mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2025-02-20 17:29:03 +00:00
Cythonize dither.apply
This commit is contained in:
parent
ec691f5d6d
commit
575fa168ed
30
dither.py
30
dither.py
@ -7,7 +7,8 @@ from typing import Tuple
|
||||
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
import pyximport; pyximport.install(language_level=3)
|
||||
import dither_apply
|
||||
|
||||
# TODO:
|
||||
# - only lookahead for 560px
|
||||
@ -281,23 +282,28 @@ class Dither:
|
||||
|
||||
def apply(self, screen: Screen, image: np.ndarray, x: int, y: int,
|
||||
quant_error: np.ndarray, one_line=False):
|
||||
error = self.PATTERN * quant_error.reshape((1, 1, 3))
|
||||
el, er, xl, xr = self.x_dither_bounds(screen, x)
|
||||
et, eb, yt, yb = self.y_dither_bounds(screen, y, one_line)
|
||||
|
||||
# We could avoid clipping here, i.e. allow RGB values to extend beyond
|
||||
# 0..255 to capture a larger range of residual error. This is faster
|
||||
# but seems to reduce image quality.
|
||||
# XXX extend image region to avoid need for boundary box clipping
|
||||
image[yt:yb, xl:xr, :] = np.clip(
|
||||
image[yt:yb, xl:xr, :] + error[et:eb, el:er, :], 0, 255)
|
||||
return dither_apply.apply(self.PATTERN, el, er, xl, xr, et, eb, yt,
|
||||
yb, image, quant_error)
|
||||
# error = self.PATTERN * quant_error.reshape((1, 1, 3))
|
||||
#
|
||||
# # We could avoid clipping here, i.e. allow RGB values to extend beyond
|
||||
# # 0..255 to capture a larger range of residual error. This is faster
|
||||
# # but seems to reduce image quality.
|
||||
# # XXX extend image region to avoid need for boundary box clipping
|
||||
# image[yt:yb, xl:xr, :] = np.clip(
|
||||
# image[yt:yb, xl:xr, :] + error[et:eb, el:er, :], 0, 255)
|
||||
|
||||
def apply_one_line(self, screen: Screen, image: np.ndarray, x: int, y: int,
|
||||
quant_error: np.ndarray):
|
||||
error = self.PATTERN[0, :] * quant_error.reshape(1, 3)
|
||||
el, er, xl, xr = self.x_dither_bounds(screen, x)
|
||||
image[y, xl:xr, :] = np.clip(
|
||||
image[y, xl:xr, :] + error[el:er, :], 0, 255)
|
||||
return dither_apply.apply_one_line(self.PATTERN, el, er, xl, xr, y,
|
||||
image, quant_error)
|
||||
# error = self.PATTERN[0, :] * quant_error.reshape(1, 3)
|
||||
#
|
||||
# image[y, xl:xr, :] = np.clip(
|
||||
# image[y, xl:xr, :] + error[el:er, :], 0, 255)
|
||||
|
||||
|
||||
class FloydSteinbergDither(Dither):
|
||||
|
39
dither_apply.pyx
Normal file
39
dither_apply.pyx
Normal file
@ -0,0 +1,39 @@
|
||||
# cython: infer_types=True
|
||||
|
||||
cimport cython
|
||||
import numpy as np
|
||||
# from cython.parallel import prange
|
||||
from cython.view cimport array as cvarray
|
||||
|
||||
|
||||
cdef float clip(float a, float min_value, float max_value) nogil:
|
||||
return min(max(a, min_value), max_value)
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.wraparound(False)
|
||||
def apply_one_line(float[:, :, ::1] pattern, int el, int er, int xl, int xr, int y, float[:, :, ::1] image,
|
||||
float[::1] quant_error):
|
||||
cdef int i, j
|
||||
cdef float[:, ::1] error = cvarray(
|
||||
shape=(pattern.shape[1], quant_error.shape[0]), itemsize=sizeof(float), format="f")
|
||||
|
||||
for i in range(pattern.shape[1]):
|
||||
for j in range(quant_error.shape[0]):
|
||||
error[i, j] = pattern[0, i, 0] * quant_error[j]
|
||||
|
||||
for i in range(xr - xl):
|
||||
for j in range(3):
|
||||
image[y, xl+i, j] = clip(image[y, xl + i, j] + error[el + i, j], 0, 255)
|
||||
|
||||
|
||||
# XXX cythonize
|
||||
def apply(pattern, int el, int er, int xl, int xr, int et, int eb, int yt, int yb, image, quant_error):
|
||||
error = pattern * quant_error.reshape((1, 1, 3))
|
||||
|
||||
# We could avoid clipping here, i.e. allow RGB values to extend beyond
|
||||
# 0..255 to capture a larger range of residual error. This is faster
|
||||
# but seems to reduce image quality.
|
||||
# XXX extend image region to avoid need for boundary box clipping
|
||||
image[yt:yb, xl:xr, :] = np.clip(
|
||||
image[yt:yb, xl:xr, :] + error[et:eb, el:er, :], 0, 255)
|
Loading…
x
Reference in New Issue
Block a user