prog8/compiler/res/prog8lib/c64utils.p8

1104 lines
23 KiB
Plaintext
Raw Normal View History

; Prog8 definitions for the Commodore-64
; These are the utility subroutines.
;
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
; indent format: TABS, size=8
%import c64lib
~ c64utils {
2018-12-18 00:43:04 +00:00
const uword ESTACK_LO = $ce00
const uword ESTACK_HI = $cf00
; ----- utility functions ----
asmsub init_system () -> clobbers(A,X,Y) -> () {
; ---- initializes the machine to a sane starting state
; This means that the BASIC, KERNAL and CHARGEN ROMs are banked in,
; the VIC, SID and CIA chips are reset, screen is cleared, and the default IRQ is set.
; Also a different color scheme is chosen to identify ourselves a little.
; Uppercase charset is activated, and all three registers set to 0, status flags cleared.
%asm {{
sei
cld
lda #%00101111
sta $00
lda #%00100111
sta $01
jsr c64.IOINIT
jsr c64.RESTOR
jsr c64.CINT
lda #6
sta c64.EXTCOL
lda #7
sta c64.COLOR
lda #0
sta c64.BGCOL0
tax
tay
clc
clv
cli
rts
}}
}
asmsub ubyte2decimal (ubyte value @ A) -> clobbers() -> (ubyte @ Y, ubyte @ X, ubyte @ A) {
; ---- A to decimal string in Y/X/A (100s in Y, 10s in X, 1s in A)
%asm {{
ldy #$2f
ldx #$3a
sec
- iny
sbc #100
bcs -
- dex
adc #10
bmi -
adc #$2f
rts
}}
}
asmsub byte2decimal (ubyte value @ A) -> clobbers() -> (ubyte @ Y, ubyte @ X, ubyte @ A) {
2018-12-14 22:15:44 +00:00
; ---- A (signed byte) to decimal string in Y/X/A (100s in Y, 10s in X, 1s in A)
; note: the '-' is not part of the conversion here if it's a negative number
%asm {{
cmp #0
bpl +
eor #255
clc
adc #1
+ jmp ubyte2decimal
}}
}
asmsub ubyte2hex (ubyte value @ A) -> clobbers(X) -> (ubyte @ A, ubyte @ Y) {
2018-12-14 22:15:44 +00:00
; ---- A to hex string in AY (first hex char in A, second hex char in Y)
%asm {{
pha
and #$0f
tax
ldy hex_digits,x
pla
lsr a
lsr a
lsr a
lsr a
tax
lda hex_digits,x
rts
2018-10-16 00:26:35 +00:00
hex_digits .text "0123456789abcdef" ; can probably be reused for other stuff as well
}}
}
str word2hex_output = "1234" ; 0-terminated, to make printing easier
asmsub uword2hex (uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- convert 16 bit uword in A/Y into 4-character hexadecimal string into memory 'word2hex_output'
%asm {{
2018-12-14 22:15:44 +00:00
sta c64.SCRATCH_ZPREG
tya
2018-12-14 22:15:44 +00:00
jsr ubyte2hex
stx word2hex_output
sty word2hex_output+1
2018-12-06 23:08:22 +00:00
lda c64.SCRATCH_ZPREG
2018-12-14 22:15:44 +00:00
jsr ubyte2hex
sta word2hex_output+2
sty word2hex_output+3
rts
}}
}
2018-10-16 00:26:35 +00:00
ubyte[3] word2bcd_bcdbuff = [0, 0, 0]
asmsub uword2bcd (uword value @ AY) -> clobbers(A,X) -> () {
; Convert an 16 bit binary value to BCD
;
2018-12-14 22:15:44 +00:00
; This function converts a 16 bit binary value in A/Y into a 24 bit BCD. It
; works by transferring one bit a time from the source and adding it
; into a BCD value that is being doubled on each iteration. As all the
; arithmetic is being done in BCD the result is a binary to decimal
; conversion.
%asm {{
2018-12-14 22:15:44 +00:00
sta c64.SCRATCH_ZPB1
2018-12-06 23:08:22 +00:00
sty c64.SCRATCH_ZPREG
2018-12-29 19:33:22 +00:00
sei ; disable interrupts because of bcd math
sed ; switch to decimal mode
lda #0 ; ensure the result is clear
sta word2bcd_bcdbuff+0
sta word2bcd_bcdbuff+1
sta word2bcd_bcdbuff+2
ldx #16 ; the number of source bits
2018-12-06 23:08:22 +00:00
- asl c64.SCRATCH_ZPB1 ; shift out one bit
rol c64.SCRATCH_ZPREG
lda word2bcd_bcdbuff+0 ; and add into result
adc word2bcd_bcdbuff+0
sta word2bcd_bcdbuff+0
lda word2bcd_bcdbuff+1 ; propagating any carry
adc word2bcd_bcdbuff+1
sta word2bcd_bcdbuff+1
lda word2bcd_bcdbuff+2 ; ... thru whole result
adc word2bcd_bcdbuff+2
sta word2bcd_bcdbuff+2
dex ; and repeat for next bit
bne -
cld ; back to binary
2018-12-29 19:33:22 +00:00
cli ; enable interrupts again
rts
}}
}
2018-10-16 00:26:35 +00:00
ubyte[5] word2decimal_output = 0
asmsub uword2decimal (uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- convert 16 bit uword in A/Y into decimal string into memory 'word2decimal_output'
%asm {{
2018-12-14 22:15:44 +00:00
jsr uword2bcd
lda word2bcd_bcdbuff+2
clc
adc #'0'
sta word2decimal_output
ldy #1
lda word2bcd_bcdbuff+1
jsr +
lda word2bcd_bcdbuff+0
+ pha
lsr a
lsr a
lsr a
lsr a
clc
adc #'0'
sta word2decimal_output,y
iny
pla
and #$0f
adc #'0'
sta word2decimal_output,y
iny
rts
}}
2018-12-10 08:25:38 +00:00
}
; @todo this is python code for a str-to-ubyte function that doesn't use the basic rom:
;def str2ubyte(s, slen):
; hundreds_map = {
; 0: 0,
; 1: 100,
; 2: 200
; }
; digitvalue = 0
; result = 0
; if slen==0:
; return digitvalue
; digitvalue = ord(s[slen-1])-48
; slen -= 1
; if slen==0:
; return digitvalue
; result = digitvalue
; digitvalue = 10 * (ord(s[slen-1])-48)
; result += digitvalue
; slen -= 1
; if slen==0:
; return result
; digitvalue = hundreds_map[ord(s[slen-1])-48]
; result += digitvalue
; return result
asmsub c64flt_FREADSTR (ubyte length @ A) -> clobbers(A,X,Y) -> () = $b7b5 ; @todo needed for (slow) str conversion below
asmsub c64flt_GETADR () -> clobbers(X) -> (ubyte @ Y, ubyte @ A) = $b7f7 ; @todo needed for (slow) str conversion below
asmsub c64flt_FTOSWORDYA () -> clobbers(X) -> (ubyte @ Y, ubyte @ A) = $b1aa ; @todo needed for (slow) str conversion below
asmsub str2uword(str string @ AY) -> clobbers() -> (uword @ AY) {
%asm {{
;-- convert string (address in A/Y) to uword number in A/Y
; @todo don't use the (slow) kernel floating point conversion
sta $22
sty $23
jsr _strlen2233
tya
stx c64.SCRATCH_ZPREGX
jsr c64flt_FREADSTR ; string to fac1
jsr c64flt_GETADR ; fac1 to unsigned word in Y/A
ldx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPREG
tya
ldy c64.SCRATCH_ZPREG
rts
_strlen2233
;-- return the length of the (zero-terminated) string at $22/$23, in Y
ldy #0
- lda ($22),y
beq +
iny
bne -
+ rts
}}
}
asmsub str2word(str string @ AY) -> clobbers() -> (word @ AY) {
%asm {{
;-- convert string (address in A/Y) to signed word number in A/Y
; @todo don't use the (slow) kernel floating point conversion
sta $22
sty $23
jsr str2uword._strlen2233
tya
stx c64.SCRATCH_ZPREGX
jsr c64flt_FREADSTR ; string to fac1
jsr c64flt_FTOSWORDYA ; fac1 to unsigned word in Y/A
ldx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPREG
tya
ldy c64.SCRATCH_ZPREG
rts
}}
}
asmsub str2ubyte(str string @ AY) -> clobbers(Y) -> (ubyte @ A) {
%asm {{
;-- convert string (address in A/Y) to ubyte number in A
; @todo don't use the (slow) kernel floating point conversion
jmp str2uword
}}
}
asmsub str2byte(str string @ AY) -> clobbers(Y) -> (byte @ A) {
%asm {{
;-- convert string (address in A/Y) to byte number in A
; @todo don't use the (slow) kernel floating point conversion
jmp str2word
}}
}
; @todo string to 32 bit unsigned integer http://www.6502.org/source/strings/ascii-to-32bit.html
%asm {{
; copy memory UP from (SCRATCH_ZPWORD1) to (SCRATCH_ZPWORD2) of length X/Y (16-bit, X=lo, Y=hi)
; clobbers register A,X,Y
memcopy16_up .proc
source = SCRATCH_ZPWORD1
dest = SCRATCH_ZPWORD2
length = SCRATCH_ZPB1 ; (and SCRATCH_ZPREG)
stx length
sty length+1
ldx length ; move low byte of length into X
bne + ; jump to start if X > 0
dec length ; subtract 1 from length
+ ldy #0 ; set Y to 0
- lda (source),y ; set A to whatever (source) points to offset by Y
sta (dest),y ; move A to location pointed to by (dest) offset by Y
iny ; increment Y
bne + ; if Y<>0 then (rolled over) then still moving bytes
inc source+1 ; increment hi byte of source
inc dest+1 ; increment hi byte of dest
+ dex ; decrement X (lo byte counter)
bne - ; if X<>0 then move another byte
dec length ; weve moved 255 bytes, dec length
bpl - ; if length is still positive go back and move more
rts ; done
.pend
; copy memory UP from (SCRATCH_ZPWORD1) to (AY) with length X (1 to 256, 0 meaning 256)
; destination must not overlap, or be before start, then overlap is possible.
; clobbers A, X, Y
memcopy .proc
2018-12-31 00:52:18 +00:00
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
ldy #0
2018-12-31 00:52:18 +00:00
- lda (c64.SCRATCH_ZPWORD1), y
sta (c64.SCRATCH_ZPWORD2), y
iny
dex
bne -
rts
.pend
; fill memory from (SCRATCH_ZPWORD1), length XY, with value in A.
; clobbers X, Y
memset .proc
stx SCRATCH_ZPB1
sty SCRATCH_ZPREG
ldy #0
ldx SCRATCH_ZPREG
beq _lastpage
_fullpage sta (SCRATCH_ZPWORD1),y
iny
bne _fullpage
inc SCRATCH_ZPWORD1+1 ; next page
dex
bne _fullpage
_lastpage ldy SCRATCH_ZPB1
beq +
- dey
sta (SCRATCH_ZPWORD1),y
bne -
+ rts
.pend
; fill memory from (SCRATCH_ZPWORD1) number of words in SCRATCH_ZPWORD2, with word value in AY.
; clobbers A, X, Y
memsetw .proc
sta _mod1+1 ; self-modify
sty _mod1b+1 ; self-modify
sta _mod2+1 ; self-modify
sty _mod2b+1 ; self-modify
ldx SCRATCH_ZPWORD1
stx SCRATCH_ZPB1
ldx SCRATCH_ZPWORD1+1
inx
stx SCRATCH_ZPREG ; second page
ldy #0
ldx SCRATCH_ZPWORD2+1
beq _lastpage
_fullpage
_mod1 lda #0 ; self-modified
sta (SCRATCH_ZPWORD1),y ; first page
sta (SCRATCH_ZPB1),y ; second page
iny
_mod1b lda #0 ; self-modified
sta (SCRATCH_ZPWORD1),y ; first page
sta (SCRATCH_ZPB1),y ; second page
iny
bne _fullpage
inc SCRATCH_ZPWORD1+1 ; next page pair
inc SCRATCH_ZPWORD1+1 ; next page pair
inc SCRATCH_ZPB1+1 ; next page pair
inc SCRATCH_ZPB1+1 ; next page pair
dex
bne _fullpage
_lastpage ldx SCRATCH_ZPWORD2
beq _done
ldy #0
-
_mod2 lda #0 ; self-modified
sta (SCRATCH_ZPWORD1), y
inc SCRATCH_ZPWORD1
bne _mod2b
inc SCRATCH_ZPWORD1+1
_mod2b lda #0 ; self-modified
sta (SCRATCH_ZPWORD1), y
inc SCRATCH_ZPWORD1
bne +
inc SCRATCH_ZPWORD1+1
+ dex
bne -
_done rts
.pend
2019-01-02 01:47:52 +00:00
}}
asmsub set_irqvec_excl() -> clobbers(A) -> () {
%asm {{
sei
lda #<_irq_handler
sta c64.CINV
lda #>_irq_handler
sta c64.CINV+1
cli
rts
_irq_handler jsr irq.irq
lda #$ff
sta c64.VICIRQ ; acknowledge raster irq
lda c64.CIA1ICR ; acknowledge CIA1 interrupt
jmp c64.IRQDFEND ; end irq processing - don't call kernel
}}
}
asmsub set_irqvec() -> clobbers(A) -> () {
%asm {{
sei
lda #<_irq_handler
sta c64.CINV
lda #>_irq_handler
sta c64.CINV+1
cli
rts
_irq_handler jsr irq.irq
jmp c64.IRQDFRT ; continue with normal kernel irq routine
}}
}
asmsub restore_irqvec() -> clobbers() -> () {
%asm {{
sei
lda #<c64.IRQDFRT
sta c64.CINV
lda #>c64.IRQDFRT
sta c64.CINV+1
lda #0
sta c64.IREQMASK ; disable raster irq
lda #%10000001
sta c64.CIA1ICR ; restore CIA1 irq
cli
rts
}}
}
asmsub set_rasterirq(uword rasterpos @ AY) -> clobbers(A) -> () {
%asm {{
sei
jsr _setup_raster_irq
lda #<_raster_irq_handler
sta c64.CINV
lda #>_raster_irq_handler
sta c64.CINV+1
cli
rts
_raster_irq_handler
jsr irq.irq
lda #$ff
sta c64.VICIRQ ; acknowledge raster irq
jmp c64.IRQDFRT
_setup_raster_irq
pha
lda #%01111111
sta c64.CIA1ICR ; "switch off" interrupts signals from cia-1
sta c64.CIA2ICR ; "switch off" interrupts signals from cia-2
and c64.SCROLY
sta c64.SCROLY ; clear most significant bit of raster position
lda c64.CIA1ICR ; ack previous irq
lda c64.CIA2ICR ; ack previous irq
pla
sta c64.RASTER ; set the raster line number where interrupt should occur
cpy #0
beq +
lda c64.SCROLY
ora #%10000000
sta c64.SCROLY ; set most significant bit of raster position
+ lda #%00000001
sta c64.IREQMASK ;enable raster interrupt signals from vic
rts
}}
}
asmsub set_rasterirq_excl(uword rasterpos @ AY) -> clobbers(A) -> () {
%asm {{
sei
jsr set_rasterirq._setup_raster_irq
lda #<_raster_irq_handler
sta c64.CINV
lda #>_raster_irq_handler
sta c64.CINV+1
cli
rts
_raster_irq_handler
jsr irq.irq
lda #$ff
sta c64.VICIRQ ; acknowledge raster irq
jmp c64.IRQDFEND ; end irq processing - don't call kernel
}}
}
} ; ------ end of block c64utils
~ c64scr {
; ---- this block contains (character) Screen and text I/O related functions ----
2019-01-06 01:11:16 +00:00
asmsub clear_screen (ubyte char @ A, ubyte color @ Y) -> clobbers(A) -> () {
; ---- clear the character screen with the given fill character and character color.
2019-01-06 01:11:16 +00:00
; (assumes screen and color matrix are at their default addresses)
%asm {{
2019-01-06 01:11:16 +00:00
pha
tya
jsr clear_screencolors
pla
jsr clear_screenchars
rts
}}
}
2019-01-06 01:11:16 +00:00
asmsub clear_screenchars (ubyte char @ A) -> clobbers(Y) -> () {
; ---- clear the character screen with the given fill character (leaves colors)
; (assumes screen matrix is at the default address)
%asm {{
ldy #0
_loop sta c64.Screen,y
2019-01-06 14:53:01 +00:00
sta c64.Screen+1,y
2019-01-06 01:11:16 +00:00
sta c64.Screen+$0100,y
2019-01-06 14:53:01 +00:00
sta c64.Screen+$0101,y
2019-01-06 01:11:16 +00:00
sta c64.Screen+$0200,y
2019-01-06 14:53:01 +00:00
sta c64.Screen+$0201,y
2019-01-06 01:11:16 +00:00
sta c64.Screen+$02e8,y
2019-01-06 14:53:01 +00:00
sta c64.Screen+$02e9,y
iny
2019-01-06 01:11:16 +00:00
iny
bne _loop
rts
}}
2019-01-06 01:11:16 +00:00
}
2019-01-06 01:11:16 +00:00
asmsub clear_screencolors (ubyte color @ A) -> clobbers(Y) -> () {
; ---- clear the character screen colors with the given color (leaves characters).
; (assumes color matrix is at the default address)
%asm {{
ldy #0
_loop sta c64.Colors,y
2019-01-06 14:53:01 +00:00
sta c64.Colors+1,y
2019-01-06 01:11:16 +00:00
sta c64.Colors+$0100,y
2019-01-06 14:53:01 +00:00
sta c64.Colors+$0101,y
2019-01-06 01:11:16 +00:00
sta c64.Colors+$0200,y
2019-01-06 14:53:01 +00:00
sta c64.Colors+$0201,y
2019-01-06 01:11:16 +00:00
sta c64.Colors+$02e8,y
2019-01-06 14:53:01 +00:00
sta c64.Colors+$02e9,y
iny
2019-01-06 01:11:16 +00:00
iny
bne _loop
rts
}}
}
asmsub scroll_left_full (ubyte alsocolors @ Pc) -> clobbers(A, X, Y) -> () {
; ---- scroll the whole screen 1 character to the left
; contents of the rightmost column are unchanged, you should clear/refill this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #0
ldy #38
-
.for row=0, row<=12, row+=1
lda c64.Colors + 40*row + 1,x
sta c64.Colors + 40*row,x
.next
inx
dey
bpl -
ldx #0
ldy #38
-
.for row=13, row<=24, row+=1
lda c64.Colors + 40*row + 1,x
sta c64.Colors + 40*row,x
.next
inx
dey
bpl -
_scroll_screen ; scroll the screen memory
ldx #0
ldy #38
-
.for row=0, row<=12, row+=1
lda c64.Screen + 40*row + 1,x
sta c64.Screen + 40*row,x
.next
inx
dey
bpl -
ldx #0
ldy #38
-
.for row=13, row<=24, row+=1
lda c64.Screen + 40*row + 1,x
sta c64.Screen + 40*row,x
.next
inx
dey
bpl -
rts
}}
}
asmsub scroll_right_full (ubyte alsocolors @ Pc) -> clobbers(A,X) -> () {
; ---- scroll the whole screen 1 character to the right
; contents of the leftmost column are unchanged, you should clear/refill this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #38
-
.for row=0, row<=12, row+=1
lda c64.Colors + 40*row + 0,x
sta c64.Colors + 40*row + 1,x
.next
dex
bpl -
ldx #38
-
.for row=13, row<=24, row+=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*row + 1,x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #38
-
.for row=0, row<=12, row+=1
lda c64.Screen + 40*row + 0,x
sta c64.Screen + 40*row + 1,x
.next
dex
bpl -
ldx #38
-
.for row=13, row<=24, row+=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*row + 1,x
.next
dex
bpl -
rts
}}
}
asmsub scroll_up_full (ubyte alsocolors @ Pc) -> clobbers(A,X) -> () {
; ---- scroll the whole screen 1 character up
; contents of the bottom row are unchanged, you should refill/clear this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #39
-
.for row=1, row<=11, row+=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row-1),x
.next
dex
bpl -
ldx #39
-
.for row=12, row<=24, row+=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row-1),x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #39
-
.for row=1, row<=11, row+=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row-1),x
.next
dex
bpl -
ldx #39
-
.for row=12, row<=24, row+=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row-1),x
.next
dex
bpl -
rts
}}
}
asmsub scroll_down_full (ubyte alsocolors @ Pc) -> clobbers(A,X) -> () {
; ---- scroll the whole screen 1 character down
; contents of the top row are unchanged, you should refill/clear this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #39
-
.for row=23, row>=12, row-=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row+1),x
.next
dex
bpl -
ldx #39
-
.for row=11, row>=0, row-=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row+1),x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #39
-
.for row=23, row>=12, row-=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row+1),x
.next
dex
bpl -
ldx #39
-
.for row=11, row>=0, row-=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row+1),x
.next
dex
bpl -
rts
}}
}
2018-12-20 22:28:03 +00:00
asmsub print (str text @ AY) -> clobbers(A,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print null terminated string from A/Y
; note: the compiler contains an optimization that will replace
; a call to this subroutine with a string argument of just one char,
; by just one call to c64.CHROUT of that single char. @todo do this
%asm {{
2018-12-14 22:15:44 +00:00
sta c64.SCRATCH_ZPB1
2018-12-06 23:08:22 +00:00
sty c64.SCRATCH_ZPREG
ldy #0
2018-12-06 23:08:22 +00:00
- lda (c64.SCRATCH_ZPB1),y
beq +
jsr c64.CHROUT
iny
bne -
+ rts
}}
}
2018-12-20 22:28:03 +00:00
asmsub print_p (str_p text @ AY) -> clobbers(A,X) -> (ubyte @ Y) {
2018-12-14 22:15:44 +00:00
; ---- print pstring (length as first byte) from A/Y, returns str len in Y
%asm {{
2018-12-14 22:15:44 +00:00
sta c64.SCRATCH_ZPB1
2018-12-06 23:08:22 +00:00
sty c64.SCRATCH_ZPREG
ldy #0
2018-12-06 23:08:22 +00:00
lda (c64.SCRATCH_ZPB1),y
beq +
tax
- iny
2018-12-06 23:08:22 +00:00
lda (c64.SCRATCH_ZPB1),y
jsr c64.CHROUT
dex
bne -
+ rts ; output string length is in Y
}}
}
2018-12-20 22:28:03 +00:00
asmsub print_ub0 (ubyte value @ A) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the ubyte in A in decimal form, with left padding 0s (3 positions total)
%asm {{
2018-12-14 22:15:44 +00:00
jsr c64utils.ubyte2decimal
pha
tya
jsr c64.CHROUT
txa
jsr c64.CHROUT
pla
jmp c64.CHROUT
}}
}
2018-12-20 22:28:03 +00:00
asmsub print_ub (ubyte value @ A) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the ubyte in A in decimal form, without left padding 0s
%asm {{
2018-12-14 22:15:44 +00:00
jsr c64utils.ubyte2decimal
_print_byte_digits
pha
cpy #'0'
bne _print_hundreds
cpx #'0'
bne _print_tens
pla
jmp c64.CHROUT
_print_hundreds tya
jsr c64.CHROUT
_print_tens txa
jsr c64.CHROUT
pla
jmp c64.CHROUT
}}
}
2018-12-14 22:15:44 +00:00
2018-12-20 22:28:03 +00:00
asmsub print_b (byte value @ A) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the byte in A in decimal form, without left padding 0s
%asm {{
pha
cmp #0
bpl +
lda #'-'
jsr c64.CHROUT
+ pla
jsr c64utils.byte2decimal
2018-12-20 22:28:03 +00:00
jmp print_ub._print_byte_digits
2018-12-14 22:15:44 +00:00
}}
}
2018-12-20 22:28:03 +00:00
asmsub print_ubhex (ubyte prefix @ Pc, ubyte value @ A) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the ubyte in A in hex form (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
bcc +
pha
lda #'$'
jsr c64.CHROUT
pla
2018-12-14 22:15:44 +00:00
+ jsr c64utils.ubyte2hex
jsr c64.CHROUT
tya
jmp c64.CHROUT
}}
}
2018-12-20 22:28:03 +00:00
asmsub print_uwhex (ubyte prefix @ Pc, uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the uword in A/Y in hexadecimal form (4 digits)
; (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
2018-12-14 22:15:44 +00:00
pha
tya
2018-12-20 22:28:03 +00:00
jsr print_ubhex
2018-12-14 22:15:44 +00:00
pla
clc
2018-12-20 22:28:03 +00:00
jmp print_ubhex
}}
}
2018-12-20 22:28:03 +00:00
asmsub print_uw0 (uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the uword in A/Y in decimal form, with left padding 0s (5 positions total)
%asm {{
2018-12-14 22:15:44 +00:00
jsr c64utils.uword2decimal
ldy #0
- lda c64utils.word2decimal_output,y
jsr c64.CHROUT
iny
cpy #5
bne -
rts
}}
}
2018-12-20 22:28:03 +00:00
asmsub print_uw (uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the uword in A/Y in decimal form, without left padding 0s
%asm {{
2018-12-14 22:15:44 +00:00
jsr c64utils.uword2decimal
ldy #0
lda c64utils.word2decimal_output
cmp #'0'
bne _pr_decimal
iny
lda c64utils.word2decimal_output+1
cmp #'0'
bne _pr_decimal
iny
lda c64utils.word2decimal_output+2
cmp #'0'
bne _pr_decimal
iny
lda c64utils.word2decimal_output+3
cmp #'0'
bne _pr_decimal
iny
_pr_decimal
lda c64utils.word2decimal_output,y
jsr c64.CHROUT
iny
cpy #5
bcc _pr_decimal
rts
}}
}
2018-12-20 22:28:03 +00:00
asmsub print_w (word value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the (signed) word in A/Y in decimal form, without left padding 0s
%asm {{
cpy #0
bpl +
pha
lda #'-'
jsr c64.CHROUT
tya
eor #255
tay
pla
eor #255
clc
adc #1
bcc +
iny
2018-12-20 22:28:03 +00:00
+ jmp print_uw
2018-12-14 22:15:44 +00:00
}}
}
asmsub input_chars (uword buffer @ AY) -> clobbers(A, X) -> (ubyte @ Y) {
2018-12-10 08:25:38 +00:00
; ---- Input a string (max. 80 chars) from the keyboard. Returns length in Y.
; It assumes the keyboard is selected as I/O channel!
%asm {{
2018-12-10 08:25:38 +00:00
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
ldy #0 ; char counter = 0
- jsr c64.CHRIN
cmp #$0d ; return (ascii 13) pressed?
beq + ; yes, end.
2018-12-10 08:25:38 +00:00
sta (c64.SCRATCH_ZPWORD1),y ; else store char in buffer
iny
bne -
+ lda #0
2018-12-10 08:25:38 +00:00
sta (c64.SCRATCH_ZPWORD1),y ; finish string with 0 byte
rts
}}
}
asmsub setchr (ubyte col @Y, ubyte row @A) -> clobbers(A) -> () {
2018-12-18 00:43:04 +00:00
; ---- set the character in SCRATCH_ZPB1 on the screen matrix at the given position
%asm {{
sty c64.SCRATCH_ZPREG
asl a
tay
lda _screenrows+1,y
sta _mod+2
lda _screenrows,y
clc
adc c64.SCRATCH_ZPREG
sta _mod+1
bcc +
inc _mod+2
+ lda c64.SCRATCH_ZPB1
_mod sta $ffff ; modified
rts
_screenrows .word $0400 + range(0, 1000, 40)
}}
}
asmsub setclr (ubyte col @Y, ubyte row @A) -> clobbers(A) -> () {
2018-12-18 00:43:04 +00:00
; ---- set the color in SCRATCH_ZPB1 on the screen matrix at the given position
%asm {{
sty c64.SCRATCH_ZPREG
asl a
tay
lda _colorrows+1,y
sta _mod+2
lda _colorrows,y
clc
adc c64.SCRATCH_ZPREG
sta _mod+1
bcc +
inc _mod+2
+ lda c64.SCRATCH_ZPB1
_mod sta $ffff ; modified
rts
_colorrows .word $d800 + range(0, 1000, 40)
}}
}
2019-01-06 20:46:35 +00:00
sub setcc (ubyte column, ubyte row, ubyte char, ubyte color) {
2018-12-18 00:43:04 +00:00
; ---- set char+color at the given position on the screen
%asm {{
2019-01-06 20:46:35 +00:00
lda setcc_row
2018-12-18 00:43:04 +00:00
asl a
tay
lda setchr._screenrows+1,y
sta _charmod+2
adc #$d4
sta _colormod+2
lda setchr._screenrows,y
clc
2019-01-06 20:46:35 +00:00
adc setcc_column
2018-12-18 00:43:04 +00:00
sta _charmod+1
sta _colormod+1
bcc +
inc _charmod+2
inc _colormod+2
2019-01-06 20:46:35 +00:00
+ lda setcc_char
2018-12-18 00:43:04 +00:00
_charmod sta $ffff ; modified
2019-01-06 20:46:35 +00:00
lda setcc_color
2018-12-18 00:43:04 +00:00
_colormod sta $ffff ; modified
rts
}}
}
asmsub PLOT (ubyte col @ Y, ubyte row @ A) -> clobbers(A) -> () {
; ---- safe wrapper around PLOT kernel routine, to save the X register.
%asm {{
stx c64.SCRATCH_ZPREGX
tax
clc
jsr c64.PLOT
ldx c64.SCRATCH_ZPREGX
rts
}}
}
2018-12-18 00:43:04 +00:00
} ; ---- end block c64scr