Commit Graph

663 Commits

Author SHA1 Message Date
Stephen Heumann
99a10590b1 Avoid out-of-range branches around asm code using dcl directives.
The branch range calculation treated dcl directives as taking 2 bytes rather than 4, which could result in out-of-range branches. These could result in linker errors (for forward branches) or silently generating wrong code (for backward branches).

This patch now treats dcb, dcw, and dcl as separate directives in the native-code layer, so the appropriate length can be calculated for each.

Here is an example of code affected by this:

int main(int argc, char **argv) {
top:
        if (!argc) { /* this caused a linker error */
                asm {
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                        dcl 0
                }
                goto top; /* this generated bad code with no error */
        }
}
2022-10-13 18:00:16 -05:00
Stephen Heumann
19683706cc Do not optimize code from asm statements.
Previously, the assembly-level optimizations applied to code in asm statements. In many cases, this was fine (and could even do useful optimizations), but occasionally the optimizations could be invalid. This was especially the case if the assembly involved tricky things like self-modifying code.

To avoid these problems, this patch makes the assembly optimizers ignore code from asm statements, so it is always emitted as-is, without any changes.

This fixes #34.
2022-10-12 22:03:37 -05:00
Stephen Heumann
12a2e14b6d Follow up peephole optimizations that may enable more optimizations.
If one step of peephole optimization produced code that can be further optimized with more peephole optimizations, that additional optimization was not always done. This makes sure the additional optimization is done in several such cases.

This was particularly likely to affect functions containing asm blocks (because CheckLabels would never trigger rescanning in them), but could also occur in other cases.

Here is an example affected by this (generating inefficient code to load a[1]):

#pragma optimize 1
int a[10];
void f(int x) {}
int main(int argc, char **argv) {
        if (argc) return 0;
        f(a[1]);
}
2022-10-12 19:14:13 -05:00
Stephen Heumann
ca21e33ba7 Generate more efficient code for indirect function calls. 2022-10-11 21:14:40 -05:00
Stephen Heumann
4fe9c90942 Parse ... as a single punctuator token.
This accords with its definition in the C standards. For the time being, the old form of three separate tokens is still accepted too, because the ... token may not be scanned correctly in the obscure case where there is a line continuation between the second and third dots.

One observable effect of this is that there are no longer spaces between the dots in #pragma expand output.
2022-10-10 18:06:01 -05:00
Stephen Heumann
f263066f61 Give an error for declarations that do not declare anything.
This enforces the constraint from C17 section 6.7 p2 that declarations "shall declare at least a declarator (other than the parameters of a function or the members of a structure or union), a tag, or the members of an enumeration."

Somewhat relaxed rules are used for enums in the default loose type checking mode, similar to what GCC and Clang do.
2022-10-09 22:03:06 -05:00
Stephen Heumann
995ded07a5 Always treat "struct T;" as declaring the tag within the current scope.
A declaration of this exact form always declares the tag T within the current scope, and as such makes this "struct T" a distinct type from any other "struct T" type in an outer scope. (Similarly for unions.)

See C17 section 6.7.2.3 p7 (and corresponding places in all other C standards).

Here is an example of a program affected by this:

struct S {char a;};
int main(void) {
        struct S;
        struct S *sp;
        struct S {long b;} s;
        sp = &s;
        sp->b = sizeof(*sp);
        return s.b;
}
2022-10-04 18:45:11 -05:00
Stephen Heumann
3cea478e5e Clarify a comment. 2022-10-02 22:05:05 -05:00
Stephen Heumann
53baef0fb3 Make isPascal variable local to DoDeclaration.
This avoids the need to save/restore it elsewhere.
2022-10-02 22:04:46 -05:00
Stephen Heumann
1fa3ec8fdd Eliminate global variables for declaration specifiers.
They are now represented in local structures instead. This keeps the representation of declaration specifiers together and eliminates the need for awkward and error-prone code to save and restore the global variables.
2022-10-01 21:28:16 -05:00
Stephen Heumann
05ecf5eef3 Add option to use the declared type for float/double/comp params.
This differs from the usual ORCA/C behavior of treating all floating-point parameters as extended. With the option enabled, they will still be passed in the extended format, but will be converted to their declared type at the start of the function. This is needed for strict standards conformance, because you should be able to take the address of a parameter and get a usable pointer to its declared type. The difference in types can also affect the behavior of _Generic expressions.

The implementation of this is based on ORCA/Pascal, which already did the same thing (unconditionally) with real/double/comp parameters.
2022-09-18 21:16:46 -05:00
Stephen Heumann
4e76f62b0e Allow additional letters in identifiers.
The added characters are accented roman letters that were added to the Mac OS Roman character set at some time after it was first defined. Some IIGS fonts include them, although others do not.
2022-08-01 19:59:49 -05:00
Stephen Heumann
95ad02f0b9 Detect various errors in macro definitions.
These changes detect violations of several constraints in C17 section 6.10.3 and subsections.
2022-07-28 20:49:22 -05:00
Stephen Heumann
711549392c Update displayed version number to mark this as a development version. 2022-07-25 18:33:32 -05:00
Stephen Heumann
2f75f47140 Update ORCA/C version number to 2.2.0 B6. 2022-07-19 20:40:52 -05:00
Stephen Heumann
1177ddc172 Tweak release notes.
The "known issue" about not issuing required diagnostics is removed because ORCA/C has gotten significantly better about that, particularly if strict type checking is enabled. There are still probably some diagnostics that are missed, but it is no longer a big enough issue to be called out more prominently than other bugs.
2022-07-19 20:38:13 -05:00
Stephen Heumann
6e3fca8b82 Implement strict type checking for enum types.
If strict type checking is enabled, this will prohibit redefinition of enums, like:

enum E {a,b,c};
enum E {x,y,z};

It also prohibits use of an "enum E" type specifier if the enum has not been previously declared (with its constants).

These things were historically supported by ORCA/C, but they are prohibited by constraints in section 6.7.2.3 of C99 and later. (The C90 wording was different and less clear, but I think they were not intended to be valid there either.)
2022-07-19 20:35:44 -05:00
Stephen Heumann
d576f19ede Remove trailing whitespace in release notes.
(No substantive changes.)
2022-07-18 21:45:55 -05:00
Stephen Heumann
6d07043783 Do not treat uses of enum types from outer scopes as redeclarations.
This affects code like the following:

enum E {a,b,c};
int main(void) {
        enum E e;
        struct E {int x;}; /* or: enum E {x,y,z}; */
}

The line "enum E e;" should refer to the enum type declared in the outer scope, but not redeclare it in the inner scope. Therefore, a subsequent struct, union, or enum declaration using the same tag in the same scope is acceptable.
2022-07-18 21:34:29 -05:00
Stephen Heumann
fd54fd70d0 Remove some unnecessary/duplicate code.
This mainly comments out statements that zero out data that was already set to zero by a preceding Calloc call.
2022-07-18 21:19:44 -05:00
Stephen Heumann
60efb4d882 Generate better code for indexed jumps.
They now use a jmp (addr,X) instruction, rather than a more complicated code sequence using rts. This is an improvement that was suggested in an old Genie message from Todd Whitesel.
2022-07-18 21:18:26 -05:00
Stephen Heumann
c36bf9bf0a Ignore storage class when creating enum tag symbols.
This avoids strangeness where an enum tag declared within a typedef declaration would act like a typedef. For example, the following would compile without error:

typedef enum E {a,b,c} T;
E e;
2022-07-18 18:37:26 -05:00
Stephen Heumann
2cbcdc736c Allow the same identifier to be used as a typedef and an enum tag.
This should be allowed (because they are in separate name spaces), but was not.

This affected code like the following:

typedef int T;
enum T {a,b,c};
2022-07-18 18:33:54 -05:00
Stephen Heumann
bdf8ed4f29 Simplify some code. 2022-07-17 18:15:29 -05:00
Stephen Heumann
6bfd491f2a Update release notes. 2022-07-14 18:40:59 -05:00
Stephen Heumann
6934c8890d Detect several cases of inappropriate operand types being used with ++ or --. 2022-07-12 18:35:52 -05:00
Stephen Heumann
63d33b47bf Generate valid code for "dereferencing" pointers to void.
This covers code like the following, which is very dubious but does not seem to be clearly prohibited by the standards:

int main(void) {
        void *vp;
        *vp;
}

Previously, this would do an indirect load of a four-byte value at the location, but then treat it as void. This could lead to the four-byte value being left on the stack, eventually causing a crash. Now we just evaluate the pointer expression (in case it has side effects), but effectively cast it to void without dereferencing it.
2022-07-12 18:34:58 -05:00
Stephen Heumann
417fd1ad9c Generate better code for && and ||. 2022-07-11 21:16:18 -05:00
Stephen Heumann
312a3a09b9 Generate better code for long long >= comparisons. 2022-07-11 19:20:55 -05:00
Stephen Heumann
687a5eaa45 Generate better code for pc_not on boolean operands. 2022-07-11 18:54:39 -05:00
Stephen Heumann
b5b76b624c Use pei rather than load+push in a few places. 2022-07-11 18:42:14 -05:00
Stephen Heumann
607211d38e Rearrange some labels to facilitate branch-shortening optimization. 2022-07-11 18:39:00 -05:00
Stephen Heumann
23b870908e Recognize pc_not as a boolean operation for purposes of optimizations.
This generates better code for certain things, like the following assignment:

_Bool b = !x;
2022-07-11 18:36:10 -05:00
Stephen Heumann
753c9b9f20 Adjust the way FE_DFL_ENV is defined.
This avoids any possible issue with code possibly expecting __FE_DFL_ENV to be in the data bank when using the large memory model, although I don't think that happened in practice.
2022-07-11 18:30:37 -05:00
Stephen Heumann
c3567c81a4 Correct comments. 2022-07-11 18:23:36 -05:00
Stephen Heumann
9b31e7f72a Improve code generation for comparisons.
This converts comparisons like x > N (with constant N) to instead be evaluated as x >= N+1, since >= comparisons generate better code. This is possible as long as N is not the maximum value in the type, but in that case the comparison is always false. There are also a few other tweaks to the generated code in some cases.
2022-07-10 22:27:38 -05:00
Stephen Heumann
7b0dda5a5e Fix a flawed optimization.
The optimization could turn an unsigned comparison "x <= 0xFFFF" into "x < 0".

Here is an example affected by this:

int main(void) {
        unsigned i = 1;
        return (i <= 0xffff);
}
2022-07-10 22:25:55 -05:00
Stephen Heumann
76e4b1f038 Optimize away some tax/tay instructions used only to set flags. 2022-07-10 17:35:56 -05:00
Stephen Heumann
bf40e861aa Fix indentation. 2022-07-10 13:12:10 -05:00
Stephen Heumann
2dff68e6ae Eliminate an unnecessary instruction in quad-to-word conversion.
The TAY instruction would set the flags, but that is unnecessary because pc_cnv is a "NeedsCondition" operation (and some other conversions also do not reliably set the flags).

The code is also changed to preserve the Y register, possibly facilitating register optimizations.
2022-07-09 21:48:56 -05:00
Stephen Heumann
4470626ade Optimize division/remainder by various constants.
This generally covers powers of two and certain other values. (Details differ for signed/unsigned div/rem.)
2022-07-09 15:05:47 -05:00
Stephen Heumann
054719aab2 Fix bug in code generation for the product of two constants.
This was a problem introduced in commit 393b7304a0. It could cause a compiler error for unoptimized array indexing code, e.g.:

int a[100];
int main(void) {
        return a[5];
}
2022-07-09 15:01:25 -05:00
Stephen Heumann
00e7fe7125 Increase some size limits.
The new value of maxLocalLabel is aligned with the C99+ requirement to support "511 identifiers with block scope declared in one block".

The value of maxLabel is now the maximum it can be while keeping the size of the labelTab array under 32 KiB. (I'm not entirely sure the address calculations in the code generated by ORCA/Pascal would work correctly beyond that.)
2022-07-08 21:30:14 -05:00
Stephen Heumann
f0d827eade Generate more efficient code for certain subtractions.
This affects 16-bit subtractions where where only the left operand is "complex" (i.e. most things other than constants and simple loads). They were using an unnecessarily complicated code path suitable for the case where both operands are complex.
2022-07-07 18:38:41 -05:00
Stephen Heumann
7898c619c8 Fix several cases where a condition might not be evaluated correctly.
These could occur because the code for certain operations was assumed to set the z flag based on the result value, but did not actually do so. The affected operations were shifts, loads or stores of bit-fields, and ? : expressions.

Here is an example showing the problem with a shift:

#pragma optimize 1
int main(void) {
        int i = 1, j = 0;
        return (i >> j) ? 1 : 0;
}

Here is an example showing the problem with a bit-field load:

struct {
        signed int i : 16;
} s = {1};
int main(void) {
        return (s.i) ? 1 : 0;
}

Here is an example showing the problem with a bit-field store:

#pragma optimize 1
struct {
        signed int i : 16;
} s;
int main(void) {
        return (s.i = 1) ? 1 : 0;
}

Here is an example showing the problem with a ? : expression:

#pragma optimize 1
int main(void) {
        int a = 5;
        return (a ? (a<<a) : 0) ? 0 : 1;
}
2022-07-07 18:26:37 -05:00
Stephen Heumann
393b7304a0 Optimize 16-bit multiplication by various constants.
This optimizes most multiplications by a power of 2 or the sum of two powers of 2, converting them to equivalent operations using shifts which should be faster than the general-purpose multiplication routine.
2022-07-06 22:24:54 -05:00
Stephen Heumann
497e5c036b Use new 16-bit unsigned multiply routine that complies with C standards.
This changes unsigned 16-bit multiplies to use the new ~CUMul2 routine in ORCALib, rather than ~UMul2 in SysLib. They differ in that ~CUMul2 gives the low-order 16 bits of the true result in case of overflow. The C standards require this behavior for arithmetic on unsigned types.
2022-07-06 22:22:02 -05:00
Stephen Heumann
11a3195c49 Use properly result type for statically evaluated ternary operators.
Also, update the tests to include statically-evaluated cases.
2022-07-04 22:30:25 -05:00
Stephen Heumann
f5d5b88002 Correct result strings in a couple tests. 2022-07-04 22:29:15 -05:00
Stephen Heumann
f6fedea288 Update release notes and header to reflect recent stdio fixes. 2022-07-04 22:28:45 -05:00