merging display paths between SDL and Teensy

This commit is contained in:
Jorj Bauer 2021-01-19 15:37:54 -05:00
parent c4954b9ec5
commit efc36d40a8
4 changed files with 176 additions and 220 deletions

View File

@ -263,38 +263,41 @@ void SDLDisplay::clrScr(uint8_t coloridx)
SDL_RenderPresent(renderer); // perform the render
}
// This was called with the expectation that it can draw every one of
// the 560x192 pixels that could be addressed. The SDLDISPLAY_SCALE is
// basically half the X scale - so a 320-pixel-wide screen can show 40
// columns fine, which means that we need to be creative for 80 columns,
// which need to be alpha-blended...
// This was called with the expectation that it can draw every one of
// the 560x192 pixels that could be addressed. If TEENSYDISPLAY_SCALE
// is 1, then we have half of that horizontal resolution - so we need
// to be creative and blend neighboring pixels together.
void SDLDisplay::cachePixel(uint16_t x, uint16_t y, uint8_t color)
{
if (SDLDISPLAY_SCALE == 1) {
// we need to alpha blend the X because there aren't enough screen pixels.
// This takes advantage of the fact that we always call this linearly
// for the 80-column text -- we never (?) do partial screen blits, but
// always wind up redrawing the entirety. So we can look at the pixel in
// the "shared" cell of RAM, and come up with a color between the two.
if (x&1) {
uint32_t origColor = videoBuffer[y][(x>>1)*SDLDISPLAY_SCALE];
uint32_t newColor = blendPackedColor(origColor, packColor32(loresPixelColors[color]));
cacheDoubleWidePixel(x>>1,y,newColor);
// Else if it's black, we leave whatever was in the other pixel.
#if SDLDISPLAY_SCALE == 1
// This is the case where we need to blend together neighboring
// pixels, because we don't have enough physical screen resoultion.
if (x&1) {
uint32_t origColor = videoBuffer[y][(x>>1)*SDLDISPLAY_SCALE];
uint32_t newColor = packColor32(loresPixelColors[color]);
if (g_displayType == m_blackAndWhite) {
// FIXME: the two possible sets here of 'origColor && newColor' or 'origColor||newColor'
// work well for black-on-white and white-on-black. But neither is good in the other.
cacheDoubleWidePixel(x>>1,y,(uint32_t)((origColor && newColor) ? 0xFFFFFF : 0x000000));
} else {
// The even pixels always draw.
cacheDoubleWidePixel(x>>1,y,color);
cacheDoubleWidePixel(x>>1,y,(uint32_t)blendPackedColor(origColor, newColor));
}
// Else if it's black, we leave whatever was in the other pixel.
} else {
// we have enough resolution to show all the pixels, so just do it
x = (x * SDLDISPLAY_SCALE)/2;
for (int yoff=0; yoff<SDLDISPLAY_SCALE; yoff++) {
for (int xoff=0; xoff<SDLDISPLAY_SCALE; xoff++) {
videoBuffer[(y*SDLDISPLAY_SCALE+yoff)][x+xoff] = packColor32(loresPixelColors[color]);
}
// The even pixels always draw.
cacheDoubleWidePixel(x>>1,y,color);
}
#else
// we have enough resolution to show all the pixels, so just do it
x = (x * SDLDISPLAY_SCALE)/2;
for (int yoff=0; yoff<SDLDISPLAY_SCALE; yoff++) {
for (int xoff=0; xoff<SDLDISPLAY_SCALE; xoff++) {
videoBuffer[(y*SDLDISPLAY_SCALE+yoff)][x+xoff] = packColor32(loresPixelColors[color]);
}
}
#endif
}
// "DoubleWide" means "please double the X because I'm in low-res width mode"

View File

@ -10,7 +10,7 @@
// scale can be 1,2,4. '1' is half-width at the highest resolution
// (80-col mode). '2' is full width. '4' is double full width.
#define SDLDISPLAY_SCALE 2
#define SDLDISPLAY_SCALE 1
#define SDLDISPLAY_WIDTH (320*SDLDISPLAY_SCALE)
#define SDLDISPLAY_HEIGHT (240*SDLDISPLAY_SCALE)

View File

@ -4,7 +4,7 @@
#include "teensy-display.h"
#include "appleui.h"
// FIXME should be able to omit this include and relay on the xterns, which
// FIXME should be able to omit this include and rely on the xterns, which
// would prove it's linking properly
#include "font.h"
extern const unsigned char ucase_glyphs[512];
@ -12,8 +12,10 @@ extern const unsigned char lcase_glyphs[256];
extern const unsigned char mousetext_glyphs[256];
extern const unsigned char interface_glyphs[256];
#include <SPI.h>
#include "globals.h"
#include "applevm.h"
#include <SPI.h>
#define _clock 75000000
@ -24,33 +26,8 @@ extern const unsigned char interface_glyphs[256];
#define PIN_MISO 1
#define PIN_SCK 27
// Inside the 320x240 display, the Apple display is 280x192.
// (That's half the "correct" width, b/c of double-hi-res.)
#define apple_display_w 280
#define apple_display_h 192
// Inset inside the apple2 "frame" where we draw the display
// remember these are "starts at pixel number" values, where 0 is the first.
#define HOFFSET 18
#define VOFFSET 13
#include "globals.h"
#include "applevm.h"
#define PHYSMAXX 320
#define PHYSMAXY 240
DMAMEM uint16_t dmaBuffer[PHYSMAXY][PHYSMAXX]; // 240 rows, 320 columns
#define RGBto565(r,g,b) ((((r) & 0xF8) << 8) | (((g) & 0xFC) << 3) | ((b) >> 3))
#define _565toR(c) ( ((c) & 0xF800) >> 8 )
#define _565toG(c) ( ((c) & 0x07E0) >> 5 )
#define _565toB(c) ( ((c) & 0x001F) )
//ILI9341_t3 tft = ILI9341_t3(PIN_CS, PIN_DC, PIN_RST, PIN_MOSI, PIN_SCK, PIN_MISO);
ILI9341_t3n tft = ILI9341_t3n(PIN_CS, PIN_DC, PIN_RST, PIN_MOSI, PIN_SCK, PIN_MISO);
DMAChannel dmatx;
DMASetting dmaSetting;
#define SCREENINSET_X (18*TEENSYDISPLAY_SCALE)
#define SCREENINSET_Y (13*TEENSYDISPLAY_SCALE)
// RGB map of each of the lowres colors
const uint16_t loresPixelColors[16] = { 0x0000, // 0 black
@ -71,41 +48,20 @@ const uint16_t loresPixelColors[16] = { 0x0000, // 0 black
0xFFFF // 15 white
};
const uint16_t loresPixelColorsGreen[16] = { 0x0000,
0x0140,
0x0040,
0x0280,
0x0300,
0x0340,
0x0300,
0x0480,
0x02C0,
0x0240,
0x0500,
0x0540,
0x0580,
0x0700,
0x0680,
0x07C0
};
// This definition can't live in the class header because of the
// DMAMEM adornment
DMAMEM uint16_t dmaBuffer[TEENSYDISPLAY_HEIGHT][TEENSYDISPLAY_WIDTH];
#define RGBto565(r,g,b) ((((r) & 0xF8) << 8) | (((g) & 0xFC) << 3) | ((b) >> 3))
#define _565toR(c) ( ((c) & 0xF800) >> 8 )
#define _565toG(c) ( ((c) & 0x07E0) >> 5 )
#define _565toB(c) ( ((c) & 0x001F) )
ILI9341_t3n tft = ILI9341_t3n(PIN_CS, PIN_DC, PIN_RST, PIN_MOSI, PIN_SCK, PIN_MISO);
DMAChannel dmatx;
DMASetting dmaSetting;
const uint16_t loresPixelColorsWhite[16] = { 0x0000,
0x2945,
0x0841,
0x528A,
0x630C,
0x6B4D,
0x630C,
0x9492,
0x5ACB,
0x4A49,
0xA514,
0xAD55,
0xB596,
0xE71C,
0xD69A,
0xFFDF
};
TeensyDisplay::TeensyDisplay()
{
@ -125,36 +81,60 @@ TeensyDisplay::~TeensyDisplay()
{
}
void TeensyDisplay::flush()
{
// Nothing to flush, b/c the DMA driver is regularly flushing everything
}
void TeensyDisplay::redraw()
{
g_ui->drawStaticUIElement(UIeOverlay);
if (g_vm) {
if (g_vm && g_ui) {
g_ui->drawOnOffUIElement(UIeDisk1_state, ((AppleVM *)g_vm)->DiskName(0)[0] == '\0');
g_ui->drawOnOffUIElement(UIeDisk2_state, ((AppleVM *)g_vm)->DiskName(1)[0] == '\0');
}
}
void TeensyDisplay::clrScr(uint8_t coloridx)
void TeensyDisplay::drawImageOfSizeAt(const uint8_t *img,
uint16_t sizex, uint8_t sizey,
uint16_t wherex, uint8_t wherey)
{
if (coloridx == c_black) {
memset(dmaBuffer, 0x00, sizeof(dmaBuffer));
} else if (coloridx == c_white) {
memset(dmaBuffer, 0xFF, sizeof(dmaBuffer));
} else {
uint16_t color16 = loresPixelColors[c_black];
if (coloridx < 16)
color16 = loresPixelColors[coloridx];
// This could be faster - make one line, then memcpy the line to the other
// lines?
for (uint8_t y=0; y<PHYSMAXY; y++) {
for (uint16_t x=0; x<PHYSMAXX; x++) {
dmaBuffer[y][x] = color16;
}
uint8_t r, g, b;
for (uint8_t y=0; y<sizey; y++) {
for (uint16_t x=0; x<sizex; x++) {
r = pgm_read_byte(&img[(y*sizex + x)*3 + 0]);
g = pgm_read_byte(&img[(y*sizex + x)*3 + 1]);
b = pgm_read_byte(&img[(y*sizex + x)*3 + 2]);
dmaBuffer[y+wherey][x+wherex] = RGBto565(r,g,b);
}
}
}
void TeensyDisplay::blit()
{
// Start DMA transfers if they aren't running
if (!tft.asyncUpdateActive())
tft.updateScreenAsync(true);
// draw overlay, if any, occasionally
{
static uint32_t nextMessageTime = 0;
if (millis() >= nextMessageTime) {
if (overlayMessage[0]) {
drawString(M_SELECTDISABLED, 1, TEENSYDISPLAY_HEIGHT - (16 + 12)*TEENSYDISPLAY_SCALE, overlayMessage);
}
nextMessageTime = millis() + 1000;
}
}
}
void TeensyDisplay::blit(AiieRect r)
{
// Nothing to do here, since we're regularly blitting the whole screen via DMA
}
void TeensyDisplay::drawUIPixel(uint16_t x, uint16_t y, uint16_t color)
{
// These pixels are just cached in the buffer; they're not drawn directly.
@ -173,34 +153,6 @@ void TeensyDisplay::drawPixel(uint16_t x, uint16_t y, uint8_t r, uint8_t g, uint
drawPixel(x,y,color16);
}
void TeensyDisplay::flush()
{
blit({0,0,191,279});
}
void TeensyDisplay::blit()
{
// Start DMA transfers if they aren't running
if (!tft.asyncUpdateActive())
tft.updateScreenAsync(true);
// draw overlay, if any, occasionally
{
static uint32_t nextMessageTime = 0;
if (millis() >= nextMessageTime) {
if (overlayMessage[0]) {
drawString(M_SELECTDISABLED, 1, PHYSMAXY - 16 - 12, overlayMessage);
}
nextMessageTime = millis() + 1000;
}
}
}
void TeensyDisplay::blit(AiieRect r)
{
// Nothing to do here, since we're regularly blitting the whole screen via DMA
}
void TeensyDisplay::drawCharacter(uint8_t mode, uint16_t x, uint8_t y, char c)
{
int8_t xsize = 8,
@ -234,15 +186,11 @@ void TeensyDisplay::drawCharacter(uint8_t mode, uint16_t x, uint8_t y, char c)
// This does not scale when drawing, because drawPixel scales.
const unsigned char *ch = asciiToAppleGlyph(c);
for (int8_t y_off = 0; y_off <= ysize; y_off++) {
if (y + y_off < PHYSMAXY) {
for (int8_t x_off = 0; x_off <= xsize; x_off++) {
if (x+x_off < PHYSMAXX) {
if (*ch & (1 << (x_off))) {
dmaBuffer[y+y_off][x+x_off] = onPixel;
} else {
dmaBuffer[y+y_off][x+x_off] = offPixel;
}
}
for (int8_t x_off = 0; x_off <= xsize; x_off++) {
if (*ch & (1 << (x_off))) {
drawUIPixel(x + x_off, y + y_off, onPixel);
} else {
drawUIPixel(x + x_off, y + y_off, offPixel);
}
}
ch++;
@ -251,58 +199,35 @@ void TeensyDisplay::drawCharacter(uint8_t mode, uint16_t x, uint8_t y, char c)
void TeensyDisplay::drawString(uint8_t mode, uint16_t x, uint8_t y, const char *str)
{
int8_t xsize = 8; // width of a char in this font
int8_t xsize = 8; // width of a char in this font
for (int8_t i=0; i<strlen(str); i++) {
drawCharacter(mode, x, y, str[i]);
x += xsize;
if (x >= PHYSMAXX) break;
x += xsize; // fixme: any inter-char spacing?
if (x >= 320) break; // FIXME constant - and pre-scaling, b/c that's in drawCharacter
}
}
void TeensyDisplay::drawImageOfSizeAt(const uint8_t *img,
uint16_t sizex, uint8_t sizey,
uint16_t wherex, uint8_t wherey)
void TeensyDisplay::clrScr(uint8_t coloridx)
{
uint8_t r, g, b;
for (uint8_t y=0; y<sizey; y++) {
for (uint16_t x=0; x<sizex; x++) {
r = pgm_read_byte(&img[(y*sizex + x)*3 + 0]);
g = pgm_read_byte(&img[(y*sizex + x)*3 + 1]);
b = pgm_read_byte(&img[(y*sizex + x)*3 + 2]);
dmaBuffer[y+wherey][x+wherex] = RGBto565(r,g,b);
if (coloridx == c_black) {
memset(dmaBuffer, 0x00, sizeof(dmaBuffer));
} else if (coloridx == c_white) {
memset(dmaBuffer, 0xFF, sizeof(dmaBuffer));
} else {
uint16_t color16 = loresPixelColors[c_black];
if (coloridx < 16)
color16 = loresPixelColors[coloridx];
// This could be faster - make one line, then memcpy the line to the other
// lines?
for (uint8_t y=0; y<TEENSYDISPLAY_HEIGHT; y++) {
for (uint16_t x=0; x<TEENSYDISPLAY_WIDTH; x++) {
dmaBuffer[y][x] = color16;
}
}
}
}
// "DoubleWide" means "please double the X because I'm in low-res
// width mode". But we only have half the horizontal width required on
// the Teensy, so it's divided in half.
void TeensyDisplay::cacheDoubleWidePixel(uint16_t x, uint16_t y, uint8_t color)
{
uint16_t color16;
color16 = loresPixelColors[(( color & 0x0F ) )];
dmaBuffer[y+VOFFSET][x+HOFFSET] = color16;
}
// This exists for 4bpp optimization. We could totally call
// cacheDoubleWidePixel twice, but the (x&1) pfutzing is messy if
// we're just storing both halves anyway...
void TeensyDisplay::cache2DoubleWidePixels(uint16_t x, uint16_t y,
uint8_t colorA, uint8_t colorB)
{
dmaBuffer[y+VOFFSET][x+ HOFFSET] = loresPixelColors[colorB&0xF];
dmaBuffer[y+VOFFSET][x+1+HOFFSET] = loresPixelColors[colorA&0xF];
}
inline double logfn(double x)
{
// At a value of x=255, log(base 1.022)(x) is 254.636.
return log(x)/log(1.022);
}
inline uint16_t blendColors(uint16_t a, uint16_t b)
{
// Straight linear average doesn't work well for inverted text, because the
@ -327,56 +252,80 @@ inline uint16_t blendColors(uint16_t a, uint16_t b)
}
// This is the full 560-pixel-wide version -- and we only have 280
// pixels in our buffer b/c the display is only 320 pixels wide
// itself. So we'll divide x by 2. On odd-numbered X pixels, we also
// blend the colors of the two virtual pixels that share an onscreen
// pixel
// This was called with the expectation that it can draw every one of
// the 560x192 pixels that could be addressed. If TEENSYDISPLAY_SCALE
// is 1, then we have half of that horizontal resolution - so we need
// to be creative and blend neighboring pixels together.
void TeensyDisplay::cachePixel(uint16_t x, uint16_t y, uint8_t color)
{
#if 0
static uint8_t previousColor = 0;
#endif
#if TEENSYDISPLAY_SCALE == 1
// This is the case where we need to blend together neighboring
// pixels, because we don't have enough physical screen resoultion.
if (x&1) {
// Blend the two pixels. This takes advantage of the fact that we
// always call this linearly for 80-column text drawing -- we never
// do partial screen blits, but always draw at least a whole character.
// So we can look at the pixel in the "shared" cell of RAM, and come up
// with a color between the two.
#if 1
// This is straight blending, R/G/B average, except in B&W mode
uint16_t origColor = dmaBuffer[y+VOFFSET][(x>>1)+HOFFSET];
uint16_t newColor = loresPixelColors[color];
uint8_t origColor = dmaBuffer[y+SCREENINSET_Y][(x>>1)*TEENSYDISPLAY_SCALE+SCREENINSET_X];
cacheDoubleWidePixel(x>>1, y, color);
#if 0
uint8_t newColor = (uint16_t) (origColor + color) / 2;
if (g_displayType == m_blackAndWhite) {
cacheDoubleWidePixel(x>>1, y, (origColor && newColor) ? 0xFFFF : 0x0000);
} else {
cacheDoubleWidePixel(x>>1, y, blendColors(origColor, newColor));
cacheDoubleWidePixel(x>>1,y,blendColors(origColor, newColor));
// Else if it's black, we leave whatever was in the other pixel.
}
#endif
#if 0
// The model we use for the SDL display works better, strangely - it keeps
// the lores pixel index color (black, magenda, dark blue, purple, dark
// green, etc.) until render time; so when it does the blend here, it's
// actually blending in a very nonlinear way - e.g. "black + white / 2"
// is actually "black(0) + white(15) / 2 = 15/2 = 7 (light blue)". Weird,
// but definitely legible in a mini laptop SDL window with the same scale.
// Unfortunately, it doesn't translate well to a ILI9341 panel; the pixels
// are kind of muddy and indistinct, so the blue spills over and makes it
// very difficult to read.
uint8_t origColor = previousColor;
uint8_t newColor = (uint16_t)(origColor + color) / 2;
cacheDoubleWidePixel(x>>1, y, (uint16_t)color + (uint16_t)previousColor/2);
#endif
} else {
#if 0
previousColor = color; // used for blending
// The even pixels always draw.
cacheDoubleWidePixel(x>>1,y,color);
}
#else
// we have enough resolution to show all the pixels, so just do it
x = (x * TEENSYDISPLAY_SCALE)/2;
for (int yoff=0; yoff<TEENSYDISPLAY_SCALE; yoff++) {
for (int xoff=0; xoff<TEENSYDISPLAY_SCALE; xoff++) {
dmaBuffer[y*TEENSYDISPLAY_SCALE+yoff+SCREENINSET_Y][x+xoff+SCREENINSET_X] = color;
}
}
#endif
cacheDoubleWidePixel(x>>1, y, color);
}
// "DoubleWide" means "please double the X because I'm in low-res
// width mode".
void TeensyDisplay::cacheDoubleWidePixel(uint16_t x, uint16_t y, uint8_t color)
{
uint16_t color16;
color16 = loresPixelColors[(( color & 0x0F ) )];
for (int yoff=0; yoff<TEENSYDISPLAY_SCALE; yoff++) {
for (int xoff=0; xoff<TEENSYDISPLAY_SCALE; xoff++) {
dmaBuffer[(y*TEENSYDISPLAY_SCALE+yoff+SCREENINSET_Y)][x*TEENSYDISPLAY_SCALE+xoff+SCREENINSET_X] = color16;
}
}
}
// This exists for 4bpp optimization. We could totally call
// cacheDoubleWidePixel twice, but the (x&1) pfutzing is messy if
// we're just storing both halves anyway...
void TeensyDisplay::cache2DoubleWidePixels(uint16_t x, uint16_t y,
uint8_t colorA, uint8_t colorB)
{
for (int yoff=0; yoff<TEENSYDISPLAY_SCALE; yoff++) {
for (int xoff=0; xoff<TEENSYDISPLAY_SCALE; xoff++) {
dmaBuffer[(y*TEENSYDISPLAY_SCALE+yoff+SCREENINSET_Y)][x*TEENSYDISPLAY_SCALE+2*xoff+SCREENINSET_X] = loresPixelColors[colorA];
dmaBuffer[(y*TEENSYDISPLAY_SCALE+yoff+SCREENINSET_Y)][x*TEENSYDISPLAY_SCALE+1+2*xoff+SCREENINSET_X] = loresPixelColors[colorB];
}
}
}
inline double logfn(double x)
{
// At a value of x=255, log(base 1.022)(x) is 254.636.
return log(x)/log(1.022);
}
uint32_t TeensyDisplay::frameCount()
{
return tft.frameCount();

View File

@ -8,6 +8,10 @@
class BIOS;
#define TEENSYDISPLAY_SCALE 1
#define TEENSYDISPLAY_WIDTH (320*TEENSYDISPLAY_SCALE)
#define TEENSYDISPLAY_HEIGHT (240*TEENSYDISPLAY_SCALE)
class TeensyDisplay : public PhysicalDisplay {
friend class BIOS;