mirror of
https://github.com/joeyadams/SHA256-for-Macintosh-Classic.git
synced 2025-03-15 20:29:25 +00:00
292 lines
7.9 KiB
C
292 lines
7.9 KiB
C
/*
|
|
* sha256.c - Implementation of the Secure Hash Algorithm-256 (SHA-256).
|
|
*
|
|
* Implemented from the description on the NIST Web site:
|
|
* http://csrc.nist.gov/cryptval/shs.html
|
|
*
|
|
* Copyright (C) 2002 Southern Storm Software, Pty Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
|
|
#include "sha256.h"
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
/*
|
|
* Some helper macros for processing 32-bit values, while
|
|
* being careful about 32-bit vs 64-bit system differences.
|
|
*/
|
|
#if SIZEOF_LONG > 4
|
|
#define TRUNCLONG(x) ((x) & IL_MAX_UINT32)
|
|
#define ROTATE(x,n) (TRUNCLONG(((x) >> (n))) | ((x) << (32 - (n))))
|
|
#define SHIFT(x,n) (TRUNCLONG(((x) >> (n))))
|
|
#else
|
|
#define TRUNCLONG(x) (x)
|
|
#define ROTATE(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
|
|
#define SHIFT(x,n) ((x) >> (n))
|
|
#endif
|
|
|
|
/*
|
|
* Helper macros used by the SHA-256 computation.
|
|
*/
|
|
#define CH(x,y,z) (((x) & (y)) ^ (TRUNCLONG(~(x)) & (z)))
|
|
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
#define SUM0(x) (ROTATE((x), 2) ^ ROTATE((x), 13) ^ ROTATE((x), 22))
|
|
#define SUM1(x) (ROTATE((x), 6) ^ ROTATE((x), 11) ^ ROTATE((x), 25))
|
|
#define RHO0(x) (ROTATE((x), 7) ^ ROTATE((x), 18) ^ SHIFT((x), 3))
|
|
#define RHO1(x) (ROTATE((x), 17) ^ ROTATE((x), 19) ^ SHIFT((x), 10))
|
|
|
|
/*
|
|
* Constants used in each of the SHA-256 rounds.
|
|
*/
|
|
static unsigned int const K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
void SHA256Init(SHA256Context *sha)
|
|
{
|
|
sha->inputLen = 0;
|
|
sha->A = 0x6a09e667;
|
|
sha->B = 0xbb67ae85;
|
|
sha->C = 0x3c6ef372;
|
|
sha->D = 0xa54ff53a;
|
|
sha->E = 0x510e527f;
|
|
sha->F = 0x9b05688c;
|
|
sha->G = 0x1f83d9ab;
|
|
sha->H = 0x5be0cd19;
|
|
sha->totalLen[0] = 0;
|
|
sha->totalLen[1] = 0;
|
|
}
|
|
|
|
/*
|
|
* Process a single block of input using the hash algorithm.
|
|
*/
|
|
static void ProcessBlock(SHA256Context *sha, const unsigned char *block)
|
|
{
|
|
unsigned int W[64];
|
|
unsigned int a, b, c, d, e, f, g, h;
|
|
unsigned int temp, temp2;
|
|
int t;
|
|
|
|
/* Unpack the block into 64 32-bit words */
|
|
for(t = 0; t < 16; ++t)
|
|
{
|
|
W[t] = (((unsigned int)(block[t * 4 + 0])) << 24) |
|
|
(((unsigned int)(block[t * 4 + 1])) << 16) |
|
|
(((unsigned int)(block[t * 4 + 2])) << 8) |
|
|
((unsigned int)(block[t * 4 + 3]));
|
|
}
|
|
for(t = 16; t < 64; ++t)
|
|
{
|
|
W[t] = TRUNCLONG(RHO1(W[t - 2]) + W[t - 7] +
|
|
RHO0(W[t - 15]) + W[t - 16]);
|
|
}
|
|
|
|
/* Load the SHA-256 state into local variables */
|
|
a = sha->A;
|
|
b = sha->B;
|
|
c = sha->C;
|
|
d = sha->D;
|
|
e = sha->E;
|
|
f = sha->F;
|
|
g = sha->G;
|
|
h = sha->H;
|
|
|
|
/* Perform 64 rounds of hash computations */
|
|
for(t = 0; t < 64; ++t)
|
|
{
|
|
temp = TRUNCLONG(h + SUM1(e) + CH(e, f, g) + K[t] + W[t]);
|
|
temp2 = TRUNCLONG(SUM0(a) + MAJ(a, b, c));
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = TRUNCLONG(d + temp);
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = TRUNCLONG(temp + temp2);
|
|
}
|
|
|
|
/* Combine the previous SHA-256 state with the new state */
|
|
sha->A = TRUNCLONG(sha->A + a);
|
|
sha->B = TRUNCLONG(sha->B + b);
|
|
sha->C = TRUNCLONG(sha->C + c);
|
|
sha->D = TRUNCLONG(sha->D + d);
|
|
sha->E = TRUNCLONG(sha->E + e);
|
|
sha->F = TRUNCLONG(sha->F + f);
|
|
sha->G = TRUNCLONG(sha->G + g);
|
|
sha->H = TRUNCLONG(sha->H + h);
|
|
|
|
/* Clear the temporary state */
|
|
//ILMemZero(W, sizeof(unsigned int) * 64);
|
|
memset(W, 0, sizeof(unsigned int) * 64);
|
|
a = b = c = d = e = f = g = h = temp = temp2 = 0;
|
|
}
|
|
|
|
void SHA256Data(SHA256Context *sha, const void *buffer, unsigned long len)
|
|
{
|
|
unsigned long templen;
|
|
|
|
/* Add to the total length of the input stream */
|
|
//sha->totalLen += (unsigned long long)len;
|
|
sha->totalLen[1] += len;
|
|
if ((sha->totalLen[1] & 0xFFFFFFFF) < len)
|
|
sha->totalLen[0]++;
|
|
|
|
/* Copy the blocks into the input buffer and process them */
|
|
while(len > 0)
|
|
{
|
|
if(!(sha->inputLen) && len >= 64)
|
|
{
|
|
/* Short cut: no point copying the data twice */
|
|
ProcessBlock(sha, (const unsigned char *)buffer);
|
|
buffer = (const void *)(((const unsigned char *)buffer) + 64);
|
|
len -= 64;
|
|
}
|
|
else
|
|
{
|
|
templen = len;
|
|
if(templen > (64 - sha->inputLen))
|
|
{
|
|
templen = 64 - sha->inputLen;
|
|
}
|
|
memcpy(sha->input + sha->inputLen, buffer, templen);
|
|
if((sha->inputLen += templen) >= 64)
|
|
{
|
|
ProcessBlock(sha, sha->input);
|
|
sha->inputLen = 0;
|
|
}
|
|
buffer = (const void *)(((const unsigned char *)buffer) + templen);
|
|
len -= templen;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write a 32-bit big-endian long value to a buffer.
|
|
*/
|
|
static void WriteLong(unsigned char *buf, unsigned int value)
|
|
{
|
|
buf[0] = (unsigned char)(value >> 24);
|
|
buf[1] = (unsigned char)(value >> 16);
|
|
buf[2] = (unsigned char)(value >> 8);
|
|
buf[3] = (unsigned char)value;
|
|
}
|
|
|
|
void SHA256Finalize(SHA256Context *sha,
|
|
unsigned char hash[SHA256_HASH_SIZE])
|
|
{
|
|
//unsigned long long totalBits;
|
|
unsigned long totalBits[2];
|
|
|
|
/* Compute the final hash if necessary */
|
|
if(hash)
|
|
{
|
|
/* Pad the input data to a multiple of 512 bits */
|
|
if(sha->inputLen >= 56)
|
|
{
|
|
/* Need two blocks worth of padding */
|
|
sha->input[(sha->inputLen)++] = (unsigned char)0x80;
|
|
while(sha->inputLen < 64)
|
|
{
|
|
sha->input[(sha->inputLen)++] = (unsigned char)0x00;
|
|
}
|
|
ProcessBlock(sha, sha->input);
|
|
sha->inputLen = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Need one block worth of padding */
|
|
sha->input[(sha->inputLen)++] = (unsigned char)0x80;
|
|
}
|
|
while(sha->inputLen < 56)
|
|
{
|
|
sha->input[(sha->inputLen)++] = (unsigned char)0x00;
|
|
}
|
|
//totalBits = (sha->totalLen << 3);
|
|
//WriteLong(sha->input + 56, (unsigned int)(totalBits >> 32));
|
|
//WriteLong(sha->input + 60, (unsigned int)totalBits);
|
|
totalBits[0] = (sha->totalLen[0]<<3) | ( (sha->totalLen[1]>>29)&7 );
|
|
totalBits[1] = sha->totalLen[1]<<3;
|
|
WriteLong(sha->input+56, totalBits[0]);
|
|
WriteLong(sha->input+60, totalBits[1]);
|
|
ProcessBlock(sha, sha->input);
|
|
|
|
/* Write the final hash value to the supplied buffer */
|
|
WriteLong(hash, sha->A);
|
|
WriteLong(hash + 4, sha->B);
|
|
WriteLong(hash + 8, sha->C);
|
|
WriteLong(hash + 12, sha->D);
|
|
WriteLong(hash + 16, sha->E);
|
|
WriteLong(hash + 20, sha->F);
|
|
WriteLong(hash + 24, sha->G);
|
|
WriteLong(hash + 28, sha->H);
|
|
}
|
|
|
|
/* Fill the entire context structure with zeros to blank it */
|
|
memset(sha, 0, sizeof(SHA256Context));
|
|
}
|
|
|
|
int SHA256File(const char *path, unsigned char hash[SHA256_HASH_SIZE])
|
|
{
|
|
FILE *f;
|
|
unsigned char buffer[16384];
|
|
size_t readlen;
|
|
SHA256Context ctx;
|
|
|
|
f = fopen(path, "rb");
|
|
if (f == NULL)
|
|
return -1;
|
|
|
|
SHA256Init(&ctx);
|
|
|
|
for (;;) {
|
|
readlen = fread(buffer, 1, sizeof(buffer), f);
|
|
if (readlen == 0)
|
|
break;
|
|
SHA256Data(&ctx, buffer, readlen);
|
|
}
|
|
|
|
if (ferror(f) != 0) {
|
|
int e = errno;
|
|
fclose(f);
|
|
errno = e;
|
|
return -1;
|
|
}
|
|
|
|
if (fclose(f) != 0)
|
|
return -1;
|
|
|
|
SHA256Finalize(&ctx, hash);
|
|
return 0;
|
|
} |