Init sequence clears first 2048 bytes of first two RAMWorks banks

This commit is contained in:
Zane Kaminski 2023-12-27 00:33:23 -05:00
parent 8e9d1233be
commit 1de3608efa
2 changed files with 795 additions and 890 deletions

View File

@ -1,59 +1,76 @@
module RAM2E(C14M, PHI1, LED,
nWE, nWE80, nEN80, nC07X,
Ain, Din, Dout, nDOE, Vout, nVOE,
CKE, nCS, nRAS, nCAS, nRWE,
BA, RA, RD, DQML, DQMH);
CKEout, nCSout, nRASout, nCASout, nRWEout,
BA, RAout, DQML, DQMH, RD);
/* Clocks */
input C14M, PHI1;
/* Control inputs */
input nWE, nWE80, nEN80, nC07X;
/* Delay for EN80 signal */
//output DelayOut = 1'b0;
//input DelayIn;
wire EN80 = !nEN80;
/* Activity LED */
reg LEDEN = 0;
output LED;
assign LED = !(!nEN80 && LEDEN);
output LED; assign LED = !(!nEN80 && LEDEN && Ready);
/* Address Bus */
input [7:0] Ain; // Multiplexed DRAM address input
/* 6502 Data Bus */
input [7:0] Din; // 6502 data bus inputs
reg DOEEN = 0; // 6502 data bus output enable from state machine
output nDOE;
assign nDOE = !(EN80 && nWE && DOEEN); // 6502 data bus output enable
output reg [7:0] Dout; // 6502 data Bus output
reg DOEEN;
always @(posedge C14M) begin
DOEEN <= /*(S==4'h8) || (S==4'h9) || (S==4'hA) ||*/ (S==4'hB) ||
(S==4'hC) || (S==4'hD) || (S==4'hE) || (S==4'hF);
end
output nDOE; assign nDOE = !(!nEN80 && nWE && DOEEN);
output [7:0] Dout; assign Dout[7:0] = RD[7:0];
/* Video Data Bus */
output nVOE;
assign nVOE = !(!PHI1); /// Video data bus output enable
reg VOEEN;
always @(posedge C14M) begin
VOEEN <= (S==4'h7) ||
(S==4'h8) || (S==4'h9) || (S==4'hA) || (S==4'hB) ||
(S==4'hC) || (S==4'hD) || (S==4'hE) || (S==4'hF);
end
output nVOE; assign nVOE = !(!PHI1 && VOEEN);
output reg [7:0] Vout; // Video data bus
always @(posedge C14M) if (S==4'h6) Vout[7:0] <= RD[7:0];
/* SDRAM */
output reg CKE = 0;
output reg nCS = 1, nRAS = 1, nCAS = 1, nRWE = 1;
reg CKE = 1;
//reg nCS = 1;
reg nRAS = 1, nCAS = 1, nRWE = 1;
output reg [1:0] BA;
output reg [11:0] RA;
reg [11:0] RA;
output reg DQML = 1, DQMH = 1;
wire RDOE = EN80 && !nWE80;
inout [7:0] RD;
assign RD[7:0] = RDOE ? Din[7:0] : 8'bZ;
assign RD[7:0] = Ready ? (!nWE80 ? Din[7:0] : 8'bZ) : 8'h00;
/* SDRAM falling edge outputs */
output reg CKEout;
output nCSout; assign nCSout = 0;
output reg nRASout = 1, nCASout = 1, nRWEout = 1;
output reg [11:0] RAout;
always @(negedge C14M) begin
CKEout <= CKE;
nRASout <= nRAS;
nCASout <= nCAS;
nRWEout <= nRWE;
RAout <= RA;
end
/* RAMWorks Bank Register and Capacity Mask */
reg [7:0] RWBank = 0; // RAMWorks bank register
reg [7:0] RWMask = 0; // RAMWorks bank reg. capacity mask
reg RWSel = 0; // RAMWorks bank register select
always @(posedge C14M) begin
if (S==4'h9) RWSel <= RA[0] && !RA[3] && !nWE && !nC07X;
end
reg CmdRWMaskSet = 0; // RAMWorks Mask register set flag
// Causes RWBank to be zeroed next RWSel access
//reg CmdSetRWBankFFMAX = 0;
//reg CmdSetRWBankFFSPI = 0;
reg CmdSetRWBankFFMXO2 = 0;
reg CmdSetRWBankFFChip = 0;
reg CmdSetRWBankFFLED = 0;
reg CmdLEDSet = 0;
reg CmdLEDGet = 0;
@ -84,7 +101,7 @@ module RAM2E(C14M, PHI1, LED,
.wb_ack_o(wb_ack),
.wbc_ufm_irq(ufm_irq));
/* UFM State and User Command Triggers */
/* User Command Triggers */
//reg CmdBitbangMAX = 0; // Set by user command. Loads UFM outputs next RWSel
//reg CmdBitbangSPI = 0;
reg CmdBitbangMXO2 = 0;
@ -96,6 +113,7 @@ module RAM2E(C14M, PHI1, LED,
reg PHI1reg = 0; // Saved PHI1 at last rising clock edge
reg Ready = 0; // 1 if done with init sequence (S0) and enter S1-S15
reg [15:0] FS = 0; // Fast state counter
wire RefReq = FS[5:4]==0; // Refresh request based on fast state counter
reg [3:0] S = 0; // IIe State counter
/* State Counters */
@ -105,8 +123,32 @@ module RAM2E(C14M, PHI1, LED,
// Synchronize Apple state counter to S1 when just entering PHI1
PHI1reg <= PHI1; // Save old PHI1
S <= (PHI1 && !PHI1reg && Ready) ? 4'h1 :
S==4'h0 ? 4'h0 :
S==4'hF ? 4'hF : S+4'h1;
(S==4'h0) ? 4'h0 :
(S==4'hF) ? 4'hF : S+4'h1;
// Begin normal operation after 64k init cycles (~4.59ms)
if (FS[15:0]==16'hFFFF) Ready <= 1'b1;
end
/* Command sequence control */
always @(posedge C14M) begin
if (S==4'hC) begin
if (RWSel) begin
CmdTout <= 0; // Reset command timeout if RWSel accessed
// Recognize command sequence and advance CS state
if ((CS==3'h0 && Din[7:0]==8'hFF) ||
(CS==3'h1 && Din[7:0]==8'h00) ||
(CS==3'h2 && Din[7:0]==8'h55) ||
(CS==3'h3 && Din[7:0]==8'hAA) ||
(CS==3'h4 && Din[7:0]==8'hC1) ||
(CS==3'h5 && Din[7:0]==8'hAD) ||
CS==3'h6 || CS==3'h7) CS <= CS+3'h1;
else CS <= 0; // Back to beginning if it's not right
end else begin
CmdTout <= CmdTout+3'h1; // Increment command timeout
// If command sequence times out, reset sequence state
if (CmdTout==3'h7) CS <= 0;
end
end
end
/* UFM Control */
@ -370,462 +412,374 @@ module RAM2E(C14M, PHI1, LED,
end
end
end
/* RAMWorks register control - bank, LED, etc. */
always @(posedge C14M) begin
if (S==4'hC && RWSel) begin
// Latch RAMWorks bank if accessed
if ((CmdSetRWBankFFLED) ||
(CmdSetRWBankFFChip) ||
(CmdLEDGet && LEDEN)) RWBank <= 8'hFF;
else RWBank <= Din[7:0] & {RWMask[7], ~RWMask[6:0]};
if (CS==3'h6) begin // Recognize and submit command in CS6
// Board has LED detect command
CmdSetRWBankFFLED <= Din[7:0]==8'hF0;
// Volatile commands
CmdRWMaskSet <= Din[7:0]==8'hE0;
CmdLEDSet <= Din[7:0]==8'hE2;
CmdLEDGet <= Din[7:0]==8'hE3;
end else begin // Reset command triggers
CmdSetRWBankFFLED <= 0;
CmdRWMaskSet <= 0;
CmdLEDSet <= 0;
CmdLEDGet <= 0;
end
end
end
/* RAMWorks register control - Lattice MachXO2 */
always @(posedge C14M) begin
if (S==4'hC && RWSel) begin
if (CS==3'h6) begin // Recognize and submit command in CS6
// Chip detection commands
//CmdSetRWBankFFChip <= Din[7:0]==8'hFF; // MAX
//CmdSetRWBankFFChip <= Din[7:0]==8'hFE; // SPI
CmdSetRWBankFFChip <= Din[7:0]==8'hFD; // MachXO2
// Altera MAX II/V commands
//CmdBitbangMAX <= Din[7:0]==8'hEA;
//if (!CmdEraseMAX && !CmdPrgmMAX) begin
// if (Din[7:0]==8'hEE) CmdEraseMAX <= 1;
// if (Din[7:0]==8'hEF) CmdPrgmMAX <= 1;
//end
// SPI commands
//CmdBitbangSPI <= Din[7:0]==8'hEB;
// MachXO2 commands
CmdBitbangMXO2 <= Din[7:0]==8'hEC;
CmdExecMXO2 <= Din[7:0]==8'hED;
end else begin // Reset command triggers
CmdSetRWBankFFChip <= 0;
//CmdBitbangMAX <= 0;
//CmdBitbangSPI <= 0;
CmdBitbangMXO2 <= 0;
CmdExecMXO2 <= 0;
end
end
end
/* SDRAM Control */
always @(posedge C14M) begin
if (S==4'h0) begin
// SDRAM initialization
if (FS[15:0]==16'hFFC0) begin
// Precharge All
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
RA[10] <= 1'b1; // "all"
end else if (FS[15:4]==16'hFFD && FS[0]==1'b0) begin // Repeat 8x
// Auto-refresh
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end else if (FS[15:0]==16'hFFE8) begin
// Set Mode Register
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b0;
RA[10] <= 1'b0; // Reserved in mode register
end else if (FS[15:4]==12'hFFF && FS[0]==1'b0) begin // Repeat 8x
// Auto-refresh
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end else begin // Otherwise send no-op
always @(posedge C14M) case (S)
4'h0: begin
CKE <= 1'b1;
if (!FS[15] || FS[0]) begin
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end
// Enable SDRAM clock after 65,280 cycles (~4.56ms)
CKE <= FS[15:8] == 8'hFF;
// Mode register contents
BA[1:0] <= 2'b00; // Reserved
RA[11] <= 1'b0; // Reserved
// RA[10] set above ^
RA[9] <= 1'b1; // "1" for single write mode
RA[8] <= 1'b0; // Reserved
RA[7] <= 1'b0; // "0" for not test mode
RA[6:4] <= 3'b010; // "2" for CAS latency 2
RA[3] <= 1'b0; // "0" for sequential burst (not used)
RA[2:0] <= 3'b000; // "0" for burst length 1 (no burst)
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
// Begin normal operation after 128k init cycles (~9.15ms)
if (FS == 16'hFFFF) Ready <= 1'b1;
end else if (S==4'h1) begin
// Enable clock
end else case (FS[4:1])
4'h0: begin
// PC all
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
end 4'h1: begin
// LDM
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b0;
end 4'h2: begin
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end 4'h3, 4'h4, 4'h5, 4'h6,
4'h7, 4'h8, 4'h9, 4'hA: begin
// AREF
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
end 4'hB: begin
// ACT
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
end 4'hC, 4'hD: begin
// WR
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= 1'b0;
end 4'hE: begin
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end 4'hF: begin
// PC all
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
end
endcase
case (FS[4:3])
2'b00, 2'b01: begin
// Mode register contents
BA[1:0] <= 2'b00; // Reserved
RA[11] <= 1'b0; // Reserved
RA[10] <= !FS[1]; // reserved / "all"
RA[9] <= 1'b1; // "1" for single write mode
RA[8] <= 1'b0; // Reserved
RA[7] <= 1'b0; // "0" for not test mode
RA[6:4] <= 3'b010; // "2" for CAS latency 2
RA[3] <= 1'b0; // "0" for sequential burst (not used)
RA[2:0] <= 3'b000; // "0" for burst length 1 (no burst)
end 2'b10: begin
BA[1:0] <= 2'b00;
RA[11:8] <= 4'h0;
RA[7:0] <= FS[14:7];
end 2'b11: begin
BA[1:0] <= 2'b00;
RA[11:3] <= 9'h000;
RA[2:1] <= FS[6:5];
RA[0] <= FS[1];
end
endcase
DQML <= !FS[15];
DQMH <= !FS[15];
end 4'h1: begin
// NOP CKE
CKE <= 1'b1;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
// Hold RA[7:0]
DQML <= 1'b0;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h2) begin
// Enable clock
end 4'h2: begin
// ACT CKE
CKE <= 1'b1;
// Activate
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
// SDRAM bank 0, high-order row address is 0
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Row address is as previously latched
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h3) begin
// Enable clock
// Hold BA
// Hold RA
// Hold DQMs
end 4'h3: begin
// RD CKE
CKE <= 1'b1;
// Read
nCS <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= 1'b1;
// SDRAM bank 0, RA[11,9:8] don't care
BA[1:0] <= 2'b00;
RA[11] <= 1'b0;
RA[10] <= 1'b1; // (A10 set to auto-precharge)
RA[9] <= 1'b0;
RA[8] <= 1'b0;
// Latch column address for read command
// Hold BA
// Hold RA[11:8]
RA[7:0] <= Ain[7:0];
// Read low byte (high byte is +4MB in ramworks)
DQML <= 1'b0;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h4) begin
// Enable clock
// Hold DQMs
end 4'h4: begin
// PC all CKE
CKE <= 1'b1;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h5) begin
// Enable clock
CKE <= 1'b1;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h6) begin
// Enable clock
CKE <= 1'b1;
if (FS[5:4]==0) begin
// Auto-refresh
nCS <= 1'b0;
nRWE <= 1'b0;
// Hold BA
// Hold RA[11]
RA[10] <= 1'b1; // "all"
// Hold RA[9:0]
// Hold DQMs
end 4'h5: begin
if (RefReq) begin
// AREF CKE
CKE <= 1'b1;
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
end else begin
// NOP
nCS <= 1'b1;
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h7) begin
// Enable clock
CKE <= 1'b1;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Latch row address for activate command
RA[7:0] <= Ain[7:0];
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h8) begin
// Enable clock if '245 output enabled
CKE <= EN80;
// Activate if '245 output enabled
nCS <= nEN80;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
// SDRAM bank, RA[11:8] determine by RamWorks bank
BA[1:0] <= RWBank[5:4];
RA[11:8] <= RWBank[3:0];
// Row address is as previously latched
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h9) begin
// Enable clock if '245 output enabled
CKE <= EN80;
// Read/Write if '245 output enabled
nCS <= nEN80;
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= nWE80;
// SDRAM bank still determined by RamWorks, RA[11,9:8] don't care
BA[1:0] <= RWBank[5:4];
RA[11] <= 1'b0;
RA[10] <= 1'b1; // (A10 set to auto-precharge)
RA[9] <= 1'b0;
RA[8] <= RWBank[7];
// Latch column address for R/W command
RA[7:0] <= Ain[7:0];
// Latch RAMWorks low nybble write select using old row address
RWSel <= RA[0] && !RA[3] && !nWE && !nC07X;
// Mask according to RAMWorks bank (high byte is +4MB)
DQML <= RWBank[6];
DQMH <= !RWBank[6];
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'hA) begin
// Enable clock if '245 output enabled
CKE <= EN80;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'hB) begin
// Disable clock
// Hold BA
// Hold RA
// Hold DQMs
end 4'h6: begin
// NOP CKD
CKE <= 1'b0;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
end else if (S==4'hC) begin
// Disable clock
CKE <= 1'b0;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
// RAMWorks Bank Register Select
if (RWSel) begin
// Latch RAMWorks bank if accessed
if (CmdSetRWBankFFLED ||
//CmdSetRWBankFFMAX ||
//CmdSetRWBankFFSPI ||
CmdSetRWBankFFMXO2 ||
(CmdLEDGet && LEDEN)) RWBank <= 8'hFF;
else RWBank <= Din[7:0] & {RWMask[7], ~RWMask[6:0]};
// Recognize command sequence and advance CS state
if ((CS==3'h0 && Din[7:0]==8'hFF) ||
(CS==3'h1 && Din[7:0]==8'h00) ||
(CS==3'h2 && Din[7:0]==8'h55) ||
(CS==3'h3 && Din[7:0]==8'hAA) ||
(CS==3'h4 && Din[7:0]==8'hC1) ||
(CS==3'h5 && Din[7:0]==8'hAD) ||
CS==3'h6 || CS==3'h7) CS <= CS+3'h1;
else CS <= 0; // Back to beginning if it's not right
if (CS==3'h6) begin // Recognize and submit command in CS6
//CmdSetRWBankFFMAX <= Din[7:0]==8'hFF;
//CmdSetRWBankFFSPI <= Din[7:0]==8'hFE;
CmdSetRWBankFFMXO2 <= Din[7:0]==8'hFD;
CmdSetRWBankFFLED <= Din[7:0]==8'hF0;
CmdRWMaskSet <= Din[7:0]==8'hE0;
CmdLEDSet <= Din[7:0]==8'hE2;
CmdLEDGet <= Din[7:0]==8'hE3;
//CmdBitbangMAX <= Din[7:0]==8'hEA;
//CmdBitbangSPI <= Din[7:0]==8'hEB;
CmdBitbangMXO2 <= Din[7:0]==8'hEC;
CmdExecMXO2 <= Din[7:0]==8'hED;
//if (Din[7:0]==8'hEE) CmdEraseMAX <= 1;
//if (Din[7:0]==8'hEF) CmdPrgmMAX <= 1;
end else begin // Reset command triggers
//CmdSetRWBankFFMAX <= 0;
//CmdSetRWBankFFSPI <= 0;
CmdSetRWBankFFMXO2 <= 0;
CmdSetRWBankFFLED <= 0;
CmdRWMaskSet <= 0;
CmdLEDSet <= 0;
CmdLEDGet <= 0;
//CmdBitbangMAX <= 0;
//CmdBitbangSPI <= 0;
CmdBitbangMXO2 <= 0;
CmdExecMXO2 <= 0;
end
CmdTout <= 0; // Reset command timeout if RWSel accessed
end else begin
CmdTout <= CmdTout+3'h1; // Increment command timeout
// If command sequence times out, reset sequence state
if (CmdTout==3'h7) CS <= 0;
// Hold BA
// Hold RA
// Hold DQMs
end 4'h7: begin
// Can't check EN80 at this time
if (nWE) begin // Read / idle
// NOP CKE
CKE <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end else begin // Write / idle
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end
end else if (S==4'hD) begin
// Disable clock
CKE <= 1'b0;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
end else if (S==4'hE) begin
// Disable clock
CKE <= 1'b0;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Latch row address for next video read
BA[1:0] <= RWBank[6:5];
RA[11:8] <= RWBank[4:1];
RA[7:0] <= Ain[7:0];
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
end else if (S==4'hF) begin
// Disable clock
// Hold DQMs
end 4'h8: begin
if (nEN80) begin // Idle
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end else if (nWE) begin // Read
// ACT CKE
CKE <= 1'b1;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
end else begin // Write
// NOP CKE
CKE <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end
// Hold BA
// Hold RA
// Hold DQMs
end 4'h9: begin
if (nEN80) begin // Idle
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end else if (nWE) begin // Read
// RD CKE
CKE <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= 1'b1;
end else begin // Write
// ACT CKE
CKE <= 1'b1;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
end
// Hold BA
RA[11:9] <= 3'b000; // no auto-precharge
RA[8] <= RWBank[7];
RA[7:0] <= Ain[7:0];
DQMH <= !RWBank[0];
DQMH <= RWBank[0];
end 4'hA: begin
if (nEN80) begin // Idle
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Hold RA[10]
end else if (nWE) begin // Read
// PC all CKD
CKE <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
RA[10] <= 1'b1;
end else begin // Write
// WR CKE
CKE <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= 1'b0;
RA[10] <= 1'b0;
end
// Hold BA
// Hold RA[11,9:0]
// Hold DQMs
end 4'hB: begin
if (nEN80) begin // Idle
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end else if (nWE) begin // Read
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end else begin // Write
// NOP CKE
CKE <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end
// Hold BA
// Hold RA[11:0]
// Hold DQMs
end 4'hC: begin
if (nEN80) begin // Idle
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Hold RA[10]
end else if (nWE) begin // Read
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Hold RA[10]
end else begin // Write
// PC all CKD
CKE <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
RA[10] <= 1'b1; // "all"
end
// Hold BA
// Hold RA[11,9:0]
// Hold RA[7:0]
// Hold DQMs
end 4'hD: begin
// NOP CKD
CKE <= 1'b0;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Latch row address for next video read
RA[7:0] <= Ain[7:0];
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
end
end
always @(negedge C14M) begin
// Latch video and read data outputs
if (S==4'h6) Vout[7:0] <= RD[7:0];
if (S==4'hC) Dout[7:0] <= RD[7:0];
end
// Hold BA
// Hold RA[11:0]
// Hold DQMs
end 4'hE, 4'hF: begin
// NOP CKD
CKE <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Hold BA
// Hold RA[11:8]
RA[7:0] <= Ain[7:0]; // Latch row address for next video read
// Hold DQMs
end
endcase
endmodule

View File

@ -1,59 +1,76 @@
module RAM2E(C14M, PHI1, LED,
nWE, nWE80, nEN80, nC07X,
Ain, Din, Dout, nDOE, Vout, nVOE,
CKE, nCS, nRAS, nCAS, nRWE,
BA, RA, RD, DQML, DQMH);
CKEout, nCSout, nRASout, nCASout, nRWEout,
BA, RAout, DQML, DQMH, RD);
/* Clocks */
input C14M, PHI1;
/* Control inputs */
input nWE, nWE80, nEN80, nC07X;
/* Delay for EN80 signal */
//output DelayOut = 1'b0;
//input DelayIn;
wire EN80 = !nEN80;
/* Activity LED */
reg LEDEN = 0;
output LED;
assign LED = !(!nEN80 && LEDEN);
output LED; assign LED = !(!nEN80 && LEDEN && Ready);
/* Address Bus */
input [7:0] Ain; // Multiplexed DRAM address input
/* 6502 Data Bus */
input [7:0] Din; // 6502 data bus inputs
reg DOEEN = 0; // 6502 data bus output enable from state machine
output nDOE;
assign nDOE = !(EN80 && nWE && DOEEN); // 6502 data bus output enable
output reg [7:0] Dout; // 6502 data Bus output
reg DOEEN;
always @(posedge C14M) begin
DOEEN <= /*(S==4'h8) || (S==4'h9) || (S==4'hA) ||*/ (S==4'hB) ||
(S==4'hC) || (S==4'hD) || (S==4'hE) || (S==4'hF);
end
output nDOE; assign nDOE = !(!nEN80 && nWE && DOEEN);
output [7:0] Dout; assign Dout[7:0] = RD[7:0];
/* Video Data Bus */
output nVOE;
assign nVOE = !(!PHI1); /// Video data bus output enable
reg VOEEN;
always @(posedge C14M) begin
VOEEN <= (S==4'h7) ||
(S==4'h8) || (S==4'h9) || (S==4'hA) || (S==4'hB) ||
(S==4'hC) || (S==4'hD) || (S==4'hE) || (S==4'hF);
end
output nVOE; assign nVOE = !(!PHI1 && VOEEN);
output reg [7:0] Vout; // Video data bus
always @(posedge C14M) if (S==4'h6) Vout[7:0] <= RD[7:0];
/* SDRAM */
output reg CKE = 0;
output reg nCS = 1, nRAS = 1, nCAS = 1, nRWE = 1;
reg CKE = 1;
//reg nCS = 1;
reg nRAS = 1, nCAS = 1, nRWE = 1;
output reg [1:0] BA;
output reg [11:0] RA;
reg [11:0] RA;
output reg DQML = 1, DQMH = 1;
wire RDOE = EN80 && !nWE80;
inout [7:0] RD;
assign RD[7:0] = RDOE ? Din[7:0] : 8'bZ;
assign RD[7:0] = Ready ? (!nWE80 ? Din[7:0] : 8'bZ) : 8'h00;
/* SDRAM falling edge outputs */
output reg CKEout;
output nCSout; assign nCSout = 0;
output reg nRASout = 1, nCASout = 1, nRWEout = 1;
output reg [11:0] RAout;
always @(negedge C14M) begin
CKEout <= CKE;
nRASout <= nRAS;
nCASout <= nCAS;
nRWEout <= nRWE;
RAout <= RA;
end
/* RAMWorks Bank Register and Capacity Mask */
reg [7:0] RWBank = 0; // RAMWorks bank register
reg [7:0] RWMask = 0; // RAMWorks bank reg. capacity mask
reg RWSel = 0; // RAMWorks bank register select
always @(posedge C14M) begin
if (S==4'h9) RWSel <= RA[0] && !RA[3] && !nWE && !nC07X;
end
reg CmdRWMaskSet = 0; // RAMWorks Mask register set flag
// Causes RWBank to be zeroed next RWSel access
reg CmdSetRWBankFFMAX = 0;
//reg CmdSetRWBankFFSPI = 0;
//reg CmdSetRWBankFFMXO2 = 0;
reg CmdSetRWBankFFChip = 0;
reg CmdSetRWBankFFLED = 0;
reg CmdLEDSet = 0;
reg CmdLEDGet = 0;
@ -92,23 +109,24 @@ module RAM2E(C14M, PHI1, LED,
.osc (UFMOsc),
.rtpbusy (RTPBusy));
reg UFMRTPBusy = 0;
always @(posedge C14M) begin UFMRTPBusy <= UFMBusy || RTPBusy;
/* UFM State and User Command Triggers */
always @(posedge C14M) UFMRTPBusy <= UFMBusy || RTPBusy;
reg UFMInitDone = 0; // 1 if UFM initialization finished
reg UFMReqErase = 0; // 1 if UFM requires erase
reg DRCLKPulse = 0; // Set by user command. Causes DRCLK pulse next C14M
/* User Command Triggers */
reg CmdBitbangMAX = 0; // Set by user command. Loads UFM outputs next RWSel
//reg CmdBitbangSPI = 0;
//reg CmdBitbangMXO2 = 0;
//reg CmdExecMXO2 = 0;
reg CmdPrgmMAX = 0; // Set by user command. Programs UFM
reg CmdEraseMAX = 0; // Set by user command. Erases UFM
reg DRCLKPulse = 0; // Set by user command. Causes DRCLK pulse next C14M
/* State Counters */
reg PHI1reg = 0; // Saved PHI1 at last rising clock edge
reg Ready = 0; // 1 if done with init sequence (S0) and enter S1-S15
reg [15:0] FS = 0; // Fast state counter
wire RefReq = FS[5:4]==0; // Refresh request based on fast state counter
reg [3:0] S = 0; // IIe State counter
/* State Counters */
@ -118,8 +136,32 @@ module RAM2E(C14M, PHI1, LED,
// Synchronize Apple state counter to S1 when just entering PHI1
PHI1reg <= PHI1; // Save old PHI1
S <= (PHI1 && !PHI1reg && Ready) ? 4'h1 :
S==4'h0 ? 4'h0 :
S==4'hF ? 4'hF : S+4'h1;
(S==4'h0) ? 4'h0 :
(S==4'hF) ? 4'hF : S+4'h1;
// Begin normal operation after 64k init cycles (~4.59ms)
if (FS[15:0]==16'hFFFF) Ready <= 1'b1;
end
/* Command sequence control */
always @(posedge C14M) begin
if (S==4'hC) begin
if (RWSel) begin
CmdTout <= 0; // Reset command timeout if RWSel accessed
// Recognize command sequence and advance CS state
if ((CS==3'h0 && Din[7:0]==8'hFF) ||
(CS==3'h1 && Din[7:0]==8'h00) ||
(CS==3'h2 && Din[7:0]==8'h55) ||
(CS==3'h3 && Din[7:0]==8'hAA) ||
(CS==3'h4 && Din[7:0]==8'hC1) ||
(CS==3'h5 && Din[7:0]==8'hAD) ||
CS==3'h6 || CS==3'h7) CS <= CS+3'h1;
else CS <= 0; // Back to beginning if it's not right
end else begin
CmdTout <= CmdTout+3'h1; // Increment command timeout
// If command sequence times out, reset sequence state
if (CmdTout==3'h7) CS <= 0;
end
end
end
/* UFM Control */
@ -204,10 +246,10 @@ module RAM2E(C14M, PHI1, LED,
DRCLK <= DRCLKPulse;
end
// Volatile settings command execution
if (RWSel && S==4'hC) begin
// LED control
if (CmdLEDSet) LEDEN <= Din[0];
// Set capacity mask
if (CmdRWMaskSet) RWMask[7:0] <= {Din[7], ~Din[6:0]};
end
@ -226,464 +268,373 @@ module RAM2E(C14M, PHI1, LED,
end
end
end
/* RAMWorks register control - bank, LED, etc. */
always @(posedge C14M) begin
if (S==4'hC && RWSel) begin
// Latch RAMWorks bank if accessed
if ((CmdSetRWBankFFLED) ||
(CmdSetRWBankFFChip) ||
(CmdLEDGet && LEDEN)) RWBank <= 8'hFF;
else RWBank <= Din[7:0] & {RWMask[7], ~RWMask[6:0]};
if (CS==3'h6) begin // Recognize and submit command in CS6
// Board has LED detect command
CmdSetRWBankFFLED <= Din[7:0]==8'hF0;
// Volatile commands
CmdRWMaskSet <= Din[7:0]==8'hE0;
CmdLEDSet <= Din[7:0]==8'hE2;
CmdLEDGet <= Din[7:0]==8'hE3;
end else begin // Reset command triggers
CmdSetRWBankFFLED <= 0;
CmdRWMaskSet <= 0;
CmdLEDSet <= 0;
CmdLEDGet <= 0;
end
end
end
/* RAMWorks register control - Altera MAX */
always @(posedge C14M) begin
if (S==4'hC && RWSel) begin
if (CS==3'h6) begin // Recognize and submit command in CS6
// Chip detection commands
CmdSetRWBankFFChip <= Din[7:0]==8'hFF; // MAX
//CmdSetRWBankFFChip <= Din[7:0]==8'hFE; // SPI
//CmdSetRWBankFFChip <= Din[7:0]==8'hFD; // MachXO2
// Altera MAX II/V commands
CmdBitbangMAX <= Din[7:0]==8'hEA;
if (!CmdEraseMAX && !CmdPrgmMAX) begin
if (Din[7:0]==8'hEE) CmdEraseMAX <= 1;
if (Din[7:0]==8'hEF) CmdPrgmMAX <= 1;
end
// SPI commands
//CmdBitbangSPI <= Din[7:0]==8'hEB;
// MachXO2 commands
//CmdBitbangMXO2 <= Din[7:0]==8'hEC;
//CmdExecMXO2 <= Din[7:0]==8'hED;
end else begin // Reset command triggers
CmdSetRWBankFFChip <= 0;
CmdBitbangMAX <= 0;
//CmdBitbangSPI <= 0;
//CmdBitbangMXO2 <= 0;
//CmdExecMXO2 <= 0;
end
end
end
/* SDRAM Control */
always @(posedge C14M) begin
if (S==4'h0) begin
// SDRAM initialization
if (FS[15:0]==16'hFFC0) begin
// Precharge All
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
RA[10] <= 1'b1; // "all"
end else if (FS[15:4]==16'hFFD && FS[0]==1'b0) begin // Repeat 8x
// Auto-refresh
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end else if (FS[15:0]==16'hFFE8) begin
// Set Mode Register
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b0;
RA[10] <= 1'b0; // Reserved in mode register
end else if (FS[15:4]==12'hFFF && FS[0]==1'b0) begin // Repeat 8x
// Auto-refresh
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end else begin // Otherwise send no-op
always @(posedge C14M) case (S)
4'h0: begin
CKE <= 1'b1;
if (!FS[15] || FS[0]) begin
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end
// Enable SDRAM clock after 65,280 cycles (~4.56ms)
CKE <= FS[15:8] == 8'hFF;
// Mode register contents
BA[1:0] <= 2'b00; // Reserved
RA[11] <= 1'b0; // Reserved
// RA[10] set above ^
RA[9] <= 1'b1; // "1" for single write mode
RA[8] <= 1'b0; // Reserved
RA[7] <= 1'b0; // "0" for not test mode
RA[6:4] <= 3'b010; // "2" for CAS latency 2
RA[3] <= 1'b0; // "0" for sequential burst (not used)
RA[2:0] <= 3'b000; // "0" for burst length 1 (no burst)
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
// Begin normal operation after 128k init cycles (~9.15ms)
if (FS == 16'hFFFF) Ready <= 1'b1;
end else if (S==4'h1) begin
// Enable clock
end else case (FS[4:1])
4'h0: begin
// PC all
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
end 4'h1: begin
// LDM
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b0;
end 4'h2: begin
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end 4'h3, 4'h4, 4'h5, 4'h6,
4'h7, 4'h8, 4'h9, 4'hA: begin
// AREF
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
end 4'hB: begin
// ACT
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
end 4'hC, 4'hD: begin
// WR
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= 1'b0;
end 4'hE: begin
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end 4'hF: begin
// PC all
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
end
endcase
case (FS[4:3])
2'b00, 2'b01: begin
// Mode register contents
BA[1:0] <= 2'b00; // Reserved
RA[11] <= 1'b0; // Reserved
RA[10] <= !FS[1]; // reserved / "all"
RA[9] <= 1'b1; // "1" for single write mode
RA[8] <= 1'b0; // Reserved
RA[7] <= 1'b0; // "0" for not test mode
RA[6:4] <= 3'b010; // "2" for CAS latency 2
RA[3] <= 1'b0; // "0" for sequential burst (not used)
RA[2:0] <= 3'b000; // "0" for burst length 1 (no burst)
end 2'b10: begin
BA[1:0] <= 2'b00;
RA[11:8] <= 4'h0;
RA[7:0] <= FS[14:7];
end 2'b11: begin
BA[1:0] <= 2'b00;
RA[11:3] <= 9'h000;
RA[2:1] <= FS[6:5];
RA[0] <= FS[1];
end
endcase
DQML <= !FS[15];
DQMH <= !FS[15];
end 4'h1: begin
// NOP CKE
CKE <= 1'b1;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
// Hold RA[7:0]
DQML <= 1'b0;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h2) begin
// Enable clock
end 4'h2: begin
// ACT CKE
CKE <= 1'b1;
// Activate
nCS <= 1'b0;
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
// SDRAM bank 0, high-order row address is 0
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Row address is as previously latched
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h3) begin
// Enable clock
// Hold BA
// Hold RA
// Hold DQMs
end 4'h3: begin
// RD CKE
CKE <= 1'b1;
// Read
nCS <= 1'b0;
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= 1'b1;
// SDRAM bank 0, RA[11,9:8] don't care
BA[1:0] <= 2'b00;
RA[11] <= 1'b0;
RA[10] <= 1'b1; // (A10 set to auto-precharge)
RA[9] <= 1'b0;
RA[8] <= 1'b0;
// Latch column address for read command
// Hold BA
// Hold RA[11:8]
RA[7:0] <= Ain[7:0];
// Read low byte (high byte is +4MB in ramworks)
DQML <= 1'b0;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h4) begin
// Enable clock
// Hold DQMs
end 4'h4: begin
// PC all CKE
CKE <= 1'b1;
// NOP
nCS <= 1'b1;
nRAS <= 1'b1;
nRAS <= 1'b0;