gr-sim: Add donut code

This commit is contained in:
Vince Weaver 2023-11-09 23:31:06 -05:00
parent 14a3e17f4c
commit 9cea3d1ae5
2 changed files with 212 additions and 0 deletions

View File

@ -0,0 +1,22 @@
CC = gcc
CFLAGS = -Wall -O2 -I.. -g
LFLAGS = -lm
SDL_LIBS= `sdl-config --libs`
SDL_INCLUDE= `sdl-config --cflags`
GR_SIM = ../gr-sim.a
all: donut
####
donut: donut.o $(GR_SIM)
$(CC) -o donut donut.o $(GR_SIM) $(SDL_LIBS) $(LFLAGS)
donut.o: donut.c
$(CC) $(CFLAGS) -c donut.c
####
clean:
rm -f *~ *.o donut

190
utils/gr-sim/donut/donut.c Normal file
View File

@ -0,0 +1,190 @@
/* by @a1k0n */
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "gr-sim.h"
#include "tfv_utils.h"
#include "tfv_zp.h"
// CORDIC algorithm to find magnitude of |x,y| by rotating the x,y vector onto
// the x axis. This also brings vector (x2,y2) along for the ride, and writes
// back to x2 -- this is used to rotate the lighting vector from the normal of
// the torus surface towards the camera, and thus determine the lighting amount.
// We only need to keep one of the two lighting normal coordinates.
int length_cordic(int16_t x, int16_t y, int16_t *x2_, int16_t y2) {
int16_t x2 = *x2_;
if (x < 0) { // start in right half-plane
x = -x;
x2 = -x2;
}
for (int i = 0; i < 8; i++) {
int16_t t = x;
int16_t t2 = x2;
if (y < 0) {
x -= y >> i;
y += t >> i;
x2 -= y2 >> i;
y2 += t2 >> i;
} else {
x += y >> i;
y -= t >> i;
x2 += y2 >> i;
y2 -= t2 >> i;
}
}
// divide by 0.625 as a cheap approximation to the 0.607 scaling factor factor
// introduced by this algorithm (see https://en.wikipedia.org/wiki/CORDIC)
*x2_ = (x2 >> 1) + (x2 >> 3);
return (x >> 1) + (x >> 3);
}
int main(int argc, char **argv) {
int ch;
grsim_init();
gr();
// high-precision rotation directions, sines and cosines and their products
int16_t sB = 0, cB = 16384;
int16_t sA = 11583, cA = 11583;
int16_t sAsB = 0, cAsB = 0;
int16_t sAcB = 11583, cAcB = 11583;
while(1) {
// yes this is a multiply but dz is 5
// so it's (sb + (sb<<2)) >> 6 effectively
int p0x = (5 * sB) >> 6;
int p0y = (5 * sAcB) >> 6;
int p0z = (-5 * cAcB) >> 6;
const int16_t r1i = 256;
const int16_t r2i = 2*256;
int16_t yincC = (cA >> 6) + (cA >> 5); // 12*cA >> 8;
int16_t yincS = (sA >> 6) + (sA >> 5); // 12*sA >> 8;
int16_t xincX = (cB >> 7) + (cB >> 6); // 6*cB >> 8;
int16_t xincY = (sAsB >> 7) + (sAsB >> 6); // 6*sAsB >> 8;
int16_t xincZ = (cAsB >> 7) + (cAsB >> 6); // 6*cAsB >> 8;
int16_t ycA = -((cA >> 1) + (cA >> 4)); // -12 * yinc1 = -9*cA >> 4;
int16_t ysA = -((sA >> 1) + (sA >> 4)); // -12 * yinc2 = -9*sA >> 4;
for (int j = 0; j < 23; j++) {
ycA += yincC;
ysA += yincS;
int16_t xsAsB = (sAsB >> 4) - sAsB; // -40*xincY
int16_t xcAsB = (cAsB >> 4) - cAsB; // -40*xincZ;
int16_t vxi14 = (cB >> 4) - cB - sB; // -40*xincX - sB;
int16_t vyi14 = ycA - xsAsB - sAcB;
int16_t vzi14 = ysA + xcAsB + cAcB;
for (int i = 0; i < 79; i++) {
vxi14 += xincX;
vyi14 -= xincY;
vzi14 += xincZ;
int16_t t = 512;
int16_t px = p0x + (vxi14 >> 5);
int16_t py = p0y + (vyi14 >> 5);
int16_t pz = p0z + (vzi14 >> 5);
int16_t lx0 = sB >> 2;
int16_t ly0 = (sAcB - cA) >> 2;
int16_t lz0 = (-cAcB - sA) >> 2;
for (;;) {
int16_t t0, t1, t2, d;
int16_t lx = lx0, ly = ly0, lz = lz0;
t0 = length_cordic(px, py, &lx, ly);
t1 = t0 - r2i;
t2 = length_cordic(pz, t1, &lz, lx);
d = t2 - r1i;
t += d;
// 0 2 2 6 6 5 5 7 7 15 15 15
// 2 2 6 6 5 5 7 7 15 15 15 15
int color_hi[12]={0, 2, 2, 6, 6, 5, 5, 5, 7, 7, 15, 15 };
int color_lo[12]={2, 2, 6, 6, 5, 5, 5, 7, 7, 15, 15, 15 };
if (t > 8*256) {
color_equals(0);
plot(i/2,j*2);
plot(i/2,(j*2)+1);
break;
} else if (d < 2) {
int N = lz >> 9;
if (N<0) N=0;
if (N>11) N=11;
color_equals(color_hi[N]);
plot(i/2,j*2);
color_equals(color_lo[N]);
plot(i/2,(j*2)+1);
break;
}
// todo: shift and add version of this
/*
if (d < dmin) dmin = d;
if (d > dmax) dmax = d;
px += d*vxi14 >> 14;
py += d*vyi14 >> 14;
pz += d*vzi14 >> 14;
*/
{
// 11x1.14 fixed point 3x parallel multiply
// only 16 bit registers needed; starts from highest bit to lowest
// d is about 2..1100, so 11 bits are sufficient
int16_t dx = 0, dy = 0, dz = 0;
int16_t a = vxi14, b = vyi14, c = vzi14;
while (d) {
if (d&1024) {
dx += a;
dy += b;
dz += c;
}
d = (d&1023) << 1;
a >>= 1;
b >>= 1;
c >>= 1;
}
// we already shifted down 10 bits, so get the last four
px += dx >> 4;
py += dy >> 4;
pz += dz >> 4;
}
}
}
}
// rotate sines, cosines, and products thereof
// this animates the torus rotation about two axes
cA-=(sA>>5); sA+=(cA>>5);
cAsB-=(sAsB>>5); sAsB+=(cAsB>>5);
cAcB-=(sAcB>>5); sAcB+=(cAcB>>5);
cB-=(sB>>6); sB+=(cB>>6);
cAcB-=(cAsB>>6); cAsB+=(cAcB>>6);
sAcB-=(sAsB>>6); sAsB+=(sAcB>>6);
ch=grsim_input();
if (ch=='q') break;
grsim_update();
usleep(15000);
}
}