ii-pix/screen.py

140 lines
5.2 KiB
Python

"""Representation of Apple II screen memory."""
import math
import numpy as np
import palette as palette_py
class DHGRScreen:
X_RES = 560
Y_RES = 192
def __init__(self, palette: palette_py.Palette):
self.main = np.zeros(8192, dtype=np.uint8)
self.aux = np.zeros(8192, dtype=np.uint8)
self.palette = palette
@staticmethod
def y_to_base_addr(y: int) -> int:
"""Maps y coordinate to screen memory base address."""
a = y // 64
d = y - 64 * a
b = d // 8
c = d - 8 * b
return 1024 * c + 128 * b + 40 * a
def pack(self, bitmap: np.ndarray):
"""Packs an image into memory format (8k AUX + 8K MAIN)."""
# The DHGR display encodes 7 pixels across interleaved 4-byte sequences
# of AUX and MAIN memory, as follows:
# PBBBAAAA PDDCCCCB PFEEEEDD PGGGGFFF
# Aux N Main N Aux N+1 Main N+1 (N even)
main_col = np.zeros(
(self.Y_RES, self.X_RES // 14), dtype=np.uint8)
aux_col = np.zeros(
(self.Y_RES, self.X_RES // 14), dtype=np.uint8)
for byte_offset in range(80):
column = np.zeros(self.Y_RES, dtype=np.uint8)
for bit in range(7):
column |= (bitmap[:, 7 * byte_offset + bit].astype(
np.uint8) << bit)
if byte_offset % 2 == 0:
aux_col[:, byte_offset // 2] = column
else:
main_col[:, (byte_offset - 1) // 2] = column
for y in range(self.Y_RES):
addr = self.y_to_base_addr(y)
self.aux[addr:addr + 40] = aux_col[y, :]
self.main[addr:addr + 40] = main_col[y, :]
return
def bitmap_to_image_rgb(self, bitmap: np.ndarray) -> np.ndarray:
"""Convert our 2-bit bitmap image into a RGB image.
Colour at every pixel is determined by the value of an n-bit sliding
window and x % 4, which give the index into our RGB palette.
"""
image_rgb = np.empty((self.Y_RES, self.X_RES, 3), dtype=np.uint8)
for y in range(self.Y_RES):
bitmap_window = [False] * self.palette.PALETTE_DEPTH
for x in range(self.X_RES):
# Maintain a sliding window of pixels of width PALETTE_DEPTH
bitmap_window = bitmap_window[1:] + [bitmap[y, x]]
image_rgb[y, x, :] = self.palette.RGB[
self.palette.bitmap_to_idx(
np.array(bitmap_window, dtype=bool)), x % 4]
return image_rgb
@staticmethod
def _sin(pos, phase0=0):
x = pos % 12 + phase0
return np.sin(x * 2 * np.pi / 12)
@staticmethod
def _cos(pos, phase0=0):
x = pos % 12 + phase0
return np.cos(x * 2 * np.pi / 12)
def _read(self, line, pos):
if pos < 0:
return 0
return 1 if line[pos] else 0
def bitmap_to_image_ntsc(self, bitmap: np.ndarray) -> np.ndarray:
y_width = 12
u_width = 24
v_width = 24
contrast = 1
# TODO: This is necessary to match OpenEmulator. I think it is because
# they introduce an extra (unexplained) factor of 2 when applying the
# Chebyshev/Lanczos filtering to the u and v components.
saturation = 2
# TODO: this phase shift is necessary to match OpenEmulator. I'm not
# sure where it comes from - e.g. it doesn't match the phaseInfo
# calculation for the signal phase at the start of the visible region.
hue = 0.2 * (2 * np.pi)
# Apply effect of saturation
yuv_to_rgb = np.array(
((1, 0, 0), (0, saturation, 0), (0, 0, saturation)), dtype=np.float)
# Apply hue phase rotation
yuv_to_rgb = np.matmul(np.array(
((1, 0, 0), (0, np.cos(hue), np.sin(hue)), (0, -np.sin(hue),
np.cos(hue)))),
yuv_to_rgb)
# Y'UV to R'G'B' conversion
yuv_to_rgb = np.matmul(np.array(
((1, 0, 1.139883), (1, -0.394642, -.5806227), (1, 2.032062, 0))),
yuv_to_rgb)
# Apply effect of contrast
yuv_to_rgb *= contrast
out_rgb = np.empty((bitmap.shape[0], bitmap.shape[1] * 3, 3),
dtype=np.uint8)
for y in range(bitmap.shape[0]):
ysum = 0
usum = 0
vsum = 0
line = np.repeat(bitmap[y], 3)
for x in range(bitmap.shape[1] * 3):
ysum += self._read(line, x) - self._read(line, x - y_width)
usum += self._read(line, x) * self._sin(x) - self._read(
line, x - u_width) * self._sin((x - u_width))
vsum += self._read(line, x) * self._cos(x) - self._read(
line, x - v_width) * self._cos((x - v_width))
rgb = np.matmul(
yuv_to_rgb, np.array(
(ysum / y_width, usum / u_width,
vsum / v_width)).reshape((3, 1))).reshape(3)
r = min(255, max(0, rgb[0] * 255))
g = min(255, max(0, rgb[1] * 255))
b = min(255, max(0, rgb[2] * 255))
out_rgb[y, x, :] = (r, g, b)
return out_rgb