Warp-SE/cpld/XC95144XL/WarpSE_html/tim/cpldta_glossary.htm

251 lines
13 KiB
HTML
Raw Permalink Normal View History

2024-09-29 07:29:49 +00:00
<!doctype HTML public "-//W3C//DTD HTML 4.0 Frameset//EN">
<html>
<!--(==============================================================)-->
<!--(Document created with RoboEditor. )============================-->
<!--(==============================================================)-->
<head>
<title>CPLD Timing Analysis Glossary</title>
<!--(Meta)==========================================================-->
<meta http-equiv=Content-Type content="text/html; charset=UTF-8">
<meta name=Author content=administrator>
<meta name=generator content="RoboHELP by eHelp Corporation - www.ehelp.com">
<meta name=generator-major-version content=0.1>
<meta name=generator-minor-version content=1>
<meta name=filetype content=kadov>
<meta name=filetype-version content=1>
<meta name=page-count content=1>
<meta name=layout-height content=2677>
<meta name=layout-width content=716>
<meta name=date content="04 8, 2003 10:49:54 AM">
<!--(Links)=========================================================-->
<link rel=StyleSheet href=xilhtml.css>
</head>
<!--(Body)==========================================================-->
<body>
<h1>Introduction</h1>
<p>This report is the result of a static timing analysis of your design
after it has been fit in the device that you selected. The timing values
given represent the worst-case values over the recommended operating conditions
for the part. </p>
<h1>Overview</h1>
<p>The timing report consists of a series of sections: </p>
<h2>Summary</h2>
<p>This table summarizes the external timing parameters for your device,
including <a href="#tPD"><!--kadov_tag{{<ignored>}}-->tPD<!--kadov_tag{{</ignored>}}--></a>,
<a href="#tCO"><!--kadov_tag{{<ignored>}}-->tCO<!--kadov_tag{{</ignored>}}--></a>,
<a href="#tSU"><!--kadov_tag{{<ignored>}}-->tSU<!--kadov_tag{{</ignored>}}--></a>,
<a href="#tCYC"><!--kadov_tag{{<ignored>}}-->tCYC<!--kadov_tag{{</ignored>}}--></a>,
and <a href="#fSYSTEM"><!--kadov_tag{{<ignored>}}-->fSYSTEM<!--kadov_tag{{</ignored>}}--></a>.
<!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->For a more
detailed description of the timing model for your device, please refer
to the application notes linked below.</p>
<h2>Timing Constraints</h2>
<p>This section reports on any timing constraints that you created for
your design. Timing constraints can be entered using the Constraints Editor
tool, or by editing an Implementation Constraints File directly. For more
information on creating timing constraints, see the Constraints Guide.
</p>
<p class=Note><span style="font-weight: bold;">Note</span> that if you
did not define any constraints for your design, then the timing analysis
software will automatically create a default set of constraints for you.
These include pad-to-pad, register-to-register, pad-to-register, and period
constraints. A constraint value of 0 <!--kadov_tag{{<ignored>}}-->ns<!--kadov_tag{{</ignored>}}-->
will be used for all of these automatically generated constraints. As
a result, all paths listed under each constraint will violate the constraint,
and will have a negative value for slack.</p>
<p class=Note><span style="font-weight: bold;">Note</span> also that to
limit the size of the report, each path endpoint involved in a timing
path will only be listed once, under a single constraint. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}--></p>
<p>For each timing path listed under a constraint, there is a hyperlink
that can be used to open a window listing the individual internal delay
elements traversed in the path. To understand these delay elements, consult
the <a href="#Definitions">Definitions</a> section below, or the following
application notes and white papers: </p>
<p><a href="http://www.xilinx.com/apps/epld.htm#CoolRunner2">XAPP375: Understanding
the <!--kadov_tag{{<ignored>}}-->CoolRunner-II<!--kadov_tag{{</ignored>}}-->
Timing Model</a> </p>
<p><a href="http://www.xilinx.com/publications/whitepapers/index.htm">WP122:
Using the <!--kadov_tag{{<ignored>}}-->CoolRunner<!--kadov_tag{{</ignored>}}-->
XPLA3 Timing Model</a> </p>
<p><a href="http://www.xilinx.com/apps/epld.htm#CoolRunner2">XAPP071: Using
the XC9500 Timing Model</a> </p>
<p><a href="http://www.xilinx.com/apps/epld.htm#CoolRunner2">XAPP111: Using
the XC9500XL Timing Model</a></p>
<p><a href="http://www.xilinx.com/apps/epld.htm#CoolRunner2"><!--kadov_tag{{<ignored>}}-->XAPP<!--kadov_tag{{</ignored>}}-->
362: Using the XC9500XV Timing Model</a></p>
<p>available in the literature section of <a href="http://www.xilinx.com"><!--kadov_tag{{<ignored>}}-->www.xilinx.com</a>.<!--kadov_tag{{</ignored>}}-->
</p>
<h2>Data Sheet Report</h2>
<p>This section of the report lists the external timing parameters for
your design. This includes; maximum external clock speed for each clock,
setup and hold times for each registered input, clock-to-output pad timing
for each registered output, clock to setup time for each register-to-register
timing path, and pad-to-pad time for each combinatorial path through your
design. </p>
<h2>Going Further</h2>
<p>To do more advanced timing analysis of your design, select the process
<span style="font-weight: bold;">Analyze Post-Fit Static Timing</span>
in <!--kadov_tag{{<ignored>}}-->iSE<!--kadov_tag{{</ignored>}}-->. This
will run <!--kadov_tag{{<ignored>}}-->Xilinx's<!--kadov_tag{{</ignored>}}-->
Timing Analyzer tool interactively. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->The
Timing Analyzer provides a powerful, flexible, and easy way to perform
static timing analysis on <!--kadov_tag{{<ignored>}}-->FPGA<!--kadov_tag{{</ignored>}}-->
and <!--kadov_tag{{<ignored>}}-->CPLD<!--kadov_tag{{</ignored>}}--> designs.
With Timing Analyzer, analysis can be performed immediately after mapping,
placing or routing an <!--kadov_tag{{<ignored>}}-->FPGA<!--kadov_tag{{</ignored>}}-->
design, and after fitting and routing a <!--kadov_tag{{<ignored>}}-->CPLD<!--kadov_tag{{</ignored>}}-->
design. </p>
<p>Timing Analyzer verifies that the delay along a given path or paths
meets specified timing requirements. It organizes and displays data that
allows you to analyze critical paths in a circuit, the cycle time of the
circuit, the delay along any specified <!--kadov_tag{{<ignored>}}-->path(s<!--kadov_tag{{</ignored>}}-->),
and the path with the greatest delay. It also provides a quick analysis
of the effect different speed grades have on the same design. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}--></p>
<p>Timing Analyzer performs setup and hold checks (skew analysis). It works
with synchronous systems composed of synchronous elements and combinatorial
logic. In synchronous design, Timing Analyzer takes into account all path
delays, including clock-to-out and setup requirements, while calculating
the worst-case timing of the design. </p>
<p>Timing Analyzer creates timing analysis reports based on existing timing
constraints or user specified paths within the program. Timing reports
have a hierarchical browser to quickly jump to different sections of the
reports. Timing paths in reports can be cross probed to synthesis tools
(Exemplar and <!--kadov_tag{{<ignored>}}-->Synplicity<!--kadov_tag{{</ignored>}}-->)
and <!--kadov_tag{{<ignored>}}-->Floorplanner<!--kadov_tag{{</ignored>}}-->.
</p>
<p>There are several ways to issue commands in Timing Analyzer. Timing
Analyzer can be controlled through <!--kadov_tag{{<ignored>}}-->GUI<!--kadov_tag{{</ignored>}}-->
features (menu commands) or its comprehensive macro command language facility.
You can select from menus, click toolbar buttons, type keyboard commands
in the console window, and run macros. </p>
<h1><a name=Definitions></a>Definitions</h1>
<h2><a name=tPD></a>Pad to Pad (<!--kadov_tag{{<ignored>}}-->tPD<!--kadov_tag{{</ignored>}}-->)
</h2>
<p>Reports pad to pad paths that start at input pads and end at output
pads. The maximum external pad to pad delay. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->Combinatorial
pad-to-pad paths begin at input pads, propagate through one or more levels
of combinatorial logic and end at output pads. Combinatorial paths also
trace through the enable inputs of 3-state controlled pads. Combinatorial
paths are not traced through clock, and asynchronous set and reset inputs
of registers. These paths are also broken at bidirectional pins</p>
<h2><a name=tCO></a>Clock Pad to Output Pad (<!--kadov_tag{{<ignored>}}-->tCO<!--kadov_tag{{</ignored>}}-->)
</h2>
<p>The maximum external clock pad to output pad delay. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->Reports
paths that start at input <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->pads
trace through clock inputs of <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->registers
and end at output pads. Paths are not traced through PRE/<!--kadov_tag{{<ignored>}}-->CLR<!--kadov_tag{{</ignored>}}-->
<!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->inputs
of registers. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->You
can directly specify <!--kadov_tag{{<ignored>}}-->tCO<!--kadov_tag{{</ignored>}}-->
for all registered output paths in your design using the Pad-to-Pad <!--kadov_tag{{<ignored>}}-->timespec<!--kadov_tag{{</ignored>}}-->.
Clock-Pad-to-Pad paths for global clocks begin at global clock pads, propagate
through global clock buffers, and propagate through the flip-flop <!--kadov_tag{{<ignored>}}-->Q<!--kadov_tag{{</ignored>}}-->
output and any number of levels of combinatorial logic and end at the
output pad. Clock-Pad-to-Pad paths for product term clock paths begin
at input pads, propagate through any number of logic levels feeding into
a clock product term, propagate through the flip-flop <!--kadov_tag{{<ignored>}}-->Q<!--kadov_tag{{</ignored>}}-->
output and any number of levels of combinatorial logic and end at the
output pad. Clock-Pad-to-Pad paths also trace through the enable inputs
of 3-state controlled pads.</p>
<h2><a name=tSU></a>Setup to Clock at Pad (<!--kadov_tag{{<ignored>}}-->tSU<!--kadov_tag{{</ignored>}}-->
or <!--kadov_tag{{<ignored>}}-->tSUF<!--kadov_tag{{</ignored>}}-->) </h2>
<p>Reports external setup time of data <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->to
clock at pad. Data path starts at an input pad and ends at register <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->(Fast
Input Register for <!--kadov_tag{{<ignored>}}-->tSUF<!--kadov_tag{{</ignored>}}-->)
D/<!--kadov_tag{{<ignored>}}-->T<!--kadov_tag{{</ignored>}}--> <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->input.
Clock path starts at input pad and ends at the register clock input. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->Paths
are not traced through registers. Pin-to-pin setup requirement is not
reported or guaranteed for product-term clocks derived from <!--kadov_tag{{<ignored>}}-->macrocell<!--kadov_tag{{</ignored>}}-->
feedback signals. </p>
<p>The minimum required setup time for flip-flops. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->You
can specify the <!--kadov_tag{{<ignored>}}-->tSU<!--kadov_tag{{</ignored>}}-->
(setup-to-clock) for all inputs in your design relative to a global clock
or product term clock. Each <!--kadov_tag{{<ignored>}}-->tSU<!--kadov_tag{{</ignored>}}-->
OFFSET timespec involves an input path and a clock path. Input paths start
at input pads, propagate through input buffers and any number of combinatorial
logic levels before ending at a flip-flop D/T input, including the receiving
flip-flop's tSU. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->Input
paths are not traced through flip-flop clock pins, asynchronous set/reset
inputs or bidirectional I/O pins. Global clock paths start at global clock
pads, propagate through global clock buffers and end at the flip-flop
clock pin. Product term clock paths start at input pads, propagate through
a single level of logic implemented in a clock product term and end at
the flip-flop clock pin.</p>
<h2><a name=tCYC></a>Clock to Setup (tCYC) </h2>
<p>Register to register cycle time. Includes source register tCO and destination
register tSU. </p>
<p class=Note><span style="font-weight: bold;">Note</span> that when the
computed Maximum Clock Speed is limited by tCYC, it is computed assuming
that all registers are rising-edge sensitive. </p>
<h2><a name=fSYSTEM></a>fSYSTEM </h2>
<p>Maximum clock operating frequency. <!--kadov_tag{{<spaces>}}-->&nbsp;<!--kadov_tag{{</spaces>}}-->You
can specify the fSYSTEM (clock frequency or period) for all registered
paths in your design using a Register-to-Register timespec. Register-to-Register
paths begin at flip-flop clock inputs, propagate through the flip-flop
Q output and any number of levels of combinatorial logic and end at the
receiving flip-flop D/T input, including the receiving flip-flop's tSU.
When these flip-flops are clocked by the same clock, the delay on this
path is equivalent to the cycle time of the clock. Registered paths do
not propagate through clock, and asynchronous set and reset inputs of
registers as shown below. These paths are also broken at bidirectional
pins.</p>
<p>&nbsp;</p>
</body>
</html>