = 7 << 2;
static const byte eri = 1 << 7; // enable receive interrupt
static const byte lrts_dti = 0 << 5; // /rts, disable trans irq
static const byte lrts_eti = 1 << 5; // /rts, enable
static const byte hrts_dti = 2 << 5; // rts, disable
static const byte lrts_dti_brk = 3 << 5; // /rts, disable, send brk
static const byte eri = 1 << 7; // enable receive interrupt
};
#endif

7
cpu.h
View File

@ -1,8 +1,5 @@
/*
* cpu.h
*/
#ifndef _CPU_H
#define _CPU_H
#ifndef __CPU_H__
#define __CPU_H__
#ifndef _SETJMP_H
#include <setjmp.h>

View File

@ -2,8 +2,8 @@
* The hardware configuration of the machine.
* (This should be the same for all emulated devices.)
*/
#ifndef __HARDWARE_H
#define __HARDWARE_H
#ifndef __HARDWARE_H__
#define __HARDWARE_H__
// TFT display...
// NOTE: edit memorysaver.h to select the correct chip for your display!
@ -41,9 +41,17 @@ void hardware_init(class CPU &);
void hardware_checkpoint(class Stream &);
void hardware_restore(class Stream &);
#ifdef __PS2DRV_H__
extern class PS2Driver ps2;
#endif
#ifdef __SPIRAM_H__
extern class spiram sram;
#endif
#ifdef UTFT_h
extern class UTFT utft;
#endif
#ifdef __MEMORY_H__
extern class Memory memory;
#endif
#endif

View File

@ -1,5 +1,5 @@
#ifndef _KEYBOARD_H
#define _KEYBOARD_H
#ifndef __KEYBOARD_H__
#define __KEYBOARD_H__
class Keyboard {
public:

View File

@ -1,8 +1,5 @@
/*
* memory.h
*/
#ifndef _MEMORY_H
#define _MEMORY_H
#ifndef __MEMORY_H__
#define __MEMORY_H__
typedef unsigned char byte;

5
prom.h
View File

@ -1,3 +1,6 @@
#ifndef __PROM_H__
#define __PROM_H__
class prom: public Memory::Device {
public:
virtual void operator= (byte) {}
@ -8,3 +11,5 @@ public:
private:
const byte *_mem;
};
#endif

View File

@ -1,46 +1,46 @@
#ifndef __PS2DRV_H
#define __PS2DRV_H
#ifndef __PS2DRV_H__
#define __PS2DRV_H__
class PS2Driver
{
public:
PS2Driver() {}
/**
* Starts the keyboard "service" by registering the external interrupt.
* setting the pin modes correctly and driving those needed to high.
* The propably best place to call this method is in the setup routine.
*/
void begin(uint8_t dataPin, uint8_t irq_pin);
public:
PS2Driver() {}
/**
* Starts the keyboard "service" by registering the external interrupt.
* setting the pin modes correctly and driving those needed to high.
* The propably best place to call this method is in the setup routine.
*/
void begin(uint8_t dataPin, uint8_t irq_pin);
/**
* Returns true if there is a char to be read, false if not.
*/
bool available();
/**
* returns true if the key has been released
*/
bool isbreak();
/**
* Returns the scancode last received from the keyboard.
* If there is no char available, -1 is returned.
*/
int read();
/**
* Returns true if there is a char to be read, false if not.
*/
bool available();
/**
* returns true if the key has been released
*/
bool isbreak();
/**
* Returns the scancode last received from the keyboard.
* If there is no char available, -1 is returned.
*/
int read();
};
#define PS2_F1 0x05
#define PS2_F2 0x06
#define PS2_F3 0x04
#define PS2_F4 0x0C
#define PS2_F5 0x03
#define PS2_F6 0x0B
#define PS2_F7 0x83
#define PS2_F8 0x0A
#define PS2_F9 0x01
#define PS2_F10 0x09
#define PS2_F11 0x78
#define PS2_F12 0x07
#define PS2_F1 0x05
#define PS2_F2 0x06
#define PS2_F3 0x04
#define PS2_F4 0x0C
#define PS2_F5 0x03
#define PS2_F6 0x0B
#define PS2_F7 0x83
#define PS2_F8 0x0A
#define PS2_F9 0x01
#define PS2_F10 0x09
#define PS2_F11 0x78
#define PS2_F12 0x07
#endif

585
r6502.h
View File

@ -1,316 +1,313 @@
/*
* r6502.h
*/
#ifndef _R6502_H
#define _R6502_H
#ifndef __R6502_H__
#define __R6502_H__
#undef PC
class Stream;
class r6502: public CPU {
public:
void raise(int);
void reset();
Memory::address run(unsigned);
char *status();
void checkpoint(Stream &);
void restore(Stream &);
void raise(int);
void reset();
Memory::address run(unsigned);
char *status();
void checkpoint(Stream &);
void restore(Stream &);
r6502 (Memory *, jmp_buf *, CPU::statfn);
r6502 (Memory *, jmp_buf *, CPU::statfn);
private:
/* registers */
Memory::address PC;
byte S, A, X, Y;
byte N, V, B, D, I, Z, C;
union {
struct {
unsigned C:1;
unsigned Z:1;
unsigned I:1;
unsigned D:1;
unsigned B:1;
unsigned _:1; // unused
unsigned V:1;
unsigned N:1;
} bits;
byte value;
} P;
byte _toBCD[256], _fromBCD[256]; // BCD maps
bool _irq; // interrupt pending
/* registers */
Memory::address PC;
byte S, A, X, Y;
byte N, V, B, D, I, Z, C;
union {
struct {
unsigned C:1;
unsigned Z:1;
unsigned I:1;
unsigned D:1;
unsigned B:1;
unsigned _:1; // unused
unsigned V:1;
unsigned N:1;
} bits;
byte value;
} P;
byte _toBCD[256], _fromBCD[256]; // BCD maps
bool _irq; // interrupt pending?
void irq();
void nmi();
byte flags();
void irq();
void nmi();
byte flags();
/* stack */
inline void pusha (Memory::address ret) {
(*_memory)[0x0100+S--] = ret >> 8;
(*_memory)[0x0100+S--] = ret & 0xff;
}
/* stack */
inline void pusha (Memory::address ret) {
(*_memory)[0x0100+S--] = ret >> 8;
(*_memory)[0x0100+S--] = ret & 0xff;
}
inline void pushb (byte b) {
(*_memory)[0x0100+S--] = b;
}
inline void pushb (byte b) {
(*_memory)[0x0100+S--] = b;
}
inline byte popb () {
return (*_memory)[++S+0x0100];
}
inline byte popb () {
return (*_memory)[++S+0x0100];
}
inline Memory::address popa () {
byte b = popb ();
return ((popb () << 8) | b);
}
inline Memory::address popa () {
byte b = popb ();
return ((popb () << 8) | b);
}
static const Memory::address nmivec = 0xfffa;
static const Memory::address resvec = 0xfffc;
static const Memory::address ibvec = 0xfffe;
inline Memory::address vector(Memory::address v) {
return ((*_memory)[v+1] << 8) | (*_memory)[v];
}
static const Memory::address nmivec = 0xfffa;
static const Memory::address resvec = 0xfffc;
static const Memory::address ibvec = 0xfffe;
inline Memory::address vector(Memory::address v) {
return ((*_memory)[v+1] << 8) | (*_memory)[v];
}
/* operators */
inline void _cmp (byte a) { Z=N=A-a; C=(A>=a); }
inline void _cpx (byte a) { Z=N=X-a; C=(X>=a); }
inline void _cpy (byte a) { Z=N=Y-a; C=(Y>=a); }
inline void _and (byte a) { Z=N=A&=a; }
inline void _eor (byte a) { Z=N=A^=a; }
inline void _ora (byte a) { Z=N=A|=a; }
inline void _lda (byte a) { Z=N=A=a; }
inline void _ldx (byte a) { Z=N=X=a; }
inline void _ldy (byte a) { Z=N=Y=a; }
/* operators */
inline void _cmp (byte a) { Z=N=A-a; C=(A>=a); }
inline void _cpx (byte a) { Z=N=X-a; C=(X>=a); }
inline void _cpy (byte a) { Z=N=Y-a; C=(Y>=a); }
inline void _and (byte a) { Z=N=A&=a; }
inline void _eor (byte a) { Z=N=A^=a; }
inline void _ora (byte a) { Z=N=A|=a; }
inline void _lda (byte a) { Z=N=A=a; }
inline void _ldx (byte a) { Z=N=X=a; }
inline void _ldy (byte a) { Z=N=Y=a; }
/* modes */
inline Memory::address _a () {
Memory::address a = (*_memory)[PC++];
return a | ((*_memory)[PC++] << 8);
}
inline Memory::address _ax () { return _a()+X; }
inline Memory::address _ay () { return _a()+Y; }
inline Memory::address _z () { return (*_memory)[PC++]; }
inline Memory::address _zx () { return (_z()+X) & 0xff; }
inline Memory::address _zy () { return (_z()+Y) & 0xff; }
inline Memory::address _i (Memory::address a) {
return ((*_memory)[a+1]<<8)|(*_memory)[a];
}
inline Memory::address _ix () { return _i(_zx()); }
inline Memory::address _iy () { return _i((*_memory)[PC++])+Y; }
/* modes */
inline Memory::address _a () {
Memory::address a = (*_memory)[PC++];
return a | ((*_memory)[PC++] << 8);
}
inline Memory::address _ax () { return _a()+X; }
inline Memory::address _ay () { return _a()+Y; }
inline Memory::address _z () { return (*_memory)[PC++]; }
inline Memory::address _zx () { return (_z()+X) & 0xff; }
inline Memory::address _zy () { return (_z()+Y) & 0xff; }
inline Memory::address _i (Memory::address a) {
return ((*_memory)[a+1]<<8)|(*_memory)[a];
}
inline Memory::address _ix () { return _i(_zx()); }
inline Memory::address _iy () { return _i((*_memory)[PC++])+Y; }
void _adc (byte a);
void _sbc (byte a) { if (P.bits.D) sbcd(a); else _adc(~a); }
void sbcd (byte a);
void _adc (byte a);
void _sbc (byte a) { if (P.bits.D) sbcd(a); else _adc(~a); }
void sbcd (byte a);
inline byte __ror (byte b) {
N=b>>1; if (C) N|=0x80; C=b&1; return Z=N;
}
inline void _ror (Memory::address a) {
(*_memory)[a] = __ror((*_memory)[a]);
}
inline byte __rol (byte b) {
N=b<<1; if (C) N|=1; C=(b&0x80)!=0; return Z=N;
}
inline void _rol (Memory::address a) {
(*_memory)[a] = __rol((*_memory)[a]);
}
inline byte __asl (byte b) { C=(b&0x80)!=0; return Z=N=b<<1; }
inline void _asl (Memory::address a) {
(*_memory)[a] = __asl((*_memory)[a]);
}
inline byte __lsr (byte b) { C=b&1; Z=b>>1; N=0; return Z; }
inline void _lsr (Memory::address a) {
(*_memory)[a] = __lsr((*_memory)[a]);
}
inline void _inc (Memory::address a) {
Z=N=1+(*_memory)[a]; (*_memory)[a]=Z;
}
inline void _dec (Memory::address a) {
Z=N=(*_memory)[a]-1; (*_memory)[a]=Z;
}
inline void _bit (byte z) { V=((z & 0x40)!=0); N=(z & 0x80); Z=(A & z); }
inline void _bra() {
byte b = (*_memory)[PC];
PC += b;
if (b > 127) PC -= 0x0100;
}
inline byte __ror (byte b) {
N=b>>1; if (C) N|=0x80; C=b&1; return Z=N;
}
inline void _ror (Memory::address a) {
(*_memory)[a] = __ror((*_memory)[a]);
}
inline byte __rol (byte b) {
N=b<<1; if (C) N|=1; C=(b&0x80)!=0; return Z=N;
}
inline void _rol (Memory::address a) {
(*_memory)[a] = __rol((*_memory)[a]);
}
inline byte __asl (byte b) { C=(b&0x80)!=0; return Z=N=b<<1; }
inline void _asl (Memory::address a) {
(*_memory)[a] = __asl((*_memory)[a]);
}
inline byte __lsr (byte b) { C=b&1; Z=b>>1; N=0; return Z; }
inline void _lsr (Memory::address a) {
(*_memory)[a] = __lsr((*_memory)[a]);
}
inline void _inc (Memory::address a) {
Z=N=1+(*_memory)[a]; (*_memory)[a]=Z;
}
inline void _dec (Memory::address a) {
Z=N=(*_memory)[a]-1; (*_memory)[a]=Z;
}
inline void _bit (byte z) { V=((z & 0x40)!=0); N=(z & 0x80); Z=(A & z); }
inline void _bra() {
byte b = (*_memory)[PC];
PC += b;
if (b > 127) PC -= 0x0100;
}
/* dispatch table */
typedef void (r6502::*OP)(); OP _ops[256];
/* dispatch table */
typedef void (r6502::*OP)(); OP _ops[256];
/* operations */
void brk ();
void ora_ix () { _ora ((*_memory)[_ix()]); }
void ill ();
void nop2 () { PC++; }
void ora_z () { _ora ((*_memory)[_z()]); }
void asl_z () { _asl (_z()); }
void php ();
void ora_ () { _ora ((*_memory)[PC++]); }
void asl () { C=(A&0x80)!=0; Z=N=A<<=1; }
void nop3 () { PC+=2; }
void ora_a () { _ora ((*_memory)[_a()]); }
void asl_a () { _asl (_a()); }
// 10
void bpl () { if (!(N & 0x80)) _bra(); PC++; }
void ora_iy () { _ora ((*_memory)[_iy()]); }
void ora_zx () { _ora ((*_memory)[_zx()]); }
void asl_zx () { _asl (_zx()); }
void clc () { C=0; }
void ora_ay () { _ora ((*_memory)[_ay()]); }
void nop () { }
void ora_ax () { _ora ((*_memory)[_ax()]); }
void asl_ax () { _asl (_ax()); }
// 20
void jsr ();
void and_ix () { _and ((*_memory)[_ix()]); }
void bit_z () { _bit ((*_memory)[_z()]); }
void and_z () { _and ((*_memory)[_z()]); }
void rol_z () { _rol (_z()); }
void plp ();
void and_ () { _and ((*_memory)[PC++]); }
void rol () { A=__rol (A); }
void bit_a () { _bit ((*_memory)[_a()]); }
void and_a () { _and ((*_memory)[_a()]); }
void rol_a () { _rol (_a()); }
// 30
void bmi () { if (N & 0x80) _bra(); PC++; }
void and_iy () { _and ((*_memory)[_iy()]); }
void and_zx () { _and ((*_memory)[_zx()]); }
void rol_zx () { _rol (_zx()); }
void sec () { C=1; }
void and_ay () { _and ((*_memory)[_ay()]); }
void and_ax () { _and ((*_memory)[_ax()]); }
void rol_ax () { _rol (_ax()); }
// 40
void rti ();
void eor_ix () { _eor ((*_memory)[_ix()]); }
void eor_z () { _eor ((*_memory)[_z()]); }
void lsr_z () { _lsr (_z()); }
void pha () { pushb (A); }
void eor_ () { _eor ((*_memory)[PC++]); }
void lsr_ () { A=__lsr(A); }
void jmp () { PC = _a (); }
void eor_a () { _eor ((*_memory)[_a()]); }
void lsr_a () { _lsr (_a()); }
// 50
void bvc () { if (!V) _bra(); PC++; }
void eor_iy () { _eor ((*_memory)[_iy()]); }
void eor_zx () { _eor ((*_memory)[_zx()]); }
void lsr_zx () { _lsr (_zx()); }
void cli ();
void eor_ay () { _eor ((*_memory)[_ay()]); }
void eor_ax () { _eor ((*_memory)[_ax()]); }
void lsr_ax () { _lsr (_ax()); }
// 60
void rts ();
void adc_ix () { _adc ((*_memory)[_ix()]); }
void adc_z () { _adc ((*_memory)[_z()]); }
void ror_z () { _ror (_z()); }
void pla () { Z=N=A=popb (); }
void adc_ () { _adc ((*_memory)[PC++]); }
void ror_ () { A=__ror (A); }
void jmp_i () { PC = _i(_a()); }
void adc_a () { _adc ((*_memory)[_a()]); }
void ror_a () { _ror (_a()); }
// 70
void bvs () { if (V) _bra(); PC++; }
void adc_iy () { _adc ((*_memory)[_iy()]); }
void adc_zx () { _adc ((*_memory)[_zx()]); }
void ror_zx () { _ror (_zx ()); }
void sei () { P.bits.I = 1; }
void adc_ay () { _adc ((*_memory)[_ay()]); }
void adc_ax () { _adc ((*_memory)[_ax()]); }
void ror_ax () { _ror (_ax ()); }
// 80
void sta_ix () { (*_memory)[_ix()] = A; }
void sty_z () { (*_memory)[_z()] = Y; }
void sta_z () { (*_memory)[_z()] = A; }
void stx_z () { (*_memory)[_z()] = X; }
void dey () { Z=N=--Y; }
void txa () { Z=N=A=X; }
void sty_a () { (*_memory)[_a()] = Y; }
void sta_a () { (*_memory)[_a()] = A; }
void stx_a () { (*_memory)[_a()] = X; }
// 90
void bcc () { if (!C) _bra(); PC++; }
void sta_iy () { (*_memory)[_iy()] = A; }
void sty_zx () { (*_memory)[_zx()] = Y; }
void sta_zx () { (*_memory)[_zx()] = A; }
void stx_zy () { (*_memory)[_zy()] = X; }
void tya () { Z=N=A=Y; }
void sta_ay () { (*_memory)[_ay()] = A; }
void txs () { S=X; }
void sta_ax () { (*_memory)[_ax()] = A; }
// a0
void ldy_ () { _ldy ((*_memory)[PC++]); }
void lda_ix () { _lda ((*_memory)[_ix()]); }
void ldx_ () { _ldx ((*_memory)[PC++]); }
void lax_ix () { lda_ix (); X=A; }
void ldy_z () { _ldy ((*_memory)[_z()]); }
void lda_z () { _lda ((*_memory)[_z()]); }
void ldx_z () { _ldx ((*_memory)[_z()]); }
void lax_z () { lda_z (); X=A; }
void tay () { Z=N=Y=A; }
void lda_ () { _lda ((*_memory)[PC++]); }
void tax () { Z=N=X=A; }
void ldy_a () { _ldy ((*_memory)[_a()]); }
void lda_a () { _lda ((*_memory)[_a()]); }
void ldx_a () { _ldx ((*_memory)[_a()]); }
void lax_a () { lda_a (); X=A; }
// b0
void bcs () { if (C) _bra(); PC++; }
void lda_iy () { _lda ((*_memory)[_iy()]); }
void lax_iy () { lda_iy (); X=A; }
void ldy_zx () { _ldy ((*_memory)[_zx()]); }
void lda_zx () { _lda ((*_memory)[_zx()]); }
void ldx_zy () { _ldx ((*_memory)[_zy()]); }
void lax_zy () { ldx_zy (); A=X; }
void clv () { V=0; }
void lda_ay () { _lda ((*_memory)[_ay()]); }
void tsx () { Z=N=X=S; }
void ldy_ax () { _ldy ((*_memory)[_ax()]); }
void lda_ax () { _lda ((*_memory)[_ax()]); }
void ldx_ay () { _ldx ((*_memory)[_ay()]); }
void lax_ay () { ldx_ay (); A=X; }
// c0
void cpy_ () { _cpy ((*_memory)[PC++]); }
void cmp_ix () { _cmp ((*_memory)[_ix()]); }
void cpy_z () { _cpy ((*_memory)[_z()]); }
void cmp_z () { _cmp ((*_memory)[_z()]); }
void dec_z () { _dec (_z()); }
void iny () { Z=N=++Y; }
void cmp_ () { _cmp ((*_memory)[PC++]); }
void dex () { Z=N=--X; }
void cpy_a () { _cpy ((*_memory)[_a()]); }
void cmp_a () { _cmp ((*_memory)[_a()]); }
void dec_a () { _dec (_a()); }
// d0
void bne () { if (Z) _bra(); PC++; }
void cmp_iy () { _cmp ((*_memory)[_iy()]); }
void cmp_zx () { _cmp ((*_memory)[_zx()]); }
void dec_zx () { _dec (_zx()); }
void cld () { P.bits.D = 0; }
void cmp_ay () { _cmp ((*_memory)[_ay()]); }
void cmp_ax () { _cmp ((*_memory)[_ax()]); }
void dec_ax () { _dec (_ax()); }
// e0
void cpx_ () { _cpx ((*_memory)[PC++]); }
void sbc_ix () { _sbc ((*_memory)[_ix()]); }
void cpx_z () { _cpx ((*_memory)[_z()]); }
void sbc_z () { _sbc ((*_memory)[_z()]); }
void inc_z () { _inc (_z()); }
void inx () { Z=N=++X; }
void sbc_ () { _sbc ((*_memory)[PC++]); }
void cpx_a () { _cpx ((*_memory)[_a()]); }
void sbc_a () { _sbc ((*_memory)[_a()]); }
void inc_a () { _inc (_a()); }
// f0
void beq () { if (!Z) _bra(); PC++; }
void sbc_iy () { _sbc ((*_memory)[_iy()]); }
void sbc_zx () { _sbc ((*_memory)[_zx()]); }
void inc_zx () { _inc (_zx()); }
void sed () { P.bits.D = 1; }
void sbc_ay () { _sbc ((*_memory)[_ay()]); }
void sbc_ax () { _sbc ((*_memory)[_ax()]); }
void inc_ax () { _inc (_ax()); }
/* operations */
void brk ();
void ora_ix () { _ora ((*_memory)[_ix()]); }
void ill ();
void nop2 () { PC++; }
void ora_z () { _ora ((*_memory)[_z()]); }
void asl_z () { _asl (_z()); }
void php ();
void ora_ () { _ora ((*_memory)[PC++]); }
void asl () { C=(A&0x80)!=0; Z=N=A<<=1; }
void nop3 () { PC+=2; }
void ora_a () { _ora ((*_memory)[_a()]); }
void asl_a () { _asl (_a()); }
// 10
void bpl () { if (!(N & 0x80)) _bra(); PC++; }
void ora_iy () { _ora ((*_memory)[_iy()]); }
void ora_zx () { _ora ((*_memory)[_zx()]); }
void asl_zx () { _asl (_zx()); }
void clc () { C=0; }
void ora_ay () { _ora ((*_memory)[_ay()]); }
void nop () { }
void ora_ax () { _ora ((*_memory)[_ax()]); }
void asl_ax () { _asl (_ax()); }
// 20
void jsr ();
void and_ix () { _and ((*_memory)[_ix()]); }
void bit_z () { _bit ((*_memory)[_z()]); }
void and_z () { _and ((*_memory)[_z()]); }
void rol_z () { _rol (_z()); }
void plp ();
void and_ () { _and ((*_memory)[PC++]); }
void rol () { A=__rol (A); }
void bit_a () { _bit ((*_memory)[_a()]); }
void and_a () { _and ((*_memory)[_a()]); }
void rol_a () { _rol (_a()); }
// 30
void bmi () { if (N & 0x80) _bra(); PC++; }
void and_iy () { _and ((*_memory)[_iy()]); }
void and_zx () { _and ((*_memory)[_zx()]); }
void rol_zx () { _rol (_zx()); }
void sec () { C=1; }
void and_ay () { _and ((*_memory)[_ay()]); }
void and_ax () { _and ((*_memory)[_ax()]); }
void rol_ax () { _rol (_ax()); }
// 40
void rti ();
void eor_ix () { _eor ((*_memory)[_ix()]); }
void eor_z () { _eor ((*_memory)[_z()]); }
void lsr_z () { _lsr (_z()); }
void pha () { pushb (A); }
void eor_ () { _eor ((*_memory)[PC++]); }
void lsr_ () { A=__lsr(A); }
void jmp () { PC = _a (); }
void eor_a () { _eor ((*_memory)[_a()]); }
void lsr_a () { _lsr (_a()); }
// 50
void bvc () { if (!V) _bra(); PC++; }
void eor_iy () { _eor ((*_memory)[_iy()]); }
void eor_zx () { _eor ((*_memory)[_zx()]); }
void lsr_zx () { _lsr (_zx()); }
void cli ();
void eor_ay () { _eor ((*_memory)[_ay()]); }
void eor_ax () { _eor ((*_memory)[_ax()]); }
void lsr_ax () { _lsr (_ax()); }
// 60
void rts ();
void adc_ix () { _adc ((*_memory)[_ix()]); }
void adc_z () { _adc ((*_memory)[_z()]); }
void ror_z () { _ror (_z()); }
void pla () { Z=N=A=popb (); }
void adc_ () { _adc ((*_memory)[PC++]); }
void ror_ () { A=__ror (A); }
void jmp_i () { PC = _i(_a()); }
void adc_a () { _adc ((*_memory)[_a()]); }
void ror_a () { _ror (_a()); }
// 70
void bvs () { if (V) _bra(); PC++; }
void adc_iy () { _adc ((*_memory)[_iy()]); }
void adc_zx () { _adc ((*_memory)[_zx()]); }
void ror_zx () { _ror (_zx ()); }
void sei () { P.bits.I = 1; }
void adc_ay () { _adc ((*_memory)[_ay()]); }
void adc_ax () { _adc ((*_memory)[_ax()]); }
void ror_ax () { _ror (_ax ()); }
// 80
void sta_ix () { (*_memory)[_ix()] = A; }
void sty_z () { (*_memory)[_z()] = Y; }
void sta_z () { (*_memory)[_z()] = A; }
void stx_z () { (*_memory)[_z()] = X; }
void dey () { Z=N=--Y; }
void txa () { Z=N=A=X; }
void sty_a () { (*_memory)[_a()] = Y; }
void sta_a () { (*_memory)[_a()] = A; }
void stx_a () { (*_memory)[_a()] = X; }
// 90
void bcc () { if (!C) _bra(); PC++; }
void sta_iy () { (*_memory)[_iy()] = A; }
void sty_zx () { (*_memory)[_zx()] = Y; }
void sta_zx () { (*_memory)[_zx()] = A; }
void stx_zy () { (*_memory)[_zy()] = X; }
void tya () { Z=N=A=Y; }
void sta_ay () { (*_memory)[_ay()] = A; }
void txs () { S=X; }
void sta_ax () { (*_memory)[_ax()] = A; }
// a0
void ldy_ () { _ldy ((*_memory)[PC++]); }
void lda_ix () { _lda ((*_memory)[_ix()]); }
void ldx_ () { _ldx ((*_memory)[PC++]); }
void lax_ix () { lda_ix (); X=A; }
void ldy_z () { _ldy ((*_memory)[_z()]); }
void lda_z () { _lda ((*_memory)[_z()]); }
void ldx_z () { _ldx ((*_memory)[_z()]); }
void lax_z () { lda_z (); X=A; }
void tay () { Z=N=Y=A; }
void lda_ () { _lda ((*_memory)[PC++]); }
void tax () { Z=N=X=A; }
void ldy_a () { _ldy ((*_memory)[_a()]); }
void lda_a () { _lda ((*_memory)[_a()]); }
void ldx_a () { _ldx ((*_memory)[_a()]); }
void lax_a () { lda_a (); X=A; }
// b0
void bcs () { if (C) _bra(); PC++; }
void lda_iy () { _lda ((*_memory)[_iy()]); }
void lax_iy () { lda_iy (); X=A; }
void ldy_zx () { _ldy ((*_memory)[_zx()]); }
void lda_zx () { _lda ((*_memory)[_zx()]); }
void ldx_zy () { _ldx ((*_memory)[_zy()]); }
void lax_zy () { ldx_zy (); A=X; }
void clv () { V=0; }
void lda_ay () { _lda ((*_memory)[_ay()]); }
void tsx () { Z=N=X=S; }
void ldy_ax () { _ldy ((*_memory)[_ax()]); }
void lda_ax () { _lda ((*_memory)[_ax()]); }
void ldx_ay () { _ldx ((*_memory)[_ay()]); }
void lax_ay () { ldx_ay (); A=X; }
// c0
void cpy_ () { _cpy ((*_memory)[PC++]); }
void cmp_ix () { _cmp ((*_memory)[_ix()]); }
void cpy_z () { _cpy ((*_memory)[_z()]); }
void cmp_z () { _cmp ((*_memory)[_z()]); }
void dec_z () { _dec (_z()); }
void iny () { Z=N=++Y; }
void cmp_ () { _cmp ((*_memory)[PC++]); }
void dex () { Z=N=--X; }
void cpy_a () { _cpy ((*_memory)[_a()]); }
void cmp_a () { _cmp ((*_memory)[_a()]); }
void dec_a () { _dec (_a()); }
// d0
void bne () { if (Z) _bra(); PC++; }
void cmp_iy () { _cmp ((*_memory)[_iy()]); }
void cmp_zx () { _cmp ((*_memory)[_zx()]); }
void dec_zx () { _dec (_zx()); }
void cld () { P.bits.D = 0; }
void cmp_ay () { _cmp ((*_memory)[_ay()]); }
void cmp_ax () { _cmp ((*_memory)[_ax()]); }
void dec_ax () { _dec (_ax()); }
// e0
void cpx_ () { _cpx ((*_memory)[PC++]); }
void sbc_ix () { _sbc ((*_memory)[_ix()]); }
void cpx_z () { _cpx ((*_memory)[_z()]); }
void sbc_z () { _sbc ((*_memory)[_z()]); }
void inc_z () { _inc (_z()); }
void inx () { Z=N=++X; }
void sbc_ () { _sbc ((*_memory)[PC++]); }
void cpx_a () { _cpx ((*_memory)[_a()]); }
void sbc_a () { _sbc ((*_memory)[_a()]); }
void inc_a () { _inc (_a()); }
// f0
void beq () { if (!Z) _bra(); PC++; }
void sbc_iy () { _sbc ((*_memory)[_iy()]); }
void sbc_zx () { _sbc ((*_memory)[_zx()]); }
void inc_zx () { _inc (_zx()); }
void sed () { P.bits.D = 1; }
void sbc_ay () { _sbc ((*_memory)[_ay()]); }
void sbc_ax () { _sbc ((*_memory)[_ax()]); }
void inc_ax () { _inc (_ax()); }
};
#endif

View File

@ -1,5 +1,5 @@
#ifndef _R65EMU_H
#define _R65EMU_H
#ifndef __R65EMU_H__
#define __R65EMU_H__
#include "memory.h"
#include "cpu.h"

4
ram.h
View File

@ -1,5 +1,5 @@
#ifndef _RAM_H
#define _RAM_H
#ifndef __RAM_H__
#define __RAM_H__
class ram: public Memory::Device {
public:

View File

@ -1,5 +1,5 @@
#ifndef _SDTAPE_H
#define _SDTAPE_H
#ifndef __SDTAPE_H__
#define __SDTAPE_H__
class sdtape {
public:

View File

@ -1,5 +1,5 @@
#ifndef _UTFT_DISPLAY_H
#define _UTFT_DISPLAY_H
#ifndef __UTFT_DISPLAY_H__
#define __UTFT_DISPLAY_H__
class Stream;