mirror of
https://github.com/bradgrantham/apple2e.git
synced 2025-01-15 20:35:00 +00:00
Merge pull request #34 from bradgrantham/gif
Merge recording animated GIFs facility from gif branch
This commit is contained in:
commit
53e8b802c4
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
||||
*.o
|
||||
apple2e
|
||||
*.gif
|
||||
|
22
apple2e.cpp
22
apple2e.cpp
@ -41,6 +41,9 @@ volatile bool exit_on_memory_fallthrough = true;
|
||||
volatile bool run_fast = false;
|
||||
volatile bool pause_cpu = false;
|
||||
|
||||
bool run_rate_limited = false;
|
||||
int rate_limit_millis;
|
||||
|
||||
// XXX - this should be handled through a function passed to MAINboard
|
||||
APPLE2Einterface::ModeHistory mode_history;
|
||||
|
||||
@ -3069,8 +3072,14 @@ enum APPLE2Einterface::EventType process_events(MAINboard *board, bus_frontend&
|
||||
pause_cpu = e.value;
|
||||
} else if(e.type == APPLE2Einterface::SPEED) {
|
||||
run_fast = e.value;
|
||||
} else if(e.type == APPLE2Einterface::QUIT)
|
||||
return e.type;
|
||||
} else if(e.type == APPLE2Einterface::QUIT) {
|
||||
return e.type;
|
||||
} else if(e.type == APPLE2Einterface::REQUEST_ITERATION_PERIOD_IN_MILLIS) {
|
||||
run_rate_limited = true;
|
||||
rate_limit_millis = e.value;
|
||||
} else if(e.type == APPLE2Einterface::WITHDRAW_ITERATION_PERIOD_REQUEST) {
|
||||
run_rate_limited = false;
|
||||
}
|
||||
}
|
||||
return APPLE2Einterface::NONE;
|
||||
}
|
||||
@ -3231,10 +3240,13 @@ int main(int argc, char **argv)
|
||||
if(pause_cpu)
|
||||
clocks_per_slice = 0;
|
||||
else {
|
||||
if(run_fast)
|
||||
if(run_rate_limited) {
|
||||
clocks_per_slice = machine_clock_rate / 1000 * rate_limit_millis;
|
||||
} else if(run_fast) {
|
||||
clocks_per_slice = machine_clock_rate / 5;
|
||||
else
|
||||
} else {
|
||||
clocks_per_slice = millis_per_slice * machine_clock_rate / 1000 * 1.05;
|
||||
}
|
||||
}
|
||||
clk_t prev_clock = clk;
|
||||
while(clk - prev_clock < clocks_per_slice) {
|
||||
@ -3259,7 +3271,7 @@ int main(int argc, char **argv)
|
||||
|
||||
auto elapsed_millis = chrono::duration_cast<chrono::milliseconds>(now - then);
|
||||
if(!run_fast || pause_cpu)
|
||||
this_thread::sleep_for(chrono::milliseconds(millis_per_slice) - elapsed_millis);
|
||||
this_thread::sleep_for(chrono::milliseconds(clocks_per_slice * 1000 / machine_clock_rate) - elapsed_millis);
|
||||
|
||||
then = now;
|
||||
|
||||
|
825
gif.h
Normal file
825
gif.h
Normal file
@ -0,0 +1,825 @@
|
||||
//
|
||||
// gif.h
|
||||
// by Charlie Tangora
|
||||
// Public domain.
|
||||
// Email me : ctangora -at- gmail -dot- com
|
||||
//
|
||||
// This file offers a simple, very limited way to create animated GIFs directly in code.
|
||||
//
|
||||
// Those looking for particular cleverness are likely to be disappointed; it's pretty
|
||||
// much a straight-ahead implementation of the GIF format with optional Floyd-Steinberg
|
||||
// dithering. (It does at least use delta encoding - only the changed portions of each
|
||||
// frame are saved.)
|
||||
//
|
||||
// So resulting files are often quite large. The hope is that it will be handy nonetheless
|
||||
// as a quick and easily-integrated way for programs to spit out animations.
|
||||
//
|
||||
// Only RGBA8 is currently supported as an input format. (The alpha is ignored.)
|
||||
//
|
||||
// USAGE:
|
||||
// Create a GifWriter struct. Pass it to GifBegin() to initialize and write the header.
|
||||
// Pass subsequent frames to GifWriteFrame().
|
||||
// Finally, call GifEnd() to close the file handle and free memory.
|
||||
//
|
||||
|
||||
#ifndef gif_h
|
||||
#define gif_h
|
||||
|
||||
#include <stdio.h> // for FILE*
|
||||
#include <string.h> // for memcpy and bzero
|
||||
#include <stdint.h> // for integer typedefs
|
||||
|
||||
// Define these macros to hook into a custom memory allocator.
|
||||
// TEMP_MALLOC and TEMP_FREE will only be called in stack fashion - frees in the reverse order of mallocs
|
||||
// and any temp memory allocated by a function will be freed before it exits.
|
||||
// MALLOC and FREE are used only by GifBegin and GifEnd respectively (to allocate a buffer the size of the image, which
|
||||
// is used to find changed pixels for delta-encoding.)
|
||||
|
||||
#ifndef GIF_TEMP_MALLOC
|
||||
#include <stdlib.h>
|
||||
#define GIF_TEMP_MALLOC malloc
|
||||
#endif
|
||||
|
||||
#ifndef GIF_TEMP_FREE
|
||||
#include <stdlib.h>
|
||||
#define GIF_TEMP_FREE free
|
||||
#endif
|
||||
|
||||
#ifndef GIF_MALLOC
|
||||
#include <stdlib.h>
|
||||
#define GIF_MALLOC malloc
|
||||
#endif
|
||||
|
||||
#ifndef GIF_FREE
|
||||
#include <stdlib.h>
|
||||
#define GIF_FREE free
|
||||
#endif
|
||||
|
||||
const int kGifTransIndex = 0;
|
||||
|
||||
struct GifPalette
|
||||
{
|
||||
int bitDepth;
|
||||
|
||||
uint8_t r[256];
|
||||
uint8_t g[256];
|
||||
uint8_t b[256];
|
||||
|
||||
// k-d tree over RGB space, organized in heap fashion
|
||||
// i.e. left child of node i is node i*2, right child is node i*2+1
|
||||
// nodes 256-511 are implicitly the leaves, containing a color
|
||||
uint8_t treeSplitElt[255];
|
||||
uint8_t treeSplit[255];
|
||||
};
|
||||
|
||||
// max, min, and abs functions
|
||||
int GifIMax(int l, int r) { return l>r?l:r; }
|
||||
int GifIMin(int l, int r) { return l<r?l:r; }
|
||||
int GifIAbs(int i) { return i<0?-i:i; }
|
||||
|
||||
// walks the k-d tree to pick the palette entry for a desired color.
|
||||
// Takes as in/out parameters the current best color and its error -
|
||||
// only changes them if it finds a better color in its subtree.
|
||||
// this is the major hotspot in the code at the moment.
|
||||
void GifGetClosestPaletteColor(GifPalette* pPal, int r, int g, int b, int& bestInd, int& bestDiff, int treeRoot = 1)
|
||||
{
|
||||
// base case, reached the bottom of the tree
|
||||
if(treeRoot > (1<<pPal->bitDepth)-1)
|
||||
{
|
||||
int ind = treeRoot-(1<<pPal->bitDepth);
|
||||
if(ind == kGifTransIndex) return;
|
||||
|
||||
// check whether this color is better than the current winner
|
||||
int r_err = r - ((int32_t)pPal->r[ind]);
|
||||
int g_err = g - ((int32_t)pPal->g[ind]);
|
||||
int b_err = b - ((int32_t)pPal->b[ind]);
|
||||
int diff = GifIAbs(r_err)+GifIAbs(g_err)+GifIAbs(b_err);
|
||||
|
||||
if(diff < bestDiff)
|
||||
{
|
||||
bestInd = ind;
|
||||
bestDiff = diff;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// take the appropriate color (r, g, or b) for this node of the k-d tree
|
||||
int comps[3]; comps[0] = r; comps[1] = g; comps[2] = b;
|
||||
int splitComp = comps[pPal->treeSplitElt[treeRoot]];
|
||||
|
||||
int splitPos = pPal->treeSplit[treeRoot];
|
||||
if(splitPos > splitComp)
|
||||
{
|
||||
// check the left subtree
|
||||
GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2);
|
||||
if( bestDiff > splitPos - splitComp )
|
||||
{
|
||||
// cannot prove there's not a better value in the right subtree, check that too
|
||||
GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1);
|
||||
if( bestDiff > splitComp - splitPos )
|
||||
{
|
||||
GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GifSwapPixels(uint8_t* image, int pixA, int pixB)
|
||||
{
|
||||
uint8_t rA = image[pixA*4];
|
||||
uint8_t gA = image[pixA*4+1];
|
||||
uint8_t bA = image[pixA*4+2];
|
||||
uint8_t aA = image[pixA*4+3];
|
||||
|
||||
uint8_t rB = image[pixB*4];
|
||||
uint8_t gB = image[pixB*4+1];
|
||||
uint8_t bB = image[pixB*4+2];
|
||||
uint8_t aB = image[pixA*4+3];
|
||||
|
||||
image[pixA*4] = rB;
|
||||
image[pixA*4+1] = gB;
|
||||
image[pixA*4+2] = bB;
|
||||
image[pixA*4+3] = aB;
|
||||
|
||||
image[pixB*4] = rA;
|
||||
image[pixB*4+1] = gA;
|
||||
image[pixB*4+2] = bA;
|
||||
image[pixB*4+3] = aA;
|
||||
}
|
||||
|
||||
// just the partition operation from quicksort
|
||||
int GifPartition(uint8_t* image, const int left, const int right, const int elt, int pivotIndex)
|
||||
{
|
||||
const int pivotValue = image[(pivotIndex)*4+elt];
|
||||
GifSwapPixels(image, pivotIndex, right-1);
|
||||
int storeIndex = left;
|
||||
bool split = 0;
|
||||
for(int ii=left; ii<right-1; ++ii)
|
||||
{
|
||||
int arrayVal = image[ii*4+elt];
|
||||
if( arrayVal < pivotValue )
|
||||
{
|
||||
GifSwapPixels(image, ii, storeIndex);
|
||||
++storeIndex;
|
||||
}
|
||||
else if( arrayVal == pivotValue )
|
||||
{
|
||||
if(split)
|
||||
{
|
||||
GifSwapPixels(image, ii, storeIndex);
|
||||
++storeIndex;
|
||||
}
|
||||
split = !split;
|
||||
}
|
||||
}
|
||||
GifSwapPixels(image, storeIndex, right-1);
|
||||
return storeIndex;
|
||||
}
|
||||
|
||||
// Perform an incomplete sort, finding all elements above and below the desired median
|
||||
void GifPartitionByMedian(uint8_t* image, int left, int right, int com, int neededCenter)
|
||||
{
|
||||
if(left < right-1)
|
||||
{
|
||||
int pivotIndex = left + (right-left)/2;
|
||||
|
||||
pivotIndex = GifPartition(image, left, right, com, pivotIndex);
|
||||
|
||||
// Only "sort" the section of the array that contains the median
|
||||
if(pivotIndex > neededCenter)
|
||||
GifPartitionByMedian(image, left, pivotIndex, com, neededCenter);
|
||||
|
||||
if(pivotIndex < neededCenter)
|
||||
GifPartitionByMedian(image, pivotIndex+1, right, com, neededCenter);
|
||||
}
|
||||
}
|
||||
|
||||
// Builds a palette by creating a balanced k-d tree of all pixels in the image
|
||||
void GifSplitPalette(uint8_t* image, int numPixels, int firstElt, int lastElt, int splitElt, int splitDist, int treeNode, bool buildForDither, GifPalette* pal)
|
||||
{
|
||||
if(lastElt <= firstElt || numPixels == 0)
|
||||
return;
|
||||
|
||||
// base case, bottom of the tree
|
||||
if(lastElt == firstElt+1)
|
||||
{
|
||||
if(buildForDither)
|
||||
{
|
||||
// Dithering needs at least one color as dark as anything
|
||||
// in the image and at least one brightest color -
|
||||
// otherwise it builds up error and produces strange artifacts
|
||||
if( firstElt == 1 )
|
||||
{
|
||||
// special case: the darkest color in the image
|
||||
uint32_t r=255, g=255, b=255;
|
||||
for(int ii=0; ii<numPixels; ++ii)
|
||||
{
|
||||
r = (uint32_t)GifIMin((int32_t)r, image[ii * 4 + 0]);
|
||||
g = (uint32_t)GifIMin((int32_t)g, image[ii * 4 + 1]);
|
||||
b = (uint32_t)GifIMin((int32_t)b, image[ii * 4 + 2]);
|
||||
}
|
||||
|
||||
pal->r[firstElt] = (uint8_t)r;
|
||||
pal->g[firstElt] = (uint8_t)g;
|
||||
pal->b[firstElt] = (uint8_t)b;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if( firstElt == (1 << pal->bitDepth)-1 )
|
||||
{
|
||||
// special case: the lightest color in the image
|
||||
uint32_t r=0, g=0, b=0;
|
||||
for(int ii=0; ii<numPixels; ++ii)
|
||||
{
|
||||
r = (uint32_t)GifIMax((int32_t)r, image[ii * 4 + 0]);
|
||||
g = (uint32_t)GifIMax((int32_t)g, image[ii * 4 + 1]);
|
||||
b = (uint32_t)GifIMax((int32_t)b, image[ii * 4 + 2]);
|
||||
}
|
||||
|
||||
pal->r[firstElt] = (uint8_t)r;
|
||||
pal->g[firstElt] = (uint8_t)g;
|
||||
pal->b[firstElt] = (uint8_t)b;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// otherwise, take the average of all colors in this subcube
|
||||
uint64_t r=0, g=0, b=0;
|
||||
for(int ii=0; ii<numPixels; ++ii)
|
||||
{
|
||||
r += image[ii*4+0];
|
||||
g += image[ii*4+1];
|
||||
b += image[ii*4+2];
|
||||
}
|
||||
|
||||
r += (uint64_t)numPixels / 2; // round to nearest
|
||||
g += (uint64_t)numPixels / 2;
|
||||
b += (uint64_t)numPixels / 2;
|
||||
|
||||
r /= (uint64_t)numPixels;
|
||||
g /= (uint64_t)numPixels;
|
||||
b /= (uint64_t)numPixels;
|
||||
|
||||
pal->r[firstElt] = (uint8_t)r;
|
||||
pal->g[firstElt] = (uint8_t)g;
|
||||
pal->b[firstElt] = (uint8_t)b;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Find the axis with the largest range
|
||||
int minR = 255, maxR = 0;
|
||||
int minG = 255, maxG = 0;
|
||||
int minB = 255, maxB = 0;
|
||||
for(int ii=0; ii<numPixels; ++ii)
|
||||
{
|
||||
int r = image[ii*4+0];
|
||||
int g = image[ii*4+1];
|
||||
int b = image[ii*4+2];
|
||||
|
||||
if(r > maxR) maxR = r;
|
||||
if(r < minR) minR = r;
|
||||
|
||||
if(g > maxG) maxG = g;
|
||||
if(g < minG) minG = g;
|
||||
|
||||
if(b > maxB) maxB = b;
|
||||
if(b < minB) minB = b;
|
||||
}
|
||||
|
||||
int rRange = maxR - minR;
|
||||
int gRange = maxG - minG;
|
||||
int bRange = maxB - minB;
|
||||
|
||||
// and split along that axis. (incidentally, this means this isn't a "proper" k-d tree but I don't know what else to call it)
|
||||
int splitCom = 1;
|
||||
if(bRange > gRange) splitCom = 2;
|
||||
if(rRange > bRange && rRange > gRange) splitCom = 0;
|
||||
|
||||
int subPixelsA = numPixels * (splitElt - firstElt) / (lastElt - firstElt);
|
||||
int subPixelsB = numPixels-subPixelsA;
|
||||
|
||||
GifPartitionByMedian(image, 0, numPixels, splitCom, subPixelsA);
|
||||
|
||||
pal->treeSplitElt[treeNode] = (uint8_t)splitCom;
|
||||
pal->treeSplit[treeNode] = image[subPixelsA*4+splitCom];
|
||||
|
||||
GifSplitPalette(image, subPixelsA, firstElt, splitElt, splitElt-splitDist, splitDist/2, treeNode*2, buildForDither, pal);
|
||||
GifSplitPalette(image+subPixelsA*4, subPixelsB, splitElt, lastElt, splitElt+splitDist, splitDist/2, treeNode*2+1, buildForDither, pal);
|
||||
}
|
||||
|
||||
// Finds all pixels that have changed from the previous image and
|
||||
// moves them to the fromt of th buffer.
|
||||
// This allows us to build a palette optimized for the colors of the
|
||||
// changed pixels only.
|
||||
int GifPickChangedPixels( const uint8_t* lastFrame, uint8_t* frame, int numPixels )
|
||||
{
|
||||
int numChanged = 0;
|
||||
uint8_t* writeIter = frame;
|
||||
|
||||
for (int ii=0; ii<numPixels; ++ii)
|
||||
{
|
||||
if(lastFrame[0] != frame[0] ||
|
||||
lastFrame[1] != frame[1] ||
|
||||
lastFrame[2] != frame[2])
|
||||
{
|
||||
writeIter[0] = frame[0];
|
||||
writeIter[1] = frame[1];
|
||||
writeIter[2] = frame[2];
|
||||
++numChanged;
|
||||
writeIter += 4;
|
||||
}
|
||||
lastFrame += 4;
|
||||
frame += 4;
|
||||
}
|
||||
|
||||
return numChanged;
|
||||
}
|
||||
|
||||
// Creates a palette by placing all the image pixels in a k-d tree and then averaging the blocks at the bottom.
|
||||
// This is known as the "modified median split" technique
|
||||
void GifMakePalette( const uint8_t* lastFrame, const uint8_t* nextFrame, uint32_t width, uint32_t height, int bitDepth, bool buildForDither, GifPalette* pPal )
|
||||
{
|
||||
pPal->bitDepth = bitDepth;
|
||||
|
||||
// SplitPalette is destructive (it sorts the pixels by color) so
|
||||
// we must create a copy of the image for it to destroy
|
||||
size_t imageSize = (size_t)(width * height * 4 * sizeof(uint8_t));
|
||||
uint8_t* destroyableImage = (uint8_t*)GIF_TEMP_MALLOC(imageSize);
|
||||
memcpy(destroyableImage, nextFrame, imageSize);
|
||||
|
||||
int numPixels = (int)(width * height);
|
||||
if(lastFrame)
|
||||
numPixels = GifPickChangedPixels(lastFrame, destroyableImage, numPixels);
|
||||
|
||||
const int lastElt = 1 << bitDepth;
|
||||
const int splitElt = lastElt/2;
|
||||
const int splitDist = splitElt/2;
|
||||
|
||||
GifSplitPalette(destroyableImage, numPixels, 1, lastElt, splitElt, splitDist, 1, buildForDither, pPal);
|
||||
|
||||
GIF_TEMP_FREE(destroyableImage);
|
||||
|
||||
// add the bottom node for the transparency index
|
||||
pPal->treeSplit[1 << (bitDepth-1)] = 0;
|
||||
pPal->treeSplitElt[1 << (bitDepth-1)] = 0;
|
||||
|
||||
pPal->r[0] = pPal->g[0] = pPal->b[0] = 0;
|
||||
}
|
||||
|
||||
// Implements Floyd-Steinberg dithering, writes palette value to alpha
|
||||
void GifDitherImage( const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal )
|
||||
{
|
||||
int numPixels = (int)(width * height);
|
||||
|
||||
// quantPixels initially holds color*256 for all pixels
|
||||
// The extra 8 bits of precision allow for sub-single-color error values
|
||||
// to be propagated
|
||||
int32_t *quantPixels = (int32_t *)GIF_TEMP_MALLOC(sizeof(int32_t) * (size_t)numPixels * 4);
|
||||
|
||||
for( int ii=0; ii<numPixels*4; ++ii )
|
||||
{
|
||||
uint8_t pix = nextFrame[ii];
|
||||
int32_t pix16 = int32_t(pix) * 256;
|
||||
quantPixels[ii] = pix16;
|
||||
}
|
||||
|
||||
for( uint32_t yy=0; yy<height; ++yy )
|
||||
{
|
||||
for( uint32_t xx=0; xx<width; ++xx )
|
||||
{
|
||||
int32_t* nextPix = quantPixels + 4*(yy*width+xx);
|
||||
const uint8_t* lastPix = lastFrame? lastFrame + 4*(yy*width+xx) : NULL;
|
||||
|
||||
// Compute the colors we want (rounding to nearest)
|
||||
int32_t rr = (nextPix[0] + 127) / 256;
|
||||
int32_t gg = (nextPix[1] + 127) / 256;
|
||||
int32_t bb = (nextPix[2] + 127) / 256;
|
||||
|
||||
// if it happens that we want the color from last frame, then just write out
|
||||
// a transparent pixel
|
||||
if( lastFrame &&
|
||||
lastPix[0] == rr &&
|
||||
lastPix[1] == gg &&
|
||||
lastPix[2] == bb )
|
||||
{
|
||||
nextPix[0] = rr;
|
||||
nextPix[1] = gg;
|
||||
nextPix[2] = bb;
|
||||
nextPix[3] = kGifTransIndex;
|
||||
continue;
|
||||
}
|
||||
|
||||
int32_t bestDiff = 1000000;
|
||||
int32_t bestInd = kGifTransIndex;
|
||||
|
||||
// Search the palete
|
||||
GifGetClosestPaletteColor(pPal, rr, gg, bb, bestInd, bestDiff);
|
||||
|
||||
// Write the result to the temp buffer
|
||||
int32_t r_err = nextPix[0] - int32_t(pPal->r[bestInd]) * 256;
|
||||
int32_t g_err = nextPix[1] - int32_t(pPal->g[bestInd]) * 256;
|
||||
int32_t b_err = nextPix[2] - int32_t(pPal->b[bestInd]) * 256;
|
||||
|
||||
nextPix[0] = pPal->r[bestInd];
|
||||
nextPix[1] = pPal->g[bestInd];
|
||||
nextPix[2] = pPal->b[bestInd];
|
||||
nextPix[3] = bestInd;
|
||||
|
||||
// Propagate the error to the four adjacent locations
|
||||
// that we haven't touched yet
|
||||
int quantloc_7 = (int)(yy * width + xx + 1);
|
||||
int quantloc_3 = (int)(yy * width + width + xx - 1);
|
||||
int quantloc_5 = (int)(yy * width + width + xx);
|
||||
int quantloc_1 = (int)(yy * width + width + xx + 1);
|
||||
|
||||
if(quantloc_7 < numPixels)
|
||||
{
|
||||
int32_t* pix7 = quantPixels+4*quantloc_7;
|
||||
pix7[0] += GifIMax( -pix7[0], r_err * 7 / 16 );
|
||||
pix7[1] += GifIMax( -pix7[1], g_err * 7 / 16 );
|
||||
pix7[2] += GifIMax( -pix7[2], b_err * 7 / 16 );
|
||||
}
|
||||
|
||||
if(quantloc_3 < numPixels)
|
||||
{
|
||||
int32_t* pix3 = quantPixels+4*quantloc_3;
|
||||
pix3[0] += GifIMax( -pix3[0], r_err * 3 / 16 );
|
||||
pix3[1] += GifIMax( -pix3[1], g_err * 3 / 16 );
|
||||
pix3[2] += GifIMax( -pix3[2], b_err * 3 / 16 );
|
||||
}
|
||||
|
||||
if(quantloc_5 < numPixels)
|
||||
{
|
||||
int32_t* pix5 = quantPixels+4*quantloc_5;
|
||||
pix5[0] += GifIMax( -pix5[0], r_err * 5 / 16 );
|
||||
pix5[1] += GifIMax( -pix5[1], g_err * 5 / 16 );
|
||||
pix5[2] += GifIMax( -pix5[2], b_err * 5 / 16 );
|
||||
}
|
||||
|
||||
if(quantloc_1 < numPixels)
|
||||
{
|
||||
int32_t* pix1 = quantPixels+4*quantloc_1;
|
||||
pix1[0] += GifIMax( -pix1[0], r_err / 16 );
|
||||
pix1[1] += GifIMax( -pix1[1], g_err / 16 );
|
||||
pix1[2] += GifIMax( -pix1[2], b_err / 16 );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy the palettized result to the output buffer
|
||||
for( int ii=0; ii<numPixels*4; ++ii )
|
||||
{
|
||||
outFrame[ii] = (uint8_t)quantPixels[ii];
|
||||
}
|
||||
|
||||
GIF_TEMP_FREE(quantPixels);
|
||||
}
|
||||
|
||||
// Picks palette colors for the image using simple thresholding, no dithering
|
||||
void GifThresholdImage( const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal )
|
||||
{
|
||||
uint32_t numPixels = width*height;
|
||||
for( uint32_t ii=0; ii<numPixels; ++ii )
|
||||
{
|
||||
// if a previous color is available, and it matches the current color,
|
||||
// set the pixel to transparent
|
||||
if(lastFrame &&
|
||||
lastFrame[0] == nextFrame[0] &&
|
||||
lastFrame[1] == nextFrame[1] &&
|
||||
lastFrame[2] == nextFrame[2])
|
||||
{
|
||||
outFrame[0] = lastFrame[0];
|
||||
outFrame[1] = lastFrame[1];
|
||||
outFrame[2] = lastFrame[2];
|
||||
outFrame[3] = kGifTransIndex;
|
||||
}
|
||||
else
|
||||
{
|
||||
// palettize the pixel
|
||||
int32_t bestDiff = 1000000;
|
||||
int32_t bestInd = 1;
|
||||
GifGetClosestPaletteColor(pPal, nextFrame[0], nextFrame[1], nextFrame[2], bestInd, bestDiff);
|
||||
|
||||
// Write the resulting color to the output buffer
|
||||
outFrame[0] = pPal->r[bestInd];
|
||||
outFrame[1] = pPal->g[bestInd];
|
||||
outFrame[2] = pPal->b[bestInd];
|
||||
outFrame[3] = (uint8_t)bestInd;
|
||||
}
|
||||
|
||||
if(lastFrame) lastFrame += 4;
|
||||
outFrame += 4;
|
||||
nextFrame += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// Simple structure to write out the LZW-compressed portion of the image
|
||||
// one bit at a time
|
||||
struct GifBitStatus
|
||||
{
|
||||
uint8_t bitIndex; // how many bits in the partial byte written so far
|
||||
uint8_t byte; // current partial byte
|
||||
|
||||
uint32_t chunkIndex;
|
||||
uint8_t chunk[256]; // bytes are written in here until we have 256 of them, then written to the file
|
||||
};
|
||||
|
||||
// insert a single bit
|
||||
void GifWriteBit( GifBitStatus& stat, uint32_t bit )
|
||||
{
|
||||
bit = bit & 1;
|
||||
bit = bit << stat.bitIndex;
|
||||
stat.byte |= bit;
|
||||
|
||||
++stat.bitIndex;
|
||||
if( stat.bitIndex > 7 )
|
||||
{
|
||||
// move the newly-finished byte to the chunk buffer
|
||||
stat.chunk[stat.chunkIndex++] = stat.byte;
|
||||
// and start a new byte
|
||||
stat.bitIndex = 0;
|
||||
stat.byte = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// write all bytes so far to the file
|
||||
void GifWriteChunk( FILE* f, GifBitStatus& stat )
|
||||
{
|
||||
fputc((int)stat.chunkIndex, f);
|
||||
fwrite(stat.chunk, 1, stat.chunkIndex, f);
|
||||
|
||||
stat.bitIndex = 0;
|
||||
stat.byte = 0;
|
||||
stat.chunkIndex = 0;
|
||||
}
|
||||
|
||||
void GifWriteCode( FILE* f, GifBitStatus& stat, uint32_t code, uint32_t length )
|
||||
{
|
||||
for( uint32_t ii=0; ii<length; ++ii )
|
||||
{
|
||||
GifWriteBit(stat, code);
|
||||
code = code >> 1;
|
||||
|
||||
if( stat.chunkIndex == 255 )
|
||||
{
|
||||
GifWriteChunk(f, stat);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The LZW dictionary is a 256-ary tree constructed as the file is encoded,
|
||||
// this is one node
|
||||
struct GifLzwNode
|
||||
{
|
||||
uint16_t m_next[256];
|
||||
};
|
||||
|
||||
// write a 256-color (8-bit) image palette to the file
|
||||
void GifWritePalette( const GifPalette* pPal, FILE* f )
|
||||
{
|
||||
fputc(0, f); // first color: transparency
|
||||
fputc(0, f);
|
||||
fputc(0, f);
|
||||
|
||||
for(int ii=1; ii<(1 << pPal->bitDepth); ++ii)
|
||||
{
|
||||
uint32_t r = pPal->r[ii];
|
||||
uint32_t g = pPal->g[ii];
|
||||
uint32_t b = pPal->b[ii];
|
||||
|
||||
fputc((int)r, f);
|
||||
fputc((int)g, f);
|
||||
fputc((int)b, f);
|
||||
}
|
||||
}
|
||||
|
||||
// write the image header, LZW-compress and write out the image
|
||||
void GifWriteLzwImage(FILE* f, uint8_t* image, uint32_t left, uint32_t top, uint32_t width, uint32_t height, uint32_t delay, GifPalette* pPal)
|
||||
{
|
||||
// graphics control extension
|
||||
fputc(0x21, f);
|
||||
fputc(0xf9, f);
|
||||
fputc(0x04, f);
|
||||
fputc(0x05, f); // leave prev frame in place, this frame has transparency
|
||||
fputc(delay & 0xff, f);
|
||||
fputc((delay >> 8) & 0xff, f);
|
||||
fputc(kGifTransIndex, f); // transparent color index
|
||||
fputc(0, f);
|
||||
|
||||
fputc(0x2c, f); // image descriptor block
|
||||
|
||||
fputc(left & 0xff, f); // corner of image in canvas space
|
||||
fputc((left >> 8) & 0xff, f);
|
||||
fputc(top & 0xff, f);
|
||||
fputc((top >> 8) & 0xff, f);
|
||||
|
||||
fputc(width & 0xff, f); // width and height of image
|
||||
fputc((width >> 8) & 0xff, f);
|
||||
fputc(height & 0xff, f);
|
||||
fputc((height >> 8) & 0xff, f);
|
||||
|
||||
//fputc(0, f); // no local color table, no transparency
|
||||
//fputc(0x80, f); // no local color table, but transparency
|
||||
|
||||
fputc(0x80 + pPal->bitDepth-1, f); // local color table present, 2 ^ bitDepth entries
|
||||
GifWritePalette(pPal, f);
|
||||
|
||||
const int minCodeSize = pPal->bitDepth;
|
||||
const uint32_t clearCode = 1 << pPal->bitDepth;
|
||||
|
||||
fputc(minCodeSize, f); // min code size 8 bits
|
||||
|
||||
GifLzwNode* codetree = (GifLzwNode*)GIF_TEMP_MALLOC(sizeof(GifLzwNode)*4096);
|
||||
|
||||
memset(codetree, 0, sizeof(GifLzwNode)*4096);
|
||||
int32_t curCode = -1;
|
||||
uint32_t codeSize = (uint32_t)minCodeSize + 1;
|
||||
uint32_t maxCode = clearCode+1;
|
||||
|
||||
GifBitStatus stat;
|
||||
stat.byte = 0;
|
||||
stat.bitIndex = 0;
|
||||
stat.chunkIndex = 0;
|
||||
|
||||
GifWriteCode(f, stat, clearCode, codeSize); // start with a fresh LZW dictionary
|
||||
|
||||
for(uint32_t yy=0; yy<height; ++yy)
|
||||
{
|
||||
for(uint32_t xx=0; xx<width; ++xx)
|
||||
{
|
||||
uint8_t nextValue = image[(yy*width+xx)*4+3];
|
||||
|
||||
// "loser mode" - no compression, every single code is followed immediately by a clear
|
||||
//WriteCode( f, stat, nextValue, codeSize );
|
||||
//WriteCode( f, stat, 256, codeSize );
|
||||
|
||||
if( curCode < 0 )
|
||||
{
|
||||
// first value in a new run
|
||||
curCode = nextValue;
|
||||
}
|
||||
else if( codetree[curCode].m_next[nextValue] )
|
||||
{
|
||||
// current run already in the dictionary
|
||||
curCode = codetree[curCode].m_next[nextValue];
|
||||
}
|
||||
else
|
||||
{
|
||||
// finish the current run, write a code
|
||||
GifWriteCode(f, stat, (uint32_t)curCode, codeSize);
|
||||
|
||||
// insert the new run into the dictionary
|
||||
codetree[curCode].m_next[nextValue] = (uint16_t)++maxCode;
|
||||
|
||||
if( maxCode >= (1ul << codeSize) )
|
||||
{
|
||||
// dictionary entry count has broken a size barrier,
|
||||
// we need more bits for codes
|
||||
codeSize++;
|
||||
}
|
||||
if( maxCode == 4095 )
|
||||
{
|
||||
// the dictionary is full, clear it out and begin anew
|
||||
GifWriteCode(f, stat, clearCode, codeSize); // clear tree
|
||||
|
||||
memset(codetree, 0, sizeof(GifLzwNode)*4096);
|
||||
codeSize = (uint32_t)(minCodeSize + 1);
|
||||
maxCode = clearCode+1;
|
||||
}
|
||||
|
||||
curCode = nextValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// compression footer
|
||||
GifWriteCode(f, stat, (uint32_t)curCode, codeSize);
|
||||
GifWriteCode(f, stat, clearCode, codeSize);
|
||||
GifWriteCode(f, stat, clearCode + 1, (uint32_t)minCodeSize + 1);
|
||||
|
||||
// write out the last partial chunk
|
||||
while( stat.bitIndex ) GifWriteBit(stat, 0);
|
||||
if( stat.chunkIndex ) GifWriteChunk(f, stat);
|
||||
|
||||
fputc(0, f); // image block terminator
|
||||
|
||||
GIF_TEMP_FREE(codetree);
|
||||
}
|
||||
|
||||
struct GifWriter
|
||||
{
|
||||
FILE* f;
|
||||
uint8_t* oldImage;
|
||||
bool firstFrame;
|
||||
};
|
||||
|
||||
// Creates a gif file.
|
||||
// The input GIFWriter is assumed to be uninitialized.
|
||||
// The delay value is the time between frames in hundredths of a second - note that not all viewers pay much attention to this value.
|
||||
bool GifBegin( GifWriter* writer, const char* filename, uint32_t width, uint32_t height, uint32_t delay, int32_t bitDepth = 8, bool dither = false )
|
||||
{
|
||||
(void)bitDepth; (void)dither; // Mute "Unused argument" warnings
|
||||
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
|
||||
writer->f = 0;
|
||||
fopen_s(&writer->f, filename, "wb");
|
||||
#else
|
||||
writer->f = fopen(filename, "wb");
|
||||
#endif
|
||||
if(!writer->f) return false;
|
||||
|
||||
writer->firstFrame = true;
|
||||
|
||||
// allocate
|
||||
writer->oldImage = (uint8_t*)GIF_MALLOC(width*height*4);
|
||||
|
||||
fputs("GIF89a", writer->f);
|
||||
|
||||
// screen descriptor
|
||||
fputc(width & 0xff, writer->f);
|
||||
fputc((width >> 8) & 0xff, writer->f);
|
||||
fputc(height & 0xff, writer->f);
|
||||
fputc((height >> 8) & 0xff, writer->f);
|
||||
|
||||
fputc(0xf0, writer->f); // there is an unsorted global color table of 2 entries
|
||||
fputc(0, writer->f); // background color
|
||||
fputc(0, writer->f); // pixels are square (we need to specify this because it's 1989)
|
||||
|
||||
// now the "global" palette (really just a dummy palette)
|
||||
// color 0: black
|
||||
fputc(0, writer->f);
|
||||
fputc(0, writer->f);
|
||||
fputc(0, writer->f);
|
||||
// color 1: also black
|
||||
fputc(0, writer->f);
|
||||
fputc(0, writer->f);
|
||||
fputc(0, writer->f);
|
||||
|
||||
if( delay != 0 )
|
||||
{
|
||||
// animation header
|
||||
fputc(0x21, writer->f); // extension
|
||||
fputc(0xff, writer->f); // application specific
|
||||
fputc(11, writer->f); // length 11
|
||||
fputs("NETSCAPE2.0", writer->f); // yes, really
|
||||
fputc(3, writer->f); // 3 bytes of NETSCAPE2.0 data
|
||||
|
||||
fputc(1, writer->f); // JUST BECAUSE
|
||||
fputc(0, writer->f); // loop infinitely (byte 0)
|
||||
fputc(0, writer->f); // loop infinitely (byte 1)
|
||||
|
||||
fputc(0, writer->f); // block terminator
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Writes out a new frame to a GIF in progress.
|
||||
// The GIFWriter should have been created by GIFBegin.
|
||||
// AFAIK, it is legal to use different bit depths for different frames of an image -
|
||||
// this may be handy to save bits in animations that don't change much.
|
||||
bool GifWriteFrame( GifWriter* writer, const uint8_t* image, uint32_t width, uint32_t height, uint32_t delay, int bitDepth = 8, bool dither = false )
|
||||
{
|
||||
if(!writer->f) return false;
|
||||
|
||||
const uint8_t* oldImage = writer->firstFrame? NULL : writer->oldImage;
|
||||
writer->firstFrame = false;
|
||||
|
||||
GifPalette pal;
|
||||
GifMakePalette((dither? NULL : oldImage), image, width, height, bitDepth, dither, &pal);
|
||||
|
||||
if(dither)
|
||||
GifDitherImage(oldImage, image, writer->oldImage, width, height, &pal);
|
||||
else
|
||||
GifThresholdImage(oldImage, image, writer->oldImage, width, height, &pal);
|
||||
|
||||
GifWriteLzwImage(writer->f, writer->oldImage, 0, 0, width, height, delay, &pal);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Writes the EOF code, closes the file handle, and frees temp memory used by a GIF.
|
||||
// Many if not most viewers will still display a GIF properly if the EOF code is missing,
|
||||
// but it's still a good idea to write it out.
|
||||
bool GifEnd( GifWriter* writer )
|
||||
{
|
||||
if(!writer->f) return false;
|
||||
|
||||
fputc(0x3b, writer->f); // end of file
|
||||
fclose(writer->f);
|
||||
GIF_FREE(writer->oldImage);
|
||||
|
||||
writer->f = NULL;
|
||||
writer->oldImage = NULL;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
239
interface.cpp
239
interface.cpp
@ -13,6 +13,8 @@
|
||||
#include <cassert>
|
||||
#include <ao/ao.h>
|
||||
|
||||
#include "gif.h"
|
||||
|
||||
// implicit centering in widget? Or special centering widget?
|
||||
// lines (for around toggle and momentary)
|
||||
// widget which is graphics/text/lores screen
|
||||
@ -80,6 +82,105 @@ struct vertex_array : public vector<vertex_attribute_buffer>
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* OpenGL Render Target ; creates a framebuffer that can be used as a
|
||||
* rendering target and as a texture color source.
|
||||
*/
|
||||
struct render_target
|
||||
{
|
||||
GLuint framebuffer;
|
||||
GLuint color;
|
||||
GLuint depth;
|
||||
|
||||
render_target(int w, int h);
|
||||
~render_target();
|
||||
|
||||
// Start rendering; Draw()s will draw to this framebuffer
|
||||
void start_rendering()
|
||||
{
|
||||
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer);
|
||||
}
|
||||
|
||||
// Stop rendering; Draw()s will draw to the back buffer
|
||||
void stop_rendering()
|
||||
{
|
||||
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
||||
}
|
||||
|
||||
// Start reading; Read()s will read from this framebuffer
|
||||
void start_reading()
|
||||
{
|
||||
glBindFramebuffer(GL_READ_FRAMEBUFFER, framebuffer);
|
||||
glReadBuffer(GL_COLOR_ATTACHMENT0);
|
||||
}
|
||||
|
||||
// Stop reading; Read()s will read from the back buffer
|
||||
void stop_reading()
|
||||
{
|
||||
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
|
||||
glReadBuffer(GL_BACK);
|
||||
}
|
||||
|
||||
// Use this color as the currently bound texture source
|
||||
void use_color()
|
||||
{
|
||||
glBindTexture(GL_TEXTURE_2D, color);
|
||||
}
|
||||
};
|
||||
|
||||
// Destroy render target resources
|
||||
render_target::~render_target()
|
||||
{
|
||||
glDeleteTextures(1, &color);
|
||||
glDeleteRenderbuffers(1, &depth);
|
||||
glDeleteFramebuffers(1, &framebuffer);
|
||||
}
|
||||
|
||||
// Create render target resources if possible
|
||||
render_target::render_target(int w, int h)
|
||||
{
|
||||
GLenum status;
|
||||
|
||||
// Create color texture
|
||||
glGenTextures(1, &color);
|
||||
glBindTexture(GL_TEXTURE_2D, color);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
|
||||
|
||||
CheckOpenGL(__FILE__, __LINE__);
|
||||
|
||||
// Create depth texture
|
||||
glGenTextures(1, &depth);
|
||||
glBindTexture(GL_TEXTURE_2D, depth);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, w, h, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
||||
CheckOpenGL(__FILE__, __LINE__);
|
||||
|
||||
glGenFramebuffers(1, &framebuffer);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
|
||||
CheckOpenGL(__FILE__, __LINE__);
|
||||
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, color, 0);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
|
||||
CheckOpenGL(__FILE__, __LINE__);
|
||||
|
||||
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
||||
if(status != GL_FRAMEBUFFER_COMPLETE) {
|
||||
fprintf(stderr, "framebuffer status was %04X\n", status);
|
||||
throw "Couldn't create OpenGL framebuffer";
|
||||
}
|
||||
CheckOpenGL(__FILE__, __LINE__);
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
}
|
||||
|
||||
const int apple2_screen_width = 280;
|
||||
const int apple2_screen_height = 192;
|
||||
const int recording_scale = 2;
|
||||
const int recording_frame_duration_hundredths = 5;
|
||||
|
||||
chrono::time_point<chrono::system_clock> start_time;
|
||||
|
||||
static GLFWwindow* my_window;
|
||||
@ -109,9 +210,11 @@ deque<event> event_queue;
|
||||
bool force_caps_on = true;
|
||||
bool draw_using_color = false;
|
||||
|
||||
ModeSettings line_to_mode[192];
|
||||
ModeSettings line_to_mode[apple2_screen_height];
|
||||
ModePoint most_recent_modepoint;
|
||||
vertex_array line_to_area[192];
|
||||
vertex_array line_to_area[apple2_screen_height];
|
||||
|
||||
render_target *rendertarget_for_recording;
|
||||
|
||||
bool event_waiting()
|
||||
{
|
||||
@ -643,8 +746,8 @@ vertex_array make_rectangle_vertex_array(float x, float y, float w, float h)
|
||||
|
||||
void initialize_screen_areas()
|
||||
{
|
||||
for(int i = 0; i < 192; i++) {
|
||||
line_to_area[i] = make_rectangle_vertex_array(0, i, 280, 1);
|
||||
for(int i = 0; i < apple2_screen_height; i++) {
|
||||
line_to_area[i] = make_rectangle_vertex_array(0, i, apple2_screen_width, 1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1051,7 +1154,7 @@ struct apple2screen : public widget
|
||||
|
||||
virtual width_height get_min_dimensions() const
|
||||
{
|
||||
return {280, 192};
|
||||
return {apple2_screen_width, apple2_screen_height};
|
||||
}
|
||||
|
||||
virtual void draw(double now, float to_screen[9], float x, float y, float w_, float h_)
|
||||
@ -1060,7 +1163,7 @@ struct apple2screen : public widget
|
||||
h = h_;
|
||||
long long elapsed_millis = now * 1000;
|
||||
|
||||
for(int i = 0; i < 192; i++) {
|
||||
for(int i = 0; i < apple2_screen_height; i++) {
|
||||
const ModeSettings& settings = line_to_mode[i];
|
||||
|
||||
set_shader(to_screen, settings.mode, (i < 160) ? false : settings.mixed, settings.page, settings.vid80, (elapsed_millis / 300) % 2, x, y);
|
||||
@ -1379,10 +1482,29 @@ struct toggle : public text_widget
|
||||
}
|
||||
on = !on;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the boolean value, updates the UI, and calls the appropriate callback.
|
||||
*/
|
||||
void set_value(bool value) {
|
||||
on = value;
|
||||
|
||||
if(on) {
|
||||
set(fg, 0, 0, 0, 1);
|
||||
set(bg, 1, 1, 1, 1);
|
||||
action_on();
|
||||
} else {
|
||||
set(fg, 1, 1, 1, 1);
|
||||
set(bg, 0, 0, 0, 1);
|
||||
action_off();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
widget *ui;
|
||||
widget *screen_only;
|
||||
toggle *caps_toggle;
|
||||
toggle *record_toggle;
|
||||
|
||||
void initialize_gl(void)
|
||||
{
|
||||
@ -1620,6 +1742,40 @@ struct floppy_icon : public widget
|
||||
}
|
||||
};
|
||||
|
||||
// Globals for GIF recording.
|
||||
static GifWriter gif_writer;
|
||||
static bool gif_recording = false;
|
||||
|
||||
/**
|
||||
* Stop recording all frames to a GIF file.
|
||||
*/
|
||||
static void stop_record()
|
||||
{
|
||||
if (gif_recording) {
|
||||
GifEnd(&gif_writer);
|
||||
gif_recording = false;
|
||||
event_queue.push_back({WITHDRAW_ITERATION_PERIOD_REQUEST, 0});
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Start recording all frames to a GIF file.
|
||||
*/
|
||||
static void start_record()
|
||||
{
|
||||
if (gif_recording) {
|
||||
stop_record();
|
||||
}
|
||||
|
||||
if(!rendertarget_for_recording) {
|
||||
rendertarget_for_recording = new render_target(apple2_screen_width * recording_scale, apple2_screen_height * recording_scale);
|
||||
}
|
||||
|
||||
GifBegin(&gif_writer, "out.gif", apple2_screen_width * recording_scale, apple2_screen_height * recording_scale, recording_frame_duration_hundredths);
|
||||
event_queue.push_back({REQUEST_ITERATION_PERIOD_IN_MILLIS, recording_frame_duration_hundredths * 10});
|
||||
gif_recording = true;
|
||||
}
|
||||
|
||||
|
||||
floppy_icon *floppy0_icon;
|
||||
floppy_icon *floppy1_icon;
|
||||
@ -1632,8 +1788,9 @@ void initialize_widgets(bool run_fast, bool add_floppies, bool floppy0_inserted,
|
||||
caps_toggle = new toggle("CAPS", true, [](){force_caps_on = true;}, [](){force_caps_on = false;});
|
||||
toggle *color_toggle = new toggle("COLOR", false, [](){draw_using_color = true;}, [](){draw_using_color = false;});
|
||||
toggle *pause_toggle = new toggle("PAUSE", false, [](){event_queue.push_back({PAUSE, 1});}, [](){event_queue.push_back({PAUSE, 0});});
|
||||
record_toggle = new toggle("RECORD", false, [](){start_record();}, [](){stop_record();});
|
||||
|
||||
vector<widget*> controls = {reset_momentary, reboot_momentary, fast_toggle, caps_toggle, color_toggle, pause_toggle};
|
||||
vector<widget*> controls = {reset_momentary, reboot_momentary, fast_toggle, caps_toggle, color_toggle, pause_toggle, record_toggle};
|
||||
if(add_floppies) {
|
||||
floppy0_icon = new floppy_icon(0, floppy0_inserted);
|
||||
floppy1_icon = new floppy_icon(1, floppy1_inserted);
|
||||
@ -1644,9 +1801,9 @@ void initialize_widgets(bool run_fast, bool add_floppies, bool floppy0_inserted,
|
||||
for(auto b : controls)
|
||||
controls_centered.push_back(new centering(b));
|
||||
|
||||
widget *screen = new apple2screen();
|
||||
screen_only = new apple2screen();
|
||||
widget *buttonpanel = new centering(new widgetbox(widgetbox::VERTICAL, controls_centered));
|
||||
vector<widget*> panels_centered = {new spacer(10, 0), new centering(screen), new spacer(10, 0), new centering(buttonpanel), new spacer(10, 0)};
|
||||
vector<widget*> panels_centered = {new spacer(10, 0), new centering(screen_only), new spacer(10, 0), new centering(buttonpanel), new spacer(10, 0)};
|
||||
|
||||
ui = new centering(new widgetbox(widgetbox::HORIZONTAL, panels_centered));
|
||||
}
|
||||
@ -1663,6 +1820,7 @@ void show_floppy_activity(int number, bool activity)
|
||||
|
||||
float pixel_to_ui_scale;
|
||||
float to_screen_transform[9];
|
||||
float recording_transform[9];
|
||||
|
||||
void make_to_screen_transform()
|
||||
{
|
||||
@ -1675,6 +1833,16 @@ void make_to_screen_transform()
|
||||
to_screen_transform[2 * 3 + 0] = -1;
|
||||
to_screen_transform[2 * 3 + 1] = 1;
|
||||
to_screen_transform[2 * 3 + 2] = 1;
|
||||
|
||||
recording_transform[0 * 3 + 0] = 2.0 / apple2_screen_width;
|
||||
recording_transform[0 * 3 + 1] = 0;
|
||||
recording_transform[0 * 3 + 2] = 0;
|
||||
recording_transform[1 * 3 + 0] = 0;
|
||||
recording_transform[1 * 3 + 1] = 2.0 / apple2_screen_height;
|
||||
recording_transform[1 * 3 + 2] = 0;
|
||||
recording_transform[2 * 3 + 0] = -1;
|
||||
recording_transform[2 * 3 + 1] = -1;
|
||||
recording_transform[2 * 3 + 2] = 1;
|
||||
}
|
||||
|
||||
tuple<float, float> window_to_widget(float x, float y)
|
||||
@ -1686,16 +1854,63 @@ tuple<float, float> window_to_widget(float x, float y)
|
||||
return make_tuple(wx, wy);
|
||||
}
|
||||
|
||||
void save_rgba_to_ppm(const unsigned char *rgba8_pixels, int width, int height, const char *filename)
|
||||
{
|
||||
int row_bytes = width * 4;
|
||||
|
||||
FILE *fp = fopen(filename, "w");
|
||||
fprintf(fp, "P6 %d %d 255\n", width, height);
|
||||
for(int row = 0; row < height; row++) {
|
||||
for(int col = 0; col < width; col++) {
|
||||
fwrite(rgba8_pixels + row_bytes * row + col * 4, 1, 3, fp);
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void add_rendertarget_to_gif(double now, render_target *rt)
|
||||
{
|
||||
static unsigned char image_recorded[apple2_screen_width * recording_scale * apple2_screen_height * recording_scale * 4];
|
||||
|
||||
rt->start_rendering();
|
||||
|
||||
glViewport(0, 0, apple2_screen_width * recording_scale, apple2_screen_height * recording_scale);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
screen_only->draw(now, recording_transform, 0, 0, apple2_screen_width, apple2_screen_height);
|
||||
|
||||
rt->stop_rendering();
|
||||
|
||||
rt->start_reading();
|
||||
|
||||
glReadPixels(0, 0, apple2_screen_width * recording_scale, apple2_screen_height * recording_scale, GL_RGBA, GL_UNSIGNED_BYTE, image_recorded);
|
||||
|
||||
// Enable to debug framebuffer operations by writing result to screen.ppm.
|
||||
if(false) {
|
||||
save_rgba_to_ppm(image_recorded, apple2_screen_width * recording_scale, apple2_screen_height * recording_scale, "screen.ppm");
|
||||
}
|
||||
|
||||
GifWriteFrame(&gif_writer, image_recorded, apple2_screen_width * recording_scale, apple2_screen_height * recording_scale, recording_frame_duration_hundredths, 8, false);
|
||||
|
||||
rt->stop_reading();
|
||||
}
|
||||
|
||||
static void redraw(GLFWwindow *window)
|
||||
{
|
||||
chrono::time_point<chrono::system_clock> now = std::chrono::system_clock::now();
|
||||
chrono::duration<double> elapsed = now - start_time;
|
||||
|
||||
int fbw, fbh;
|
||||
glfwGetFramebufferSize(window, &fbw, &fbh);
|
||||
glViewport(0, 0, fbw, fbh);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
ui->draw(elapsed.count(), to_screen_transform, 0, 0, gWindowWidth / pixel_to_ui_scale, gWindowHeight / pixel_to_ui_scale);
|
||||
|
||||
CheckOpenGL(__FILE__, __LINE__);
|
||||
|
||||
if(gif_recording) {
|
||||
add_rendertarget_to_gif(elapsed.count(), rendertarget_for_recording);
|
||||
}
|
||||
}
|
||||
|
||||
static void error_callback(int error, const char* description)
|
||||
@ -1724,6 +1939,11 @@ static void key(GLFWwindow *window, int key, int scancode, int action, int mods)
|
||||
const char* text = glfwGetClipboardString(window);
|
||||
if (text)
|
||||
event_queue.push_back({PASTE, 0, strdup(text)});
|
||||
} else if(super_down && key == GLFW_KEY_R) {
|
||||
if (action == GLFW_PRESS) {
|
||||
// Toggle UI, which calls the callbacks.
|
||||
record_toggle->set_value(!record_toggle->on);
|
||||
}
|
||||
} else {
|
||||
if(key == GLFW_KEY_CAPS_LOCK) {
|
||||
force_caps_on = true;
|
||||
@ -2041,7 +2261,6 @@ void iterate(const ModeHistory& history, unsigned long long current_byte)
|
||||
use_joystick = false;
|
||||
}
|
||||
|
||||
|
||||
glfwPollEvents();
|
||||
}
|
||||
|
||||
|
@ -3,7 +3,13 @@
|
||||
|
||||
namespace APPLE2Einterface
|
||||
{
|
||||
enum EventType {NONE, KEYDOWN, KEYUP, RESET, REBOOT, PASTE, SPEED, QUIT, PAUSE, EJECT_FLOPPY, INSERT_FLOPPY};
|
||||
|
||||
enum EventType
|
||||
{
|
||||
NONE, KEYDOWN, KEYUP, RESET, REBOOT, PASTE, SPEED, QUIT, PAUSE, EJECT_FLOPPY, INSERT_FLOPPY,
|
||||
REQUEST_ITERATION_PERIOD_IN_MILLIS, /* request fixed simulation time period between calls to iterate() */
|
||||
WITHDRAW_ITERATION_PERIOD_REQUEST, /* withdraw request for fixed simulation time */
|
||||
};
|
||||
|
||||
const int LEFT_SHIFT = 340;
|
||||
const int LEFT_CONTROL = 341;
|
||||
|
Loading…
x
Reference in New Issue
Block a user