initial commit

This commit is contained in:
Stephen Crane 2014-10-18 12:33:48 +01:00
parent 8a2b10561f
commit a19bbc6898
14 changed files with 982 additions and 0 deletions

39
acia.h Normal file
View File

@ -0,0 +1,39 @@
/*
* acia.h -- ACIA device
*/
struct acia {
// status bits returned by operator byte
//
static const byte rdrf = 1 << 0;
static const byte tdre = 1 << 1;
static const byte dcd = 1 << 2;
static const byte cts = 1 << 3;
static const byte fe = 1 << 4;
static const byte ovrn = 1 << 5;
static const byte pc = 1 << 6;
static const byte irq = 1 << 7;
// control operations (four combinable groups)
//
static const byte cd1 = 0x00; // divide by 1
static const byte cd16 = 0x01; // divide by 16
static const byte cd64 = 0x02; // divide by 64
static const byte reset = 0x03; // master reset
static const byte ws7e2 = 0 << 2; // parity
static const byte ws7o2 = 1 << 2;
static const byte ws7e1 = 2 << 2;
static const byte ws7o1 = 3 << 2;
static const byte ws8n2 = 4 << 2;
static const byte ws8n1 = 5 << 2;
static const byte ws8e1 = 6 << 2;
static const byte ws8o1 = 7 << 2;
static const byte lrts_dti = 0 << 5; // /rts, disable trans irq
static const byte lrts_eti = 1 << 5; // /rts, enable
static const byte hrts_dti = 2 << 5; // rts, disable
static const byte lrts_dti_brk = 3 << 5; // /rts, disable, send brk
static const byte eri = 1 << 7; // enable receive interrupt
};

26
cpu.h Normal file
View File

@ -0,0 +1,26 @@
/*
* cpu.h
*/
#ifndef _CPU_H
#define _CPU_H
#ifndef _SETJMP_H
#include <setjmp.h>
#endif
class CPU {
public:
virtual void reset () =0;
virtual Memory::address run (unsigned instructions) =0;
virtual void raise (int level) =0;
virtual char *status () =0;
typedef void (*statfn) (const char *, ...);
protected:
CPU (Memory *m, jmp_buf *e, statfn s): _memory(m), _err(e), _status(s){}
Memory *_memory;
jmp_buf *_err;
statfn _status;
};
#endif

34
hardware.h Normal file
View File

@ -0,0 +1,34 @@
/*
* The hardware configuration of the machine.
* (This should be the same for all emulated devices.)
*/
#ifndef __HARDWARE_H
#define __HARDWARE_H
// TFT display...
// NOTE: edit memorysaver.h to select the correct chip for your display!
// Daniel Rebollo's boosterpack
#define TFT_BACKLIGHT PD_6
#define TFT_MODEL SSD1289
// TFT01_2.4: http://www.elecfreaks.com/store/24-tft-lcd-tft0124-p-110.html
// #undef TFT_BACKLIGHT
// #define TFT_MODEL S6D1121_8
#define TFT_RS PC_6
#define TFT_WR PC_5
#define TFT_CS PC_7
#define TFT_RST PC_4
// SPI-RAM
#define SPIRAM_CS PE_0
#define SPIRAM_SPI 1
#define SPIRAM_DEV SPI_for_SD
// PS/2 keyboard
#define KBD_DATA PE_4
#define KBD_IRQ PE_5
// "tape" storage...
#define SD_CS PF_3
#define SD_SPI 1
#endif

24
memory.cpp Normal file
View File

@ -0,0 +1,24 @@
#include "memory.h"
void Memory::put (Device &dev, address b) {
Device **d = _pages + b/page_size;
int size = dev.pages();
while (size--)
*d++ = &dev;
dev.base(b);
}
class NullDevice: public Memory::Device {
public:
NullDevice(): Memory::Device(65536) {}
void operator= (byte b) {}
operator byte() { return 0; }
} nd;
Memory::Memory() {
put(nd, 0);
}

49
memory.h Normal file
View File

@ -0,0 +1,49 @@
/*
* memory.h
*/
#ifndef _MEMORY_H
#define _MEMORY_H
typedef unsigned char byte;
class Memory {
public:
typedef unsigned short address;
static const int page_size = 256;
class Device {
public:
Device (int bytes): _pages(bytes/page_size) {}
virtual ~Device () {}
int pages () const { return _pages; }
void access (address a) { _acc=a-_base; }
void base (address a) { _base=a; }
address base () const { return _base; }
virtual void operator= (byte) =0;
virtual operator byte () =0;
protected:
address _acc, _base;
private:
int _pages;
};
// insert a new device instance
//
void put (Device &d, address at);
Device *get (address at) const { return _pages[at/page_size]; }
// primary access interface
//
Device &operator[] (address a) {
Device *d = get (a);
d->access (a);
return *d;
}
Memory();
private:
Device *_pages[256];
};
#endif

10
prom.h Normal file
View File

@ -0,0 +1,10 @@
class prom: public Memory::Device {
public:
virtual void operator= (byte) {}
virtual operator byte () { return _mem[_acc]; }
prom(const byte *mem, int bytes): Memory::Device(bytes), _mem(mem) {}
private:
const byte *_mem;
};

81
ps2drv.cpp Normal file
View File

@ -0,0 +1,81 @@
#include <Energia.h>
#include "ps2drv.h"
#define BUFFER_SIZE 16
static volatile uint8_t buffer[BUFFER_SIZE];
static volatile uint8_t head, tail;
static bool isbrk;
static uint8_t DataPin;
// The ISR for the external interrupt
void ps2interrupt(void)
{
static uint8_t bitcount=0;
static uint8_t incoming=0;
static uint32_t prev_ms=0;
uint32_t now_ms;
uint8_t n, val;
val = digitalRead(DataPin);
now_ms = millis();
if (now_ms - prev_ms > 250) {
bitcount = 0;
incoming = 0;
}
prev_ms = now_ms;
n = bitcount - 1;
if (n <= 7) {
incoming |= (val << n);
}
bitcount++;
if (bitcount == 11) {
uint8_t i = head + 1;
if (i == BUFFER_SIZE) i = 0;
if (i != tail) {
buffer[i] = incoming;
head = i;
}
bitcount = 0;
incoming = 0;
}
}
bool PS2Driver::available() {
if (head == tail)
return false;
uint8_t i = tail+1;
if (i == BUFFER_SIZE) i = 0;
if (buffer[i] == 0xf0)
return i != head;
return true;
}
bool PS2Driver::isbreak() {
bool b = isbrk;
isbrk = false;
return b;
}
int PS2Driver::read() {
if (head == tail)
return -1;
uint8_t i = tail+1;
if (i == BUFFER_SIZE) i = 0;
tail = i;
if (buffer[i] == 0xf0) {
isbrk = true;
return read();
}
return buffer[i];
}
void PS2Driver::begin(uint8_t data_pin, uint8_t irq_pin)
{
DataPin = data_pin;
pinMode(irq_pin, INPUT_PULLUP);
pinMode(data_pin, INPUT_PULLUP);
attachInterrupt(irq_pin, ps2interrupt, FALLING);
head = tail = 0;
}

46
ps2drv.h Normal file
View File

@ -0,0 +1,46 @@
#ifndef __PS2DRV_H
#define __PS2DRV_H
class PS2Driver
{
public:
PS2Driver() {}
/**
* Starts the keyboard "service" by registering the external interrupt.
* setting the pin modes correctly and driving those needed to high.
* The propably best place to call this method is in the setup routine.
*/
void begin(uint8_t dataPin, uint8_t irq_pin);
/**
* Returns true if there is a char to be read, false if not.
*/
bool available();
/**
* returns true if the key has been released
*/
bool isbreak();
/**
* Returns the scancode last received from the keyboard.
* If there is no char available, -1 is returned.
*/
int read();
};
#define PS2_F1 0x05
#define PS2_F2 0x06
#define PS2_F3 0x04
#define PS2_F4 0x0C
#define PS2_F5 0x03
#define PS2_F6 0x0B
#define PS2_F7 0x83
#define PS2_F8 0x0A
#define PS2_F9 0x01
#define PS2_F10 0x09
#define PS2_F11 0x78
#define PS2_F12 0x07
#endif

264
r6502.cpp Normal file
View File

@ -0,0 +1,264 @@
#include <stdio.h>
#include <Stream.h>
#include "memory.h"
#include "cpu.h"
#include "r6502.h"
Memory::address r6502::run (unsigned clocks) {
while (clocks--)
{
byte op = (*_memory)[PC];
#ifdef CPU_DEBUG
_status ("%04x: %02x [%02x %02x %02x, %02x]\r", PC, op, A, X, Y, flags());
#endif
PC++;
(this->*_ops[op])();
}
return PC;
}
byte r6502::flags() {
P.bits.N = ((N & 0x80) != 0);
P.bits.V = V;
P.bits.Z = !Z;
P.bits.C = C;
P.bits._ = 1;
return P.value;
}
char *r6502::status () {
static char buf[128];
flags();
sprintf (buf, "aa xx yy sp nv_bdizc _pc_\r\n"
"%02x %02x %02x %02x %d%d%d%d%d%d%d%d %04x\r\n",
A, X, Y, S, P.bits.N, P.bits.V, P.bits._, P.bits.B,
P.bits.D, P.bits.I, P.bits.Z, P.bits.C, PC);
return buf;
}
void r6502::checkpoint(Stream &s)
{
s.write(PC / 0xff);
s.write(PC % 0xff);
s.write(S);
s.write(A);
s.write(X);
s.write(Y);
s.write(N);
s.write(V);
s.write(B);
s.write(D);
s.write(I);
s.write(Z);
s.write(C);
s.write(P.value);
}
void r6502::restore(Stream &s)
{
byte hi = s.read(), lo = s.read();
PC = hi * 0xff + lo;
S = s.read();
A = s.read();
X = s.read();
Y = s.read();
N = s.read();
V = s.read();
B = s.read();
D = s.read();
I = s.read();
Z = s.read();
C = s.read();
P.value = s.read();
}
void r6502::raise (int level) {
if (level < 0)
nmi ();
else if (!P.bits.I)
irq ();
else
_irq = true;
}
void r6502::irq () {
pusha (PC);
P.bits.B = 0;
pushb (flags ());
P.bits.B = 1;
P.bits.I = 1;
PC = vector (ibvec);
_irq = false;
}
void r6502::brk () {
if (!P.bits.I) {
pusha (PC);
P.bits.B = 1;
php ();
P.bits.I = 1;
PC = vector (ibvec);
}
P.bits.B = 1;
P.bits._ = 1;
}
void r6502::rti () {
plp ();
PC = popa ();
}
void r6502::cli () {
P.bits.I = 0;
if (_irq)
irq();
}
void r6502::nmi () {
pusha (PC);
php ();
P.bits.I = 1;
PC = vector (nmivec);
}
// php and plp are complicated by the representation
// of the processor state for efficient normal operation
void r6502::php () {
P.bits.B = 1;
pushb (flags ());
}
void r6502::plp () {
P.value = popb ();
N = P.bits.N? 0x80: 0;
V = P.bits.V;
Z = !P.bits.Z;
C = P.bits.C;
}
void r6502::rts () {
PC = popa ()+1;
}
void r6502::jsr () {
pusha (PC+1);
PC = vector (PC);
}
void r6502::_adc (byte d) {
if (P.bits.D) {
int r = _fromBCD[A] + _fromBCD[d] + C;
C = (r > 99);
if (C) r -= 100;
A = _toBCD[r];
} else {
unsigned short u = (unsigned short)A + (unsigned short)d + (unsigned short)C;
short s = (char)A + (char)d + (char)C;
C = (u < 0 || u > 255);
V = (s > 127 || s < -128);
A = (u & 0xff);
}
N = (A & 0x80);
Z = A;
}
void r6502::sbcd (byte d) {
int r = _fromBCD[A] - _fromBCD[d] - !C;
C = (r >= 0);
if (r < 0) r += 100;
A = _toBCD[r & 0xff];
N = (A & 0x80);
Z = A;
// V not tested for: http://www.6502.org/tutorials/decimal_mode.html
}
void r6502::ill () {
_status ("Illegal instruction at %04x!\r\n%s", (PC-1), status());
longjmp (*_err, 1);
}
void r6502::reset ()
{
P.value = 0;
P.bits._ = 1;
P.bits.B = 1;
_irq = false;
S = 0xff;
PC = vector(resvec);
}
r6502::r6502 (Memory *m, jmp_buf *e, CPU::statfn s): CPU (m,e,s) {
for (int i=0; i < 256; i++) {
_fromBCD[i] = ((i >> 4) & 0x0f)*10 + (i & 0x0f);
_toBCD[i] = (((i % 100) / 10) << 4) | (i % 10);
}
OP *p = _ops;
*p++=&r6502::brk; *p++=&r6502::ora_ix; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::ora_z; *p++=&r6502::asl_z; *p++=&r6502::ill;
*p++=&r6502::php; *p++=&r6502::ora_; *p++=&r6502::asl; *p++=&r6502::ill;
*p++=&r6502::nop3; *p++=&r6502::ora_a; *p++=&r6502::asl_a; *p++=&r6502::ill;
*p++=&r6502::bpl; *p++=&r6502::ora_iy; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::ora_zx; *p++=&r6502::asl_zx; *p++=&r6502::ill;
*p++=&r6502::clc; *p++=&r6502::ora_ay; *p++=&r6502::nop; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::ora_ax; *p++=&r6502::asl_ax; *p++=&r6502::ill;
*p++=&r6502::jsr; *p++=&r6502::and_ix; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::bit_z; *p++=&r6502::and_z; *p++=&r6502::rol_z; *p++=&r6502::ill;
*p++=&r6502::plp; *p++=&r6502::and_; *p++=&r6502::rol; *p++=&r6502::ill;
*p++=&r6502::bit_a; *p++=&r6502::and_a; *p++=&r6502::rol_a; *p++=&r6502::ill;
*p++=&r6502::bmi; *p++=&r6502::and_iy; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::and_zx; *p++=&r6502::rol_zx; *p++=&r6502::ill;
*p++=&r6502::sec; *p++=&r6502::and_ay; *p++=&r6502::nop; *p++=&r6502::ill;
*p++=&r6502::nop3; *p++=&r6502::and_ax; *p++=&r6502::rol_ax; *p++=&r6502::ill;
*p++=&r6502::rti; *p++=&r6502::eor_ix; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::eor_z; *p++=&r6502::lsr_z; *p++=&r6502::ill;
*p++=&r6502::pha; *p++=&r6502::eor_; *p++=&r6502::lsr_; *p++=&r6502::ill;
*p++=&r6502::jmp; *p++=&r6502::eor_a; *p++=&r6502::lsr_a; *p++=&r6502::ill;
*p++=&r6502::bvc; *p++=&r6502::eor_iy; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::eor_zx; *p++=&r6502::lsr_zx; *p++=&r6502::ill;
*p++=&r6502::cli; *p++=&r6502::eor_ay; *p++=&r6502::nop; *p++=&r6502::ill;
*p++=&r6502::nop3; *p++=&r6502::eor_ax; *p++=&r6502::lsr_ax; *p++=&r6502::ill;
*p++=&r6502::rts; *p++=&r6502::adc_ix; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::adc_z; *p++=&r6502::ror_z; *p++=&r6502::ill;
*p++=&r6502::pla; *p++=&r6502::adc_; *p++=&r6502::ror_; *p++=&r6502::ill;
*p++=&r6502::jmp_i; *p++=&r6502::adc_a; *p++=&r6502::ror_a; *p++=&r6502::ill;
*p++=&r6502::bvs; *p++=&r6502::adc_iy; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::adc_zx; *p++=&r6502::ror_zx; *p++=&r6502::ill;
*p++=&r6502::sei; *p++=&r6502::adc_ay; *p++=&r6502::nop; *p++=&r6502::ill;
*p++=&r6502::nop3; *p++=&r6502::adc_ax; *p++=&r6502::ror_ax; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::sta_ix; *p++=&r6502::nop2; *p++=&r6502::ill;
*p++=&r6502::sty_z; *p++=&r6502::sta_z; *p++=&r6502::stx_z; *p++=&r6502::ill;
*p++=&r6502::dey; *p++=&r6502::nop2; *p++=&r6502::txa; *p++=&r6502::ill;
*p++=&r6502::sty_a; *p++=&r6502::sta_a; *p++=&r6502::stx_a; *p++=&r6502::ill;
*p++=&r6502::bcc; *p++=&r6502::sta_iy; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::sty_zx; *p++=&r6502::sta_zx; *p++=&r6502::stx_zy; *p++=&r6502::ill;
*p++=&r6502::tya; *p++=&r6502::sta_ay; *p++=&r6502::txs; *p++=&r6502::ill;
*p++=&r6502::ill; *p++=&r6502::sta_ax; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::ldy_; *p++=&r6502::lda_ix; *p++=&r6502::ldx_; *p++=&r6502::lax_ix;
*p++=&r6502::ldy_z; *p++=&r6502::lda_z; *p++=&r6502::ldx_z; *p++=&r6502::lax_z;
*p++=&r6502::tay; *p++=&r6502::lda_; *p++=&r6502::tax; *p++=&r6502::ill;
*p++=&r6502::ldy_a; *p++=&r6502::lda_a; *p++=&r6502::ldx_a; *p++=&r6502::lax_a;
*p++=&r6502::bcs; *p++=&r6502::lda_iy; *p++=&r6502::ill; *p++=&r6502::lax_iy;
*p++=&r6502::ldy_zx; *p++=&r6502::lda_zx; *p++=&r6502::ldx_zy; *p++=&r6502::lax_zy;
*p++=&r6502::clv; *p++=&r6502::lda_ay; *p++=&r6502::tsx; *p++=&r6502::ill;
*p++=&r6502::ldy_ax; *p++=&r6502::lda_ax; *p++=&r6502::ldx_ay; *p++=&r6502::lax_ay;
*p++=&r6502::cpy_; *p++=&r6502::cmp_ix; *p++=&r6502::nop2; *p++=&r6502::ill;
*p++=&r6502::cpy_z; *p++=&r6502::cmp_z; *p++=&r6502::dec_z; *p++=&r6502::ill;
*p++=&r6502::iny; *p++=&r6502::cmp_; *p++=&r6502::dex; *p++=&r6502::ill;
*p++=&r6502::cpy_a; *p++=&r6502::cmp_a; *p++=&r6502::dec_a; *p++=&r6502::ill;
*p++=&r6502::bne; *p++=&r6502::cmp_iy; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::cmp_zx; *p++=&r6502::dec_zx; *p++=&r6502::ill;
*p++=&r6502::cld; *p++=&r6502::cmp_ay; *p++=&r6502::nop; *p++=&r6502::ill;
*p++=&r6502::nop3; *p++=&r6502::cmp_ax; *p++=&r6502::dec_ax; *p++=&r6502::ill;
*p++=&r6502::cpx_; *p++=&r6502::sbc_ix; *p++=&r6502::nop2; *p++=&r6502::ill;
*p++=&r6502::cpx_z; *p++=&r6502::sbc_z; *p++=&r6502::inc_z; *p++=&r6502::ill;
*p++=&r6502::inx; *p++=&r6502::sbc_; *p++=&r6502::nop; *p++=&r6502::ill;
*p++=&r6502::cpx_a; *p++=&r6502::sbc_a; *p++=&r6502::inc_a; *p++=&r6502::ill;
*p++=&r6502::beq; *p++=&r6502::sbc_iy; *p++=&r6502::ill; *p++=&r6502::ill;
*p++=&r6502::nop2; *p++=&r6502::sbc_zx; *p++=&r6502::inc_zx; *p++=&r6502::ill;
*p++=&r6502::sed; *p++=&r6502::sbc_ay; *p++=&r6502::nop; *p++=&r6502::ill;
*p++=&r6502::nop3; *p++=&r6502::sbc_ax; *p++=&r6502::inc_ax; *p++=&r6502::ill;
}

316
r6502.h Normal file
View File

@ -0,0 +1,316 @@
/*
* r6502.h
*/
#ifndef _R6502_H
#define _R6502_H
#undef PC
class Stream;
class r6502: public CPU {
public:
void raise(int);
void reset();
Memory::address run(unsigned);
char *status();
void checkpoint(Stream &);
void restore(Stream &);
r6502 (Memory *, jmp_buf *, CPU::statfn);
private:
/* registers */
Memory::address PC;
byte S, A, X, Y;
byte N, V, B, D, I, Z, C;
union {
struct {
unsigned C:1;
unsigned Z:1;
unsigned I:1;
unsigned D:1;
unsigned B:1;
unsigned _:1; // unused
unsigned V:1;
unsigned N:1;
} bits;
byte value;
} P;
byte _toBCD[256], _fromBCD[256]; // BCD maps
bool _irq; // interrupt pending
void irq();
void nmi();
byte flags();
/* stack */
inline void pusha (Memory::address ret) {
(*_memory)[0x0100+S--] = ret >> 8;
(*_memory)[0x0100+S--] = ret & 0xff;
}
inline void pushb (byte b) {
(*_memory)[0x0100+S--] = b;
}
inline byte popb () {
return (*_memory)[++S+0x0100];
}
inline Memory::address popa () {
byte b = popb ();
return ((popb () << 8) | b);
}
static const Memory::address nmivec = 0xfffa;
static const Memory::address resvec = 0xfffc;
static const Memory::address ibvec = 0xfffe;
inline Memory::address vector(Memory::address v) {
return ((*_memory)[v+1] << 8) | (*_memory)[v];
}
/* operators */
inline void _cmp (byte a) { Z=N=A-a; C=(A>=a); }
inline void _cpx (byte a) { Z=N=X-a; C=(X>=a); }
inline void _cpy (byte a) { Z=N=Y-a; C=(Y>=a); }
inline void _and (byte a) { Z=N=A&=a; }
inline void _eor (byte a) { Z=N=A^=a; }
inline void _ora (byte a) { Z=N=A|=a; }
inline void _lda (byte a) { Z=N=A=a; }
inline void _ldx (byte a) { Z=N=X=a; }
inline void _ldy (byte a) { Z=N=Y=a; }
/* modes */
inline Memory::address _a () {
Memory::address a = (*_memory)[PC++];
return a | ((*_memory)[PC++] << 8);
}
inline Memory::address _ax () { return _a()+X; }
inline Memory::address _ay () { return _a()+Y; }
inline Memory::address _z () { return (*_memory)[PC++]; }
inline Memory::address _zx () { return (_z()+X) & 0xff; }
inline Memory::address _zy () { return (_z()+Y) & 0xff; }
inline Memory::address _i (Memory::address a) {
return ((*_memory)[a+1]<<8)|(*_memory)[a];
}
inline Memory::address _ix () { return _i(_zx()); }
inline Memory::address _iy () { return _i((*_memory)[PC++])+Y; }
void _adc (byte a);
void _sbc (byte a) { if (P.bits.D) sbcd(a); else _adc(~a); }
void sbcd (byte a);
inline byte __ror (byte b) {
N=b>>1; if (C) N|=0x80; C=b&1; return Z=N;
}
inline void _ror (Memory::address a) {
(*_memory)[a] = __ror((*_memory)[a]);
}
inline byte __rol (byte b) {
N=b<<1; if (C) N|=1; C=(b&0x80)!=0; return Z=N;
}
inline void _rol (Memory::address a) {
(*_memory)[a] = __rol((*_memory)[a]);
}
inline byte __asl (byte b) { C=(b&0x80)!=0; return Z=N=b<<1; }
inline void _asl (Memory::address a) {
(*_memory)[a] = __asl((*_memory)[a]);
}
inline byte __lsr (byte b) { C=b&1; Z=b>>1; N=0; return Z; }
inline void _lsr (Memory::address a) {
(*_memory)[a] = __lsr((*_memory)[a]);
}
inline void _inc (Memory::address a) {
Z=N=1+(*_memory)[a]; (*_memory)[a]=Z;
}
inline void _dec (Memory::address a) {
Z=N=(*_memory)[a]-1; (*_memory)[a]=Z;
}
inline void _bit (byte z) { V=((z & 0x40)!=0); N=(z & 0x80); Z=(A & z); }
inline void _bra() {
byte b = (*_memory)[PC];
PC += b;
if (b > 127) PC -= 0x0100;
}
/* dispatch table */
typedef void (r6502::*OP)(); OP _ops[256];
/* operations */
void brk ();
void ora_ix () { _ora ((*_memory)[_ix()]); }
void ill ();
void nop2 () { PC++; }
void ora_z () { _ora ((*_memory)[_z()]); }
void asl_z () { _asl (_z()); }
void php ();
void ora_ () { _ora ((*_memory)[PC++]); }
void asl () { C=(A&0x80)!=0; Z=N=A<<=1; }
void nop3 () { PC+=2; }
void ora_a () { _ora ((*_memory)[_a()]); }
void asl_a () { _asl (_a()); }
// 10
void bpl () { if (!(N & 0x80)) _bra(); PC++; }
void ora_iy () { _ora ((*_memory)[_iy()]); }
void ora_zx () { _ora ((*_memory)[_zx()]); }
void asl_zx () { _asl (_zx()); }
void clc () { C=0; }
void ora_ay () { _ora ((*_memory)[_ay()]); }
void nop () { }
void ora_ax () { _ora ((*_memory)[_ax()]); }
void asl_ax () { _asl (_ax()); }
// 20
void jsr ();
void and_ix () { _and ((*_memory)[_ix()]); }
void bit_z () { _bit ((*_memory)[_z()]); }
void and_z () { _and ((*_memory)[_z()]); }
void rol_z () { _rol (_z()); }
void plp ();
void and_ () { _and ((*_memory)[PC++]); }
void rol () { A=__rol (A); }
void bit_a () { _bit ((*_memory)[_a()]); }
void and_a () { _and ((*_memory)[_a()]); }
void rol_a () { _rol (_a()); }
// 30
void bmi () { if (N & 0x80) _bra(); PC++; }
void and_iy () { _and ((*_memory)[_iy()]); }
void and_zx () { _and ((*_memory)[_zx()]); }
void rol_zx () { _rol (_zx()); }
void sec () { C=1; }
void and_ay () { _and ((*_memory)[_ay()]); }
void and_ax () { _and ((*_memory)[_ax()]); }
void rol_ax () { _rol (_ax()); }
// 40
void rti ();
void eor_ix () { _eor ((*_memory)[_ix()]); }
void eor_z () { _eor ((*_memory)[_z()]); }
void lsr_z () { _lsr (_z()); }
void pha () { pushb (A); }
void eor_ () { _eor ((*_memory)[PC++]); }
void lsr_ () { A=__lsr(A); }
void jmp () { PC = _a (); }
void eor_a () { _eor ((*_memory)[_a()]); }
void lsr_a () { _lsr (_a()); }
// 50
void bvc () { if (!V) _bra(); PC++; }
void eor_iy () { _eor ((*_memory)[_iy()]); }
void eor_zx () { _eor ((*_memory)[_zx()]); }
void lsr_zx () { _lsr (_zx()); }
void cli ();
void eor_ay () { _eor ((*_memory)[_ay()]); }
void eor_ax () { _eor ((*_memory)[_ax()]); }
void lsr_ax () { _lsr (_ax()); }
// 60
void rts ();
void adc_ix () { _adc ((*_memory)[_ix()]); }
void adc_z () { _adc ((*_memory)[_z()]); }
void ror_z () { _ror (_z()); }
void pla () { Z=N=A=popb (); }
void adc_ () { _adc ((*_memory)[PC++]); }
void ror_ () { A=__ror (A); }
void jmp_i () { PC = _i(_a()); }
void adc_a () { _adc ((*_memory)[_a()]); }
void ror_a () { _ror (_a()); }
// 70
void bvs () { if (V) _bra(); PC++; }
void adc_iy () { _adc ((*_memory)[_iy()]); }
void adc_zx () { _adc ((*_memory)[_zx()]); }
void ror_zx () { _ror (_zx ()); }
void sei () { P.bits.I = 1; }
void adc_ay () { _adc ((*_memory)[_ay()]); }
void adc_ax () { _adc ((*_memory)[_ax()]); }
void ror_ax () { _ror (_ax ()); }
// 80
void sta_ix () { (*_memory)[_ix()] = A; }
void sty_z () { (*_memory)[_z()] = Y; }
void sta_z () { (*_memory)[_z()] = A; }
void stx_z () { (*_memory)[_z()] = X; }
void dey () { Z=N=--Y; }
void txa () { Z=N=A=X; }
void sty_a () { (*_memory)[_a()] = Y; }
void sta_a () { (*_memory)[_a()] = A; }
void stx_a () { (*_memory)[_a()] = X; }
// 90
void bcc () { if (!C) _bra(); PC++; }
void sta_iy () { (*_memory)[_iy()] = A; }
void sty_zx () { (*_memory)[_zx()] = Y; }
void sta_zx () { (*_memory)[_zx()] = A; }
void stx_zy () { (*_memory)[_zy()] = X; }
void tya () { Z=N=A=Y; }
void sta_ay () { (*_memory)[_ay()] = A; }
void txs () { S=X; }
void sta_ax () { (*_memory)[_ax()] = A; }
// a0
void ldy_ () { _ldy ((*_memory)[PC++]); }
void lda_ix () { _lda ((*_memory)[_ix()]); }
void ldx_ () { _ldx ((*_memory)[PC++]); }
void lax_ix () { lda_ix (); X=A; }
void ldy_z () { _ldy ((*_memory)[_z()]); }
void lda_z () { _lda ((*_memory)[_z()]); }
void ldx_z () { _ldx ((*_memory)[_z()]); }
void lax_z () { lda_z (); X=A; }
void tay () { Z=N=Y=A; }
void lda_ () { _lda ((*_memory)[PC++]); }
void tax () { Z=N=X=A; }
void ldy_a () { _ldy ((*_memory)[_a()]); }
void lda_a () { _lda ((*_memory)[_a()]); }
void ldx_a () { _ldx ((*_memory)[_a()]); }
void lax_a () { lda_a (); X=A; }
// b0
void bcs () { if (C) _bra(); PC++; }
void lda_iy () { _lda ((*_memory)[_iy()]); }
void lax_iy () { lda_iy (); X=A; }
void ldy_zx () { _ldy ((*_memory)[_zx()]); }
void lda_zx () { _lda ((*_memory)[_zx()]); }
void ldx_zy () { _ldx ((*_memory)[_zy()]); }
void lax_zy () { ldx_zy (); A=X; }
void clv () { V=0; }
void lda_ay () { _lda ((*_memory)[_ay()]); }
void tsx () { Z=N=X=S; }
void ldy_ax () { _ldy ((*_memory)[_ax()]); }
void lda_ax () { _lda ((*_memory)[_ax()]); }
void ldx_ay () { _ldx ((*_memory)[_ay()]); }
void lax_ay () { ldx_ay (); A=X; }
// c0
void cpy_ () { _cpy ((*_memory)[PC++]); }
void cmp_ix () { _cmp ((*_memory)[_ix()]); }
void cpy_z () { _cpy ((*_memory)[_z()]); }
void cmp_z () { _cmp ((*_memory)[_z()]); }
void dec_z () { _dec (_z()); }
void iny () { Z=N=++Y; }
void cmp_ () { _cmp ((*_memory)[PC++]); }
void dex () { Z=N=--X; }
void cpy_a () { _cpy ((*_memory)[_a()]); }
void cmp_a () { _cmp ((*_memory)[_a()]); }
void dec_a () { _dec (_a()); }
// d0
void bne () { if (Z) _bra(); PC++; }
void cmp_iy () { _cmp ((*_memory)[_iy()]); }
void cmp_zx () { _cmp ((*_memory)[_zx()]); }
void dec_zx () { _dec (_zx()); }
void cld () { P.bits.D = 0; }
void cmp_ay () { _cmp ((*_memory)[_ay()]); }
void cmp_ax () { _cmp ((*_memory)[_ax()]); }
void dec_ax () { _dec (_ax()); }
// e0
void cpx_ () { _cpx ((*_memory)[PC++]); }
void sbc_ix () { _sbc ((*_memory)[_ix()]); }
void cpx_z () { _cpx ((*_memory)[_z()]); }
void sbc_z () { _sbc ((*_memory)[_z()]); }
void inc_z () { _inc (_z()); }
void inx () { Z=N=++X; }
void sbc_ () { _sbc ((*_memory)[PC++]); }
void cpx_a () { _cpx ((*_memory)[_a()]); }
void sbc_a () { _sbc ((*_memory)[_a()]); }
void inc_a () { _inc (_a()); }
// f0
void beq () { if (!Z) _bra(); PC++; }
void sbc_iy () { _sbc ((*_memory)[_iy()]); }
void sbc_zx () { _sbc ((*_memory)[_zx()]); }
void inc_zx () { _inc (_zx()); }
void sed () { P.bits.D = 1; }
void sbc_ay () { _sbc ((*_memory)[_ay()]); }
void sbc_ax () { _sbc ((*_memory)[_ax()]); }
void inc_ax () { _inc (_ax()); }
};
#endif

13
r65emu.h Normal file
View File

@ -0,0 +1,13 @@
#ifndef _R65EMU_H
#define _R65EMU_H
#include "memory.h"
#include "cpu.h"
#include "r6502.h"
#include "ram.h"
#include "spiram.h"
#include "prom.h"
#include "ps2drv.h"
#include "hardware.h"
#endif

17
ram.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef _RAM_H
#define _RAM_H
class ram: public Memory::Device {
public:
virtual void operator= (byte c) { _mem[_acc] = c; }
virtual operator byte () { return _mem[_acc]; }
void checkpoint(Stream &s) { s.write(_mem, sizeof(_mem)); }
void restore(Stream &s) { s.readBytes((char *)_mem, sizeof(_mem)); }
ram (): Memory::Device(sizeof(_mem)) {}
private:
byte _mem[1024];
};
#endif

47
spiram.cpp Normal file
View File

@ -0,0 +1,47 @@
#include <SPI.h>
#include <SpiRAM.h>
#include "memory.h"
#include "spiram.h"
#include "hardware.h"
extern SPIClass SPIRAM_DEV;
SpiRAM spiRam(SPIRAM_DEV, SPIRAM_CS);
void spiram::begin(byte cs, int module)
{
SPI_for_SD.setModule(module);
SPI_for_SD.setClockDivider(SPI_CLOCK_DIV16);
SPI_for_SD.setDataMode(SPI_MODE0);
pinMode(PF_3, OUTPUT);
pinMode(cs, OUTPUT);
}
void spiram::operator=(byte b)
{
spiRam.write_byte(_acc, b);
}
spiram::operator byte()
{
return spiRam.read_byte(_acc);
}
void spiram::checkpoint(Stream &s)
{
char buf[Memory::page_size];
for (int i = 0; i < pages(); i++) {
spiRam.read_stream(i * Memory::page_size, buf, sizeof(buf));
s.write((byte *)buf, sizeof(buf));
}
}
void spiram::restore(Stream &s)
{
char buf[Memory::page_size];
for (int i = 0; i < pages(); i++) {
s.readBytes(buf, sizeof(buf));
spiRam.write_stream(i * Memory::page_size, buf, sizeof(buf));
}
}

16
spiram.h Normal file
View File

@ -0,0 +1,16 @@
#ifndef __SPIRAM_H__
#define __SPIRAM_H__
class spiram: public Memory::Device {
public:
virtual void operator= (byte c);
virtual operator byte ();
void checkpoint(Stream &s);
void restore(Stream &s);
spiram(int bytes): Memory::Device(bytes) {}
void begin(byte cs, int module);
};
#endif