SHA256-for-Macintosh-Classic/sha256.c

292 lines
7.9 KiB
C

/*
* sha256.c - Implementation of the Secure Hash Algorithm-256 (SHA-256).
*
* Implemented from the description on the NIST Web site:
* http://csrc.nist.gov/cryptval/shs.html
*
* Copyright (C) 2002 Southern Storm Software, Pty Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "sha256.h"
#include <errno.h>
#include <stdio.h>
#include <string.h>
/*
* Some helper macros for processing 32-bit values, while
* being careful about 32-bit vs 64-bit system differences.
*/
#if SIZEOF_LONG > 4
#define TRUNCLONG(x) ((x) & IL_MAX_UINT32)
#define ROTATE(x,n) (TRUNCLONG(((x) >> (n))) | ((x) << (32 - (n))))
#define SHIFT(x,n) (TRUNCLONG(((x) >> (n))))
#else
#define TRUNCLONG(x) (x)
#define ROTATE(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
#define SHIFT(x,n) ((x) >> (n))
#endif
/*
* Helper macros used by the SHA-256 computation.
*/
#define CH(x,y,z) (((x) & (y)) ^ (TRUNCLONG(~(x)) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define SUM0(x) (ROTATE((x), 2) ^ ROTATE((x), 13) ^ ROTATE((x), 22))
#define SUM1(x) (ROTATE((x), 6) ^ ROTATE((x), 11) ^ ROTATE((x), 25))
#define RHO0(x) (ROTATE((x), 7) ^ ROTATE((x), 18) ^ SHIFT((x), 3))
#define RHO1(x) (ROTATE((x), 17) ^ ROTATE((x), 19) ^ SHIFT((x), 10))
/*
* Constants used in each of the SHA-256 rounds.
*/
static unsigned int const K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
void SHA256Init(SHA256Context *sha)
{
sha->inputLen = 0;
sha->A = 0x6a09e667;
sha->B = 0xbb67ae85;
sha->C = 0x3c6ef372;
sha->D = 0xa54ff53a;
sha->E = 0x510e527f;
sha->F = 0x9b05688c;
sha->G = 0x1f83d9ab;
sha->H = 0x5be0cd19;
sha->totalLen[0] = 0;
sha->totalLen[1] = 0;
}
/*
* Process a single block of input using the hash algorithm.
*/
static void ProcessBlock(SHA256Context *sha, const unsigned char *block)
{
unsigned int W[64];
unsigned int a, b, c, d, e, f, g, h;
unsigned int temp, temp2;
int t;
/* Unpack the block into 64 32-bit words */
for(t = 0; t < 16; ++t)
{
W[t] = (((unsigned int)(block[t * 4 + 0])) << 24) |
(((unsigned int)(block[t * 4 + 1])) << 16) |
(((unsigned int)(block[t * 4 + 2])) << 8) |
((unsigned int)(block[t * 4 + 3]));
}
for(t = 16; t < 64; ++t)
{
W[t] = TRUNCLONG(RHO1(W[t - 2]) + W[t - 7] +
RHO0(W[t - 15]) + W[t - 16]);
}
/* Load the SHA-256 state into local variables */
a = sha->A;
b = sha->B;
c = sha->C;
d = sha->D;
e = sha->E;
f = sha->F;
g = sha->G;
h = sha->H;
/* Perform 64 rounds of hash computations */
for(t = 0; t < 64; ++t)
{
temp = TRUNCLONG(h + SUM1(e) + CH(e, f, g) + K[t] + W[t]);
temp2 = TRUNCLONG(SUM0(a) + MAJ(a, b, c));
h = g;
g = f;
f = e;
e = TRUNCLONG(d + temp);
d = c;
c = b;
b = a;
a = TRUNCLONG(temp + temp2);
}
/* Combine the previous SHA-256 state with the new state */
sha->A = TRUNCLONG(sha->A + a);
sha->B = TRUNCLONG(sha->B + b);
sha->C = TRUNCLONG(sha->C + c);
sha->D = TRUNCLONG(sha->D + d);
sha->E = TRUNCLONG(sha->E + e);
sha->F = TRUNCLONG(sha->F + f);
sha->G = TRUNCLONG(sha->G + g);
sha->H = TRUNCLONG(sha->H + h);
/* Clear the temporary state */
//ILMemZero(W, sizeof(unsigned int) * 64);
memset(W, 0, sizeof(unsigned int) * 64);
a = b = c = d = e = f = g = h = temp = temp2 = 0;
}
void SHA256Data(SHA256Context *sha, const void *buffer, unsigned long len)
{
unsigned long templen;
/* Add to the total length of the input stream */
//sha->totalLen += (unsigned long long)len;
sha->totalLen[1] += len;
if ((sha->totalLen[1] & 0xFFFFFFFF) < len)
sha->totalLen[0]++;
/* Copy the blocks into the input buffer and process them */
while(len > 0)
{
if(!(sha->inputLen) && len >= 64)
{
/* Short cut: no point copying the data twice */
ProcessBlock(sha, (const unsigned char *)buffer);
buffer = (const void *)(((const unsigned char *)buffer) + 64);
len -= 64;
}
else
{
templen = len;
if(templen > (64 - sha->inputLen))
{
templen = 64 - sha->inputLen;
}
memcpy(sha->input + sha->inputLen, buffer, templen);
if((sha->inputLen += templen) >= 64)
{
ProcessBlock(sha, sha->input);
sha->inputLen = 0;
}
buffer = (const void *)(((const unsigned char *)buffer) + templen);
len -= templen;
}
}
}
/*
* Write a 32-bit big-endian long value to a buffer.
*/
static void WriteLong(unsigned char *buf, unsigned int value)
{
buf[0] = (unsigned char)(value >> 24);
buf[1] = (unsigned char)(value >> 16);
buf[2] = (unsigned char)(value >> 8);
buf[3] = (unsigned char)value;
}
void SHA256Finalize(SHA256Context *sha,
unsigned char hash[SHA256_HASH_SIZE])
{
//unsigned long long totalBits;
unsigned long totalBits[2];
/* Compute the final hash if necessary */
if(hash)
{
/* Pad the input data to a multiple of 512 bits */
if(sha->inputLen >= 56)
{
/* Need two blocks worth of padding */
sha->input[(sha->inputLen)++] = (unsigned char)0x80;
while(sha->inputLen < 64)
{
sha->input[(sha->inputLen)++] = (unsigned char)0x00;
}
ProcessBlock(sha, sha->input);
sha->inputLen = 0;
}
else
{
/* Need one block worth of padding */
sha->input[(sha->inputLen)++] = (unsigned char)0x80;
}
while(sha->inputLen < 56)
{
sha->input[(sha->inputLen)++] = (unsigned char)0x00;
}
//totalBits = (sha->totalLen << 3);
//WriteLong(sha->input + 56, (unsigned int)(totalBits >> 32));
//WriteLong(sha->input + 60, (unsigned int)totalBits);
totalBits[0] = (sha->totalLen[0]<<3) | ( (sha->totalLen[1]>>29)&7 );
totalBits[1] = sha->totalLen[1]<<3;
WriteLong(sha->input+56, totalBits[0]);
WriteLong(sha->input+60, totalBits[1]);
ProcessBlock(sha, sha->input);
/* Write the final hash value to the supplied buffer */
WriteLong(hash, sha->A);
WriteLong(hash + 4, sha->B);
WriteLong(hash + 8, sha->C);
WriteLong(hash + 12, sha->D);
WriteLong(hash + 16, sha->E);
WriteLong(hash + 20, sha->F);
WriteLong(hash + 24, sha->G);
WriteLong(hash + 28, sha->H);
}
/* Fill the entire context structure with zeros to blank it */
memset(sha, 0, sizeof(SHA256Context));
}
int SHA256File(const char *path, unsigned char hash[SHA256_HASH_SIZE])
{
FILE *f;
unsigned char buffer[16384];
size_t readlen;
SHA256Context ctx;
f = fopen(path, "rb");
if (f == NULL)
return -1;
SHA256Init(&ctx);
for (;;) {
readlen = fread(buffer, 1, sizeof(buffer), f);
if (readlen == 0)
break;
SHA256Data(&ctx, buffer, readlen);
}
if (ferror(f) != 0) {
int e = errno;
fclose(f);
errno = e;
return -1;
}
if (fclose(f) != 0)
return -1;
SHA256Finalize(&ctx, hash);
return 0;
}