prog8/benchmark-program/b_queens.p8

64 lines
1.8 KiB
Plaintext
Raw Normal View History

2024-09-25 23:32:45 +02:00
%import textio
; Recursive N-Queens solver.
; The problem is: find all possible ways to place 8 Queen chess pieces on a chess board, so that none of them attacks any other.
; (this program prints all solutions without taking mirroring and flipping the chess board into account)
; Note: this program can be compiled for multiple target systems.
queens {
const ubyte NUMQUEENS=8
ubyte[NUMQUEENS] board
sub could_place(ubyte row, ubyte col) -> bool {
if row==0
return true
ubyte i
for i in 0 to row-1 {
if board[i]==col or board[i]-i==col-row or board[i]+i==col+row
return false
}
return true
}
uword solution_count
uword maximum_duration
sub place_queen(ubyte row) -> bool {
if row == NUMQUEENS {
solution_count++
txt.chrout('.')
return cbm.RDTIM16()<maximum_duration
}
bool continue_running=true
ubyte col
for col in 0 to NUMQUEENS-1 {
if could_place(row, col) {
board[row] = col
; we need to save the local variables row and col.
sys.push(row)
sys.push(col)
continue_running = place_queen(row + 1)
; restore the local variables after the recursive call.
col = sys.pop()
row = sys.pop()
board[row] = 0
if not continue_running
break
}
}
return continue_running
}
sub bench(uword max_time) -> uword {
solution_count = 0
maximum_duration = max_time
txt.nl()
cbm.SETTIM(0,0,0)
while cbm.RDTIM16() < maximum_duration {
void place_queen(0)
}
return solution_count
}
}