Refactor - Remove c64 Kernel deps

This commit is contained in:
stid 2020-01-19 23:32:37 -08:00
parent dafdd439c7
commit 5c1de5b985
15 changed files with 497 additions and 135 deletions

View File

@ -4,24 +4,17 @@
#import "../core/module.asm"
#import "../core/system.asm"
#import "../hardware/cia.asm"
#import "../hardware/sid.asm"
#import "../hardware/mc6502.asm"
#import "../hardware/ram.asm"
#import "../hardware/vic.asm"
.filenamespace Boot
.const INIT_IRQ = $fda3
.const INIT_MEM = $fd50
.const INIT_IO = $fd15
.const INIT_VID = $ff5b
.const SCRN_CTRL = $d016
.const MAIN_COLOR = $03
.const BORDER_COLOR = $05
.const INTERRUPT_CTRL = $dc0d
.const NMSK_INTERRUPT_CTRL = $dd0d
.const TIMER_A_CTRL = $DC0E
* = * "Boot Core"
// ========================================================
// ////// METHODS /////////////////////////////////////////
// ========================================================
@ -35,50 +28,78 @@ coldStart: {
sei
txs
cld
stx SCRN_CTRL // Set Screen Bits
jsr INIT_IRQ // Prepare IRQ
jsr INIT_MEM // Init memory. Rewrite this routine to speed up boot process.
jsr INIT_IO // Init I/O
jsr INIT_VID // Init video
stx Vic.CR2 // Set Video Bits
jsr Boot.initIRQ // Prepare IRQ
jsr Ram.init // Init memory.
jsr Vic.init // Init video
cli
jmp warmStart
}
// --------------------------------------------------------
// initIRQ -
// Initialize Interrupt states after a cold start.
// Should never be executed as standard Init and should
// always be before it. This is extracted by c64 kernel
// routine IOINIT.
// --------------------------------------------------------
initIRQ: {
lda #$7F // KILL INTERRUPTS
sta Cia.C1ICR
sta Cia.C2ICR
sta Cia.C1PRA // TURN ON STOP KEY
lda #%00001000 // SHUT OFF TIMERS
sta Cia.C1CRA
sta Cia.C2CRA
sta Cia.C1CRB
sta Cia.C2CRB
// CONFIGURE PORTS
ldx #$00 // SET UP KEYBOARD INPUTS
stx Cia.C1DDRB // KEYBOARD INPUTS
stx Cia.C2DDRB // USER PORT (NO RS-232)
stx Sid.FMVC // TURN OFF SID
dex // set X = $FF
stx Cia.C1DDRA // KEYBOARD OUTPUTS
lda #%00000111 // SET SERIAL/VA14/15 (CLKHI)
sta Cia.C2PRA
lda #%00111111 // ;SET SERIAL IN/OUT, VA14/15OUT
sta Cia.C2DDRA
// SET UP THE 6510 LINES
lda #%11100111 // MOTOR ON, HIRAM LOWRAM CHAREN HIGH
sta MC6502.ZR1 // set 1110 0111, motor off, enable I/O, enable KERNAL, Disable BASIC
lda #%00101111 // set 0010 1111, 0 = input, 1 = output
sta MC6502.ZR0 // save the 6510 I/O port direction register
rts
}
// --------------------------------------------------------
// warmStart -
// Restore pressed or program restart after first Power ON
// --------------------------------------------------------
warmStart: {
sei
lda #$7f
sta INTERRUPT_CTRL // disable timer interrupts which can be generated by the two CIA chips
sta NMSK_INTERRUPT_CTRL // the kernal uses such an interrupt to flash the cursor and scan the keyboard, so we better
// stop it.
lda INTERRUPT_CTRL // by reading this two registers we negate any pending CIA irqs.
lda NMSK_INTERRUPT_CTRL // if we don't do this, a pending CIA irq might occur after we finish setting up our irq.
// we don't want that to happen.
// Disable 0e TIMER
lda #254
and TIMER_A_CTRL
sta TIMER_A_CTRL
ScreenClearColorRam($00)
ScreenClear(' ')
ScreenSetBorderColor(BORDER_COLOR)
ScreenSetBackgroundColor(MAIN_COLOR)
jsr Boot.init // Init Self as Module
cli
jsr Boot.init // Init Self as Module
jsr System.start // Start Core System
// If System Exit - reboot
// TODO: We can print a message here
// and delay a bit...
jmp warmStart
}
// --------------------------------------------------------

View File

@ -20,7 +20,7 @@
TempStringPointer: .word 0 // Pointer to string address as it get printend to screen
}
.namespace SCREEN {
.namespace VIDEO {
TempVideoPointer: .word 0 // Pointer to video mem used to target char pos
CursorCol: .byte 0 // Actual cursor column position
CursorRow: .byte 0 // Actual cursor row position

View File

@ -59,10 +59,12 @@
// ========================================================
.namespace TYPES {
.label MAIN = 00
.label LIB = 01
.label PROG = 02
.label CORE = 03
.label MAIN = 00
.label LIB = 01
.label PROG = 02
.label CORE = 03
.label DEVICE = 04
}
@ -140,6 +142,11 @@ printType: {
bne !+
PrintLine(type_core)
rts
!:
cmp #Module.TYPES.DEVICE
bne !+
PrintLine(type_device)
rts
!:
cmp #Module.TYPES.PROG
bne !+
@ -176,6 +183,9 @@ type_prog:
.text "prog"
.byte 0
type_device:
.text "device"
.byte 0
#import "../core/mem_map.asm"

View File

@ -6,12 +6,18 @@
#import "../libs/memory.asm"
#import "../libs/math.asm"
#import "../libs/print.asm"
#import "../libs/keyboard.asm"
#import "../libs/screen.asm"
#import "../devices/keyboard.asm"
#import "../devices/video.asm"
#import "../progs/woz_shell.asm"
.filenamespace System
// ========================================================
// ////// CONST ///////////////////////////////////////////
// ========================================================
.const MAIN_COLOR = $03
.const BORDER_COLOR = $05
* = * "System Core"
@ -24,8 +30,10 @@
// System Start
// --------------------------------------------------------
start: {
VideoClearColorRam($00)
VideoClear(' ')
VideoSetBorderColor(BORDER_COLOR)
VideoSetBackgroundColor(MAIN_COLOR)
// Start Main Program
jsr WozShell.start
@ -46,7 +54,7 @@ init: {
// Init All Modules
// TODO: How we can make this dynamic?
jsr Memory.init
jsr Screen.init
jsr Video.init
jsr Print.init
jsr Math.init
jsr Keyboard.init
@ -72,7 +80,7 @@ toDebug: {
jsr Math.toDebug
jsr Memory.toDebug
jsr Print.toDebug
jsr Screen.toDebug
jsr Video.toDebug
jsr WozShell.toDebug
rts

View File

@ -22,7 +22,7 @@
* = * "Keyboard Lib"
* = * "Device: Keyboard"
// ========================================================
// ////// METHODS ROM /////////////////////////////////////
@ -356,8 +356,8 @@ cloneEnd:
// ////// DATA ////////////////////////////////////////////
// ========================================================
* = * "Keyboard Lib Data"
module_type: .byte Module.TYPES.LIB
* = * "Device: Keyboard Data"
module_type: .byte Module.TYPES.DEVICE
version: .byte 1, 1, 0
.encoding "screencode_mixed"

View File

@ -10,17 +10,17 @@
// ========================================================
* = * "Screen Lib"
* = * "Device: Video"
// --------------------------------------------------------
// ScreenClearChunks -
// VideoClearChunks -
// Fast clear screen mem chunks.
//
// Parameters:
// baseAddress = Pointer to screen orcolor map Address
// clearByte = Byte to use to clear screen
// --------------------------------------------------------
.macro ScreenClearChunks(baseAddress, clearByte) {
.macro VideoClearChunks(baseAddress, clearByte) {
lda #clearByte
ldx #0
!loop:
@ -29,94 +29,94 @@
sta baseAddress + $200, x
sta baseAddress + $300, x
inx
bne.r !loop-
bne !loop-
}
// --------------------------------------------------------
// ScreenClear -
// VideoClear -
// Fast clear screen characters mem.
//
// Parameters:
// clearByte = Byte to use to clear screen
// --------------------------------------------------------
.macro ScreenClear(clearByte) {
ScreenClearChunks(Screen.VIDEO_ADDR, clearByte)
.macro VideoClear(clearByte) {
VideoClearChunks(Video.VIDEO_ADDR, clearByte)
}
// --------------------------------------------------------
// ScreenClear -
// VideoClear -
// Fast clear screen Color Ram.
//
// Parameters:
// clearByte = Byte to use to clear screen
// --------------------------------------------------------
.macro ScreenClearColorRam(clearByte) {
ScreenClearChunks(Screen.COLOR_ADDR, clearByte)
.macro VideoClearColorRam(clearByte) {
VideoClearChunks(Video.COLOR_ADDR, clearByte)
}
// --------------------------------------------------------
// ScreenSetBorderColor -
// Set Screen border color.
// VideoSetBorderColor -
// Set Video border color.
//
// Parameters:
// color = https://www.c64-wiki.com/wiki/Color
// --------------------------------------------------------
.macro ScreenSetBorderColor(color) {
.macro VideoSetBorderColor(color) {
lda #color
sta $d020
}
// --------------------------------------------------------
// ScreenSetBackgroundColor -
// Set Screen Backfground color.
// VideoSetBackgroundColor -
// Set Video Backfground color.
//
// Parameters:
// color = https://www.c64-wiki.com/wiki/Color
// --------------------------------------------------------
.macro ScreenSetBackgroundColor(color) {
.macro VideoSetBackgroundColor(color) {
lda #color
sta $d021
}
// --------------------------------------------------------
// ScreenSetMultiColor1 -
// Set Screen Muticolor 1.
// VideoSetMultiColor1 -
// Set Video Muticolor 1.
//
// Parameters:
// color = https://www.c64-wiki.com/wiki/Color
// --------------------------------------------------------
.macro ScreenSetMultiColor1(color) {
.macro VideoSetMultiColor1(color) {
lda #color
sta $d022
}
// --------------------------------------------------------
// ScreenSetMultiColor2 -
// Set Screen Muticolor 2.
// VideoSetMultiColor2 -
// Set Video Muticolor 2.
//
// Parameters:
// color = https://www.c64-wiki.com/wiki/Color
// --------------------------------------------------------
.macro ScreenSetMultiColor2(color) {
.macro VideoSetMultiColor2(color) {
lda #color
sta $d023
}
// --------------------------------------------------------
// ScreenSetMultiColorMode -
// Set Screen Muticolor 2.
// VideoSetMultiColorMode -
// Set Video Muticolor 2.
//
// Parameters:
// color = https://www.c64-wiki.com/wiki/Multicolor_Bitmap_Mode
// --------------------------------------------------------
.macro ScreenSetMultiColorMode() {
.macro VideoSetMultiColorMode() {
lda $d016
ora #16
sta $d016
}
.filenamespace Screen
.filenamespace Video
// ========================================================
// ////// CONSTANTS ///////////////////////////////////////
@ -141,8 +141,8 @@
// --------------------------------------------------------
init: {
lda #$00
sta MemMap.SCREEN.CursorCol
sta MemMap.SCREEN.CursorRow
sta MemMap.VIDEO.CursorCol
sta MemMap.VIDEO.CursorRow
rts
}
@ -169,7 +169,7 @@ scrollUp: {
sta VIDEO_ADDR+(COLUMN_NUM*(ROWS_NUM-1)), x
dex
bpl !- // x == -1
dec MemMap.SCREEN.CursorRow
dec MemMap.VIDEO.CursorRow
pla
rts
}
@ -181,35 +181,35 @@ scrollUp: {
// end of screen scrolling and Backspace.
//
// Parameters:
// A = Character to Print SCREEN ASCII
// A = Character to Print VIDEO ASCII
// --------------------------------------------------------
sendChar: {
sei
phx
cmp #CR
bne.r !+
bne !+
jsr screenNewLine
iny
jmp exit
!:
cmp #BS
bne.r !+
ldx MemMap.SCREEN.CursorCol
bne !+
ldx MemMap.VIDEO.CursorCol
cmp #0
beq exit
dec MemMap.SCREEN.CursorCol
dec MemMap.VIDEO.CursorCol
!:
// Store Base Video Address 16 bit
ldx #<VIDEO_ADDR // Low byte
stx MemMap.SCREEN.TempVideoPointer
stx MemMap.VIDEO.TempVideoPointer
ldx #>VIDEO_ADDR // High byte
stx MemMap.SCREEN.TempVideoPointer+1
stx MemMap.VIDEO.TempVideoPointer+1
// Temp Save Y
phy
// CursorRow * 40
ldy MemMap.SCREEN.CursorRow
ldy MemMap.VIDEO.CursorRow
sty MemMap.MATH.factor1
ldy #COLUMN_NUM
sty MemMap.MATH.factor2
@ -219,28 +219,28 @@ sendChar: {
clc
pha
lda MemMap.MATH.result
adc MemMap.SCREEN.TempVideoPointer+1
sta MemMap.SCREEN.TempVideoPointer+1
adc MemMap.VIDEO.TempVideoPointer+1
sta MemMap.VIDEO.TempVideoPointer+1
lda MemMap.MATH.result+1
adc MemMap.SCREEN.TempVideoPointer
sta MemMap.SCREEN.TempVideoPointer
adc MemMap.VIDEO.TempVideoPointer
sta MemMap.VIDEO.TempVideoPointer
ldy MemMap.SCREEN.CursorCol
ldy MemMap.VIDEO.CursorCol
cpy #COLUMN_NUM // Is this > col num?
bcc.r noEndOfLine
bcc noEndOfLine
jsr screenNewLine // Yes? Add new list first
ldy #1
cpy MemMap.SCREEN.ScrollUpTriggered
cpy MemMap.VIDEO.ScrollUpTriggered
bne noScrollTriggered
// Compensate Scroll
sec
lda MemMap.SCREEN.TempVideoPointer
lda MemMap.VIDEO.TempVideoPointer
sbc #1
sta MemMap.SCREEN.TempVideoPointer
sta MemMap.VIDEO.TempVideoPointer
bcs !+
dec MemMap.SCREEN.TempVideoPointer+1
dec MemMap.VIDEO.TempVideoPointer+1
!:
noScrollTriggered:
@ -251,16 +251,16 @@ sendChar: {
cmp #BS
bne !+
lda #' '
sta (MemMap.SCREEN.TempVideoPointer), y
sta (MemMap.VIDEO.TempVideoPointer), y
ply
jmp exit
!:
// insert into screen
sta (MemMap.SCREEN.TempVideoPointer), y
sta (MemMap.VIDEO.TempVideoPointer), y
ply
iny
inc MemMap.SCREEN.CursorCol
inc MemMap.VIDEO.CursorCol
exit:
plx
@ -276,28 +276,28 @@ sendChar: {
screenNewLine: {
pha
lda #0
sta MemMap.SCREEN.CursorCol
sta MemMap.VIDEO.CursorCol
lda #ROWS_NUM-1
cmp MemMap.SCREEN.CursorRow // Are we at the screen bottom?
cmp MemMap.VIDEO.CursorRow // Are we at the screen bottom?
bne noScrollUp
jsr Screen.scrollUp
jsr Video.scrollUp
lda #1 // Yes - Scroll up
sta MemMap.SCREEN.ScrollUpTriggered
sta MemMap.VIDEO.ScrollUpTriggered
jmp done
noScrollUp:
lda #0
sta MemMap.SCREEN.ScrollUpTriggered
sta MemMap.VIDEO.ScrollUpTriggered
done:
inc MemMap.SCREEN.CursorRow
inc MemMap.VIDEO.CursorRow
pla
rts
}
* = * "Screen Lib Data"
module_type: .byte Module.TYPES.LIB
* = * "Device: Video Data"
module_type: .byte Module.TYPES.DEVICE
version: .byte 1, 0, 1
module_name:
.text "screen"
.text "video"
.byte 0
#import "../core/mem_map.asm"

209
hardware/cia.asm Normal file
View File

@ -0,0 +1,209 @@
#importonce
.filenamespace Cia
// https://www.c64-wiki.com/wiki/CIA
// ========================================================
// ////// CONSTANTS ///////////////////////////////////////
// ========================================================
// CIA 1
// ========================================================
.label C1PRA = $DC00 // CIA 1 A Register Monitoring/control of the 8 data lines of Port A
// Read/Write: Bit 0..7 keyboard matrix columns
// Read: Joystick Port 2: Bit 0..3 Direction (Left/Right/Up/Down), Bit 4 Fire button. 0 = activated.
// Read: Lightpen: Bit 4 (as fire button), connected also with "/LP" (Pin 9) of the VIC
// Read: Paddles: Bit 2..3 Fire buttons, Bit 6..7 Switch control port 1 (%01=Paddles A) or 2 (%10=Paddles B)
.label C1PRB = $DC01 // Monitoring/control of the 8 data lines of Port B. The lines are used for multiple purposes:
// Read/Write: Bit 0..7 keyboard matrix rows
// Read: Joystick Port 1: Bit 0..3 Direction (Left/Right/Up/Down), Bit 4 Fire button. 0 = activated.
// Read: Bit 6: Timer A: Toggle/Impulse output (see register 14 bit 2)
// Read: Bit 7: Timer B: Toggle/Impulse output (see register 15 bit 2)
.label C1DDRA = $DC02 // Bit X: 0=Input (read only), 1=Output (read and write)
.label C1DDRB = $DC03 // Bit X: 0=Input (read only), 1=Output (read and write)
.label C1TALO = $DC04 // Read: actual value Timer A (Low Byte)
// Writing: Set latch of Timer A (Low Byte)
.label C1TAHI = $DC05 // Read: actual value Timer A (High Byte)
// Writing: Set latch of timer A (High Byte) - if the timer is stopped, the high-byte will automatically be re-set as well
.label C1TBLO = $DC06 // Read: actual value Timer B (Low Byte)
// Writing: Set latch of Timer B (Low Byte)
.label C1TBHI = $DC07 // Read: actual value Timer B (High Byte)
// Writing: Set latch of timer B (High Byte) - if the timer is stopped, the high-byte will automatically be re-set as well
.label C1TOD10THS = $DC08 // Read:
// Bit 0..3: Tenth seconds in BCD-format ($0-$9)
// Bit 4..7: always 0
// Writing:
// Bit 0..3: if CRB-Bit7=0: Set the tenth seconds in BCD-format
// Bit 0..3: if CRB-Bit7=1: Set the tenth seconds of the alarm time in BCD-format
.label C1TODSEC = $DC09 // Bit 0..3: Single seconds in BCD-format ($0-$9)
// Bit 4..6: Ten seconds in BCD-format ($0-$5)
// Bit 7: always 0
.label C1TODMIN = $DC0A // Bit 0..3: Single minutes in BCD-format( $0-$9)
// Bit 4..6: Ten minutes in BCD-format ($0-$5)
// Bit 7: always 0
.label C1TODHR = $DC0B // Bit 0..3: Single hours in BCD-format ($0-$9)
// Bit 4..6: Ten hours in BCD-format ($0-$5)
// Bit 7: Differentiation AM/PM, 0=AM, 1=PM
// Writing into this register stops TOD, until register 8 (TOD 10THS) will be read.
.label C1TSDR = $DC0C // The byte within this register will be shifted bitwise to or from the SP-pin with every positive slope at the CNT-pin.
.label C1ICR = $DC0D // CIA1 is connected to the IRQ-Line.
// Read: (Bit0..4 = INT DATA, Origin of the interrupt)
// Bit 0: 1 = Underflow Timer A
// Bit 1: 1 = Underflow Timer B
// Bit 2: 1 = Time of day and alarm time is equal
// Bit 3: 1 = SDR full or empty, so full byte was transferred, depending of operating mode serial bus
// Bit 4: 1 = IRQ Signal occured at FLAG-pin (cassette port Data input, serial bus SRQ IN)
// Bit 5..6: always 0
// Bit 7: 1 = IRQ An interrupt occured, so at least one bit of INT MASK and INT DATA is set in both registers.
// Flags will be cleared after reading the register!
// Write: (Bit 0..4 = INT MASK, Interrupt mask)
// Bit 0: 1 = Interrupt release through timer A underflow
// Bit 1: 1 = Interrupt release through timer B underflow
// Bit 2: 1 = Interrupt release if clock=alarmtime
// Bit 3: 1 = Interrupt release if a complete byte has been received/sent.
// Bit 4: 1 = Interrupt release if a positive slope occurs at the FLAG-Pin.
// Bit 5..6: unused
// Bit 7: Source bit. 0 = set bits 0..4 are clearing the according mask bit. 1 = set bits 0..4 are setting the according mask bit. If all bits 0..4 are cleared, there will be no change to the mask.
.label C1CRA = $DC0E // Control Timer A
// Bit 0: 0 = Stop timer; 1 = Start timer
// Bit 1: 1 = Indicates a timer underflow at port B in bit 6.
// Bit 2: 0 = Through a timer overflow, bit 6 of port B will get high for one cycle , 1 = Through a timer underflow, bit 6 of port B will be inverted
// Bit 3: 0 = Timer-restart after underflow (latch will be reloaded), 1 = Timer stops after underflow.
// Bit 4: 1 = Load latch into the timer once.
// Bit 5: 0 = Timer counts system cycles, 1 = Timer counts positive slope at CNT-pin
// Bit 6: Direction of the serial shift register, 0 = SP-pin is input (read), 1 = SP-pin is output (write)
// Bit 7: Real Time Clock, 0 = 60 Hz, 1 = 50 Hz
.label C1CRB = $DC0F // Control Timer B
// Bit 0: 0 = Stop timer; 1 = Start timer
// Bit 1: 1 = Indicates a timer underflow at port B in bit 7.
// Bit 2: 0 = Through a timer overflow, bit 7 of port B will get high for one cycle , 1 = Through a timer underflow, bit 7 of port B will be inverted
// Bit 3: 0 = Timer-restart after underflow (latch will be reloaded), 1 = Timer stops after underflow.
// Bit 4: 1 = Load latch into the timer once.
// Bit 5..6:
// %00 = Timer counts System cycle
// %01 = Timer counts positive slope on CNT-pin
// %10 = Timer counts underflow of timer A
// %11 = Timer counts underflow of timer A if the CNT-pin is high
// Bit 7: 0 = Writing into the TOD register sets the clock time, 1 = Writing into the TOD register sets the alarm time.
// CIA 2
// ========================================================
.label C2PRA = $DD00 // CIA 2 A Register Monitoring/control of the 8 data lines of Port A
// Bit 0..1: Select the position of the VIC-memory
// %00, 0: Bank 3: $C000-$FFFF, 49152-65535
// %01, 1: Bank 2: $8000-$BFFF, 32768-49151
// %10, 2: Bank 1: $4000-$7FFF, 16384-32767
// %11, 3: Bank 0: $0000-$3FFF, 0-16383 (standard)
// Bit 2: RS-232: TXD Output, userport: Data PA 2 (pin M)
// Bit 3..5: serial bus Output (0=High/Inactive, 1=Low/Active)
// Bit 3: ATN OUT
// Bit 4: CLOCK OUT
// Bit 5: DATA OUT
// Bit 6..7: serial bus Input (0=Low/Active, 1=High/Inactive)
// Bit 6: CLOCK IN
// Bit 7: DATA IN
.label C2PRB = $DD01 // Monitoring/control of the 8 data lines of Port B. The lines are used for multiple purposes:
// Bit 0..7: userport Data PB 0-7 (Pins C,D,E,F,H,J,K,L)
// The KERNAL offers several RS232-Routines, which use the pins as followed:
// Bit 0, 3..7: RS-232: reading
// Bit 0: RXD
// Bit 3: RI
// Bit 4: DCD
// Bit 5: User port pin J
// Bit 6: CTS
// Bit 7: DSR
// Bit 1..5: RS-232: writing
// Bit 1: RTS
// Bit 2: DTR
// Bit 3: RI
// Bit 4: DCD
// Bit 5: User port pin J
.label C2DDRA = $DD02 // Bit X: 0=Input (read only), 1=Output (read and write)
.label C2DDRB = $DD03 // Bit X: 0=Input (read only), 1=Output (read and write)
.label C2TALO = $DD04 // Read: actual value Timer A (Low Byte)
// Writing: Set latch of Timer A (Low Byte)
.label C2TAHI = $DD05 // Read: actual value Timer A (High Byte)
// Writing: Set latch of timer A (High Byte) - if the timer is stopped, the high-byte will automatically be re-set as well
.label C2TBLO = $DD06 // Read: actual value Timer B (Low Byte)
// Writing: Set latch of Timer B (Low Byte)
.label C2TBHI = $DD07 // Read: actual value Timer B (High Byte)
// Writing: Set latch of timer B (High Byte) - if the timer is stopped, the high-byte will automatically be re-set as well
.label C2TOD10THS = $DD08 // Read:
// Bit 0..3: Tenth seconds in BCD-format ($0-$9)
// Bit 4..7: always 0
// Writing:
// Bit 0..3: if CRB-Bit7=0: Set the tenth seconds in BCD-format
// Bit 0..3: if CRB-Bit7=1: Set the tenth seconds of the alarm time in BCD-format
.label C2TODSEC = $DD09 // Bit 0..3: Single seconds in BCD-format ($0-$9)
// Bit 4..6: Ten seconds in BCD-format ($0-$5)
// Bit 7: always 0
.label C2TODMIN = $DD0A // Bit 0..3: Single minutes in BCD-format( $0-$9)
// Bit 4..6: Ten minutes in BCD-format ($0-$5)
// Bit 7: always 0
.label C2TODHR = $DD0B // Bit 0..3: Single hours in BCD-format ($0-$9)
// Bit 4..6: Ten hours in BCD-format ($0-$5)
// Bit 7: Differentiation AM/PM, 0=AM, 1=PM
// Writing into this register stops TOD, until register 8 (TOD 10THS) will be read.
.label C2TSDR = $DD0C // The byte within this register will be shifted bitwise to or from the SP-pin with every positive slope at the CNT-pin.
.label C2ICR = $DD0D // CIA2 is connected to the NMI-Line.
// Bit 4: 1 = NMI Signal occured at FLAG-pin (RS-232 data received)
// Bit 7: 1 = NMI An interrupt occured, so at least one bit of INT MASK and INT DATA is set in both registers.
.label C2CRA = $DD0E // Control Timer A
// Bit 0: 0 = Stop timer; 1 = Start timer
// Bit 1: 1 = Indicates a timer underflow at port B in bit 6.
// Bit 2: 0 = Through a timer overflow, bit 6 of port B will get high for one cycle , 1 = Through a timer underflow, bit 6 of port B will be inverted
// Bit 3: 0 = Timer-restart after underflow (latch will be reloaded), 1 = Timer stops after underflow.
// Bit 4: 1 = Load latch into the timer once.
// Bit 5: 0 = Timer counts system cycles, 1 = Timer counts positive slope at CNT-pin
// Bit 6: Direction of the serial shift register, 0 = SP-pin is input (read), 1 = SP-pin is output (write)
// Bit 7: Real Time Clock, 0 = 60 Hz, 1 = 50 Hz
.label C2CRB = $DD0F // Control Timer B
// Bit 0: 0 = Stop timer; 1 = Start timer
// Bit 1: 1 = Indicates a timer underflow at port B in bit 7.
// Bit 2: 0 = Through a timer overflow, bit 7 of port B will get high for one cycle , 1 = Through a timer underflow, bit 7 of port B will be inverted
// Bit 3: 0 = Timer-restart after underflow (latch will be reloaded), 1 = Timer stops after underflow.
// Bit 4: 1 = Load latch into the timer once.
// Bit 5..6:
// %00 = Timer counts System cycle
// %01 = Timer counts positive slope on CNT-pin
// %10 = Timer counts underflow of timer A
// %11 = Timer counts underflow of timer A if the CNT-pin is high
// Bit 7: 0 = Writing into the TOD register sets the clock time, 1 = Writing into the TOD register sets the alarm time.

25
hardware/mc6502.asm Normal file
View File

@ -0,0 +1,25 @@
#importonce
.filenamespace MC6502
https://sta.c64.org/cbm64mem.html
// ========================================================
// ////// CONSTANTS ///////////////////////////////////////
// ========================================================
.label ZR0 = $0 // Processor port data direction register. Bits:
// Bit #x: 0 = Bit #x in processor port can only be read; 1 = Bit #x in processor port can be read and written.
// Default: $2F, %00101111.
.label ZR1 = $1 // Processor port. Bits:
// Bits #0-#2: Configuration for memory areas $A000-$BFFF, $D000-$DFFF and $E000-$FFFF. Values:
// %x00: RAM visible in all three areas.
// %x01: RAM visible at $A000-$BFFF and $E000-$FFFF.
// %x10: RAM visible at $A000-$BFFF; KERNAL ROM visible at $E000-$FFFF.
// %x11: BASIC ROM visible at $A000-$BFFF; KERNAL ROM visible at $E000-$FFFF.
// %0xx: Character ROM visible at $D000-$DFFF. (Except for the value %000, see above.)
// %1xx: I/O area visible at $D000-$DFFF. (Except for the value %100, see above.)
// Bit #3: Datasette output signal level.
// Bit #4: Datasette button status; 0 = One or more of PLAY, RECORD, F.FWD or REW pressed; 1 = No button is pressed.
// Bit #5: Datasette motor control; 0 = On; 1 = Off.
// Default: $37, %00110111.

30
hardware/ram.asm Normal file
View File

@ -0,0 +1,30 @@
#importonce
.filenamespace Ram
// ========================================================
// ////// CONSTANTS ///////////////////////////////////////
// ========================================================
// ========================================================
// ////// METHODS /////////////////////////////////////////
// ========================================================
* = * "Ram HW"
init: {
// Clear Zero Page
lda #$00
tay
!:
sta $0002,y
sta $0200,y
sta $0300,y
iny
bne !-
rts
}

25
hardware/sid.asm Normal file
View File

@ -0,0 +1,25 @@
#importonce
.filenamespace Sid
https://www.c64-wiki.com/wiki/SID
// ========================================================
// ////// CONSTANTS ///////////////////////////////////////
// ========================================================
.label FV1L = $d400 // frequency voice 1 low byte
.label FV1H = $d401 // frequency voice 1 high byte
.label PCWV1L = $d402 // pulse wave duty cycle voice 1 low byte
// TODO: Add more
.label FMVC = $d418 // filter mode and main volume control
// Bit 7 mute voice 3
// Bit 6 high pass
// Bit 5 band pass
// Bit 4 low pass
// Bit 3-0 main volume

36
hardware/vic.asm Normal file
View File

@ -0,0 +1,36 @@
#importonce
.filenamespace Vic
// https://www.c64-wiki.com/wiki/VIC
// https://www.c64-wiki.com/wiki/Page_208-211
// ========================================================
// ////// CONSTANTS ///////////////////////////////////////
// ========================================================
.label VICREG = $D000
.label CR2 = $D016 // Control register 2
* = * "VIC Functions"
init: {
ldx #47
px4:
lda tvic-1, x
sta VICREG-1, x
dex
bne px4
rts
}
* = * "VIC Init Data"
tvic:
.byte $00, $00, $00, $00, $00, $00, $00, $00
.byte $00, $00, $00, $00, $00, $00, $00, $00
.byte $00, $9B, $37, $00, $00, $00, $08, $00
.byte $14, $0F, $00, $00 ,$00, $00, $00, $00
.byte $0E, $06, $01, $02, $03, $04, $00, $01
.byte $02, $03, $04, $05, $06, $07, $4C

View File

@ -1,7 +1,6 @@
#importonce
#import "../core/module.asm"
#import "../core/module.asm"
.filenamespace Math
@ -50,13 +49,13 @@ multiply: {
lda #$00
ldx #$08
clc
m0: bcc.r m1
m0: bcc m1
clc
adc MemMap.MATH.factor2
m1: ror
ror MemMap.MATH.factor1
dex
bpl.r m0
bpl m0
ldx MemMap.MATH.factor1
sta MemMap.MATH.result

View File

@ -1,7 +1,6 @@
#importonce
#import "../core/module.asm"
#import "../core/module.asm"
#import "../core/pseudo.asm"
@ -143,7 +142,7 @@ clone: {
sta (MemMap.MEMORY.dest),y
iny
dex
bne md3
bne md3
cli
md4:
plr
@ -223,5 +222,5 @@ module_name:
#import "../core/mem_map.asm"
#import "../libs/screen.asm"
#import "../devices/video.asm"

View File

@ -1,7 +1,7 @@
#importonce
#import "math.asm"
#import "../libs/screen.asm"
#import "../devices/video.asm"
#import "../core/module.asm"
@ -20,7 +20,7 @@
}
.macro PrintNewLine() {
jsr Screen.screenNewLine
jsr Video.screenNewLine
}
@ -52,22 +52,22 @@ toDebug: {
// --------------------------------------------------------
// printPetChar -
// Convert a Char from PET ASCII and print it out on Screen
// Convert a Char from PET ASCII and print it out on Video
//
// Parameters:
// A = PET ASCII char to print
// --------------------------------------------------------
printPetChar: {
phr
jsr Print.petCharToScreenChar
jsr Screen.sendChar
jsr Print.petCharToVideoChar
jsr Video.sendChar
plr
rts
}
// --------------------------------------------------------
// printLine -
// Print a Null terminated SCREEN ASCII string to screen.
// Print a Null terminated VIDEO ASCII string to screen.
//
// Parameters:
// A = low byte string address
@ -81,7 +81,7 @@ printLine: {
lda (MemMap.PRINT.TempStringPointer), y
cmp #0
beq exit
jsr Screen.sendChar
jsr Video.sendChar
jmp printLoop
exit:
rts
@ -125,16 +125,16 @@ byteToHex: {
}
// --------------------------------------------------------
// petCharToScreenChar -
// Convert a PET ASCII Char to a SCREEN ASCII Char
// petCharToVideoChar -
// Convert a PET ASCII Char to a VIDEO ASCII Char
//
// Parameters:
// A = PET ASCII Byte to Convert
//
// Result:
// A = Converted ASCII SCREEN Char
// A = Converted ASCII VIDEO Char
// --------------------------------------------------------
petCharToScreenChar: {
petCharToVideoChar: {
// $00-$1F
cmp #$1f
bcs !+

View File

@ -3,7 +3,7 @@
#import "../core/system.asm"
#import "../libs/print.asm"
#import "../core/module.asm"
#import "../libs/keyboard.asm"
#import "../devices/keyboard.asm"
.filenamespace WozShell
@ -56,9 +56,9 @@ loop: {
execute:
jsr WozShell.push // CR in Buffer
jsr Screen.screenNewLine
jsr Video.screenNewLine
jsr WozShell.exec
jsr Screen.screenNewLine
jsr Video.screenNewLine
jsr WozShell.clear
jmp loop
}
@ -72,7 +72,7 @@ push: {
ldy MemMap.SHELL.pos
iny
cpy #127
beq.r done
beq done
sty MemMap.SHELL.pos
sta MemMap.SHELL.buffer, y
done:
@ -135,7 +135,7 @@ wozExec: {
asl
SETMODE:
cmp #0
beq.r !+
beq !+
eor #%10000000
!:
sta MemMap.SHELL.MODE
@ -145,7 +145,7 @@ wozExec: {
NEXTITEM:
lda MemMap.SHELL.buffer,Y //Get character
cmp #CR
bne.r CONT // We're done if it's CR!
bne CONT // We're done if it's CR!
rts
CONT:
cmp #'.'
@ -317,7 +317,7 @@ helpString:
.byte $8e, 0
aboutString:
.text "woz64 mon - v 0.1.5"
.text "woz64 mon - v 1.2.0"
.byte $8e, 0
lineString:
.text "----------------------------------------"