mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-28 05:51:04 +00:00
475 lines
13 KiB
Go
475 lines
13 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package jpeg implements a JPEG image decoder and encoder.
|
|
//
|
|
// JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
|
|
package jpeg
|
|
|
|
import (
|
|
"bufio"
|
|
"image"
|
|
"image/color"
|
|
"io"
|
|
)
|
|
|
|
// TODO(nigeltao): fix up the doc comment style so that sentences start with
|
|
// the name of the type or function that they annotate.
|
|
|
|
// A FormatError reports that the input is not a valid JPEG.
|
|
type FormatError string
|
|
|
|
func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
|
|
|
|
// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
|
|
type UnsupportedError string
|
|
|
|
func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
|
|
|
|
// Component specification, specified in section B.2.2.
|
|
type component struct {
|
|
h int // Horizontal sampling factor.
|
|
v int // Vertical sampling factor.
|
|
c uint8 // Component identifier.
|
|
tq uint8 // Quantization table destination selector.
|
|
}
|
|
|
|
type block [blockSize]int
|
|
|
|
const (
|
|
blockSize = 64 // A DCT block is 8x8.
|
|
|
|
dcTable = 0
|
|
acTable = 1
|
|
maxTc = 1
|
|
maxTh = 3
|
|
maxTq = 3
|
|
|
|
// A grayscale JPEG image has only a Y component.
|
|
nGrayComponent = 1
|
|
// A color JPEG image has Y, Cb and Cr components.
|
|
nColorComponent = 3
|
|
|
|
// We only support 4:4:4, 4:2:2 and 4:2:0 downsampling, and therefore the
|
|
// number of luma samples per chroma sample is at most 2 in the horizontal
|
|
// and 2 in the vertical direction.
|
|
maxH = 2
|
|
maxV = 2
|
|
)
|
|
|
|
const (
|
|
soiMarker = 0xd8 // Start Of Image.
|
|
eoiMarker = 0xd9 // End Of Image.
|
|
sof0Marker = 0xc0 // Start Of Frame (Baseline).
|
|
sof2Marker = 0xc2 // Start Of Frame (Progressive).
|
|
dhtMarker = 0xc4 // Define Huffman Table.
|
|
dqtMarker = 0xdb // Define Quantization Table.
|
|
sosMarker = 0xda // Start Of Scan.
|
|
driMarker = 0xdd // Define Restart Interval.
|
|
rst0Marker = 0xd0 // ReSTart (0).
|
|
rst7Marker = 0xd7 // ReSTart (7).
|
|
app0Marker = 0xe0 // APPlication specific (0).
|
|
app15Marker = 0xef // APPlication specific (15).
|
|
comMarker = 0xfe // COMment.
|
|
)
|
|
|
|
// Maps from the zig-zag ordering to the natural ordering.
|
|
var unzig = [blockSize]int{
|
|
0, 1, 8, 16, 9, 2, 3, 10,
|
|
17, 24, 32, 25, 18, 11, 4, 5,
|
|
12, 19, 26, 33, 40, 48, 41, 34,
|
|
27, 20, 13, 6, 7, 14, 21, 28,
|
|
35, 42, 49, 56, 57, 50, 43, 36,
|
|
29, 22, 15, 23, 30, 37, 44, 51,
|
|
58, 59, 52, 45, 38, 31, 39, 46,
|
|
53, 60, 61, 54, 47, 55, 62, 63,
|
|
}
|
|
|
|
// If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering.
|
|
type Reader interface {
|
|
io.Reader
|
|
ReadByte() (c byte, err error)
|
|
}
|
|
|
|
type decoder struct {
|
|
r Reader
|
|
width, height int
|
|
img1 *image.Gray
|
|
img3 *image.YCbCr
|
|
ri int // Restart Interval.
|
|
nComp int
|
|
comp [nColorComponent]component
|
|
huff [maxTc + 1][maxTh + 1]huffman
|
|
quant [maxTq + 1]block
|
|
b bits
|
|
tmp [1024]byte
|
|
}
|
|
|
|
// Reads and ignores the next n bytes.
|
|
func (d *decoder) ignore(n int) error {
|
|
for n > 0 {
|
|
m := len(d.tmp)
|
|
if m > n {
|
|
m = n
|
|
}
|
|
_, err := io.ReadFull(d.r, d.tmp[0:m])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
n -= m
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Specified in section B.2.2.
|
|
func (d *decoder) processSOF(n int) error {
|
|
switch n {
|
|
case 6 + 3*nGrayComponent:
|
|
d.nComp = nGrayComponent
|
|
case 6 + 3*nColorComponent:
|
|
d.nComp = nColorComponent
|
|
default:
|
|
return UnsupportedError("SOF has wrong length")
|
|
}
|
|
_, err := io.ReadFull(d.r, d.tmp[:n])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
// We only support 8-bit precision.
|
|
if d.tmp[0] != 8 {
|
|
return UnsupportedError("precision")
|
|
}
|
|
d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
|
|
d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
|
|
if int(d.tmp[5]) != d.nComp {
|
|
return UnsupportedError("SOF has wrong number of image components")
|
|
}
|
|
for i := 0; i < d.nComp; i++ {
|
|
hv := d.tmp[7+3*i]
|
|
d.comp[i].h = int(hv >> 4)
|
|
d.comp[i].v = int(hv & 0x0f)
|
|
d.comp[i].c = d.tmp[6+3*i]
|
|
d.comp[i].tq = d.tmp[8+3*i]
|
|
if d.nComp == nGrayComponent {
|
|
continue
|
|
}
|
|
// For color images, we only support 4:4:4, 4:2:2 or 4:2:0 chroma
|
|
// downsampling ratios. This implies that the (h, v) values for the Y
|
|
// component are either (1, 1), (2, 1) or (2, 2), and the (h, v)
|
|
// values for the Cr and Cb components must be (1, 1).
|
|
if i == 0 {
|
|
if hv != 0x11 && hv != 0x21 && hv != 0x22 {
|
|
return UnsupportedError("luma downsample ratio")
|
|
}
|
|
} else if hv != 0x11 {
|
|
return UnsupportedError("chroma downsample ratio")
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Specified in section B.2.4.1.
|
|
func (d *decoder) processDQT(n int) error {
|
|
const qtLength = 1 + blockSize
|
|
for ; n >= qtLength; n -= qtLength {
|
|
_, err := io.ReadFull(d.r, d.tmp[0:qtLength])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
pq := d.tmp[0] >> 4
|
|
if pq != 0 {
|
|
return UnsupportedError("bad Pq value")
|
|
}
|
|
tq := d.tmp[0] & 0x0f
|
|
if tq > maxTq {
|
|
return FormatError("bad Tq value")
|
|
}
|
|
for i := range d.quant[tq] {
|
|
d.quant[tq][i] = int(d.tmp[i+1])
|
|
}
|
|
}
|
|
if n != 0 {
|
|
return FormatError("DQT has wrong length")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// makeImg allocates and initializes the destination image.
|
|
func (d *decoder) makeImg(h0, v0, mxx, myy int) {
|
|
if d.nComp == nGrayComponent {
|
|
m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy))
|
|
d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
|
|
return
|
|
}
|
|
var subsampleRatio image.YCbCrSubsampleRatio
|
|
switch h0 * v0 {
|
|
case 1:
|
|
subsampleRatio = image.YCbCrSubsampleRatio444
|
|
case 2:
|
|
subsampleRatio = image.YCbCrSubsampleRatio422
|
|
case 4:
|
|
subsampleRatio = image.YCbCrSubsampleRatio420
|
|
default:
|
|
panic("unreachable")
|
|
}
|
|
m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio)
|
|
d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr)
|
|
}
|
|
|
|
// Specified in section B.2.3.
|
|
func (d *decoder) processSOS(n int) error {
|
|
if d.nComp == 0 {
|
|
return FormatError("missing SOF marker")
|
|
}
|
|
if n != 4+2*d.nComp {
|
|
return UnsupportedError("SOS has wrong length")
|
|
}
|
|
_, err := io.ReadFull(d.r, d.tmp[0:4+2*d.nComp])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if int(d.tmp[0]) != d.nComp {
|
|
return UnsupportedError("SOS has wrong number of image components")
|
|
}
|
|
var scan [nColorComponent]struct {
|
|
td uint8 // DC table selector.
|
|
ta uint8 // AC table selector.
|
|
}
|
|
for i := 0; i < d.nComp; i++ {
|
|
cs := d.tmp[1+2*i] // Component selector.
|
|
if cs != d.comp[i].c {
|
|
return UnsupportedError("scan components out of order")
|
|
}
|
|
scan[i].td = d.tmp[2+2*i] >> 4
|
|
scan[i].ta = d.tmp[2+2*i] & 0x0f
|
|
}
|
|
// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
|
|
h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
|
|
mxx := (d.width + 8*h0 - 1) / (8 * h0)
|
|
myy := (d.height + 8*v0 - 1) / (8 * v0)
|
|
if d.img1 == nil && d.img3 == nil {
|
|
d.makeImg(h0, v0, mxx, myy)
|
|
}
|
|
|
|
mcu, expectedRST := 0, uint8(rst0Marker)
|
|
var (
|
|
b block
|
|
dc [nColorComponent]int
|
|
)
|
|
for my := 0; my < myy; my++ {
|
|
for mx := 0; mx < mxx; mx++ {
|
|
for i := 0; i < d.nComp; i++ {
|
|
qt := &d.quant[d.comp[i].tq]
|
|
for j := 0; j < d.comp[i].h*d.comp[i].v; j++ {
|
|
// TODO(nigeltao): make this a "var b block" once the compiler's escape
|
|
// analysis is good enough to allocate it on the stack, not the heap.
|
|
b = block{}
|
|
|
|
// Decode the DC coefficient, as specified in section F.2.2.1.
|
|
value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if value > 16 {
|
|
return UnsupportedError("excessive DC component")
|
|
}
|
|
dcDelta, err := d.receiveExtend(value)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
dc[i] += dcDelta
|
|
b[0] = dc[i] * qt[0]
|
|
|
|
// Decode the AC coefficients, as specified in section F.2.2.2.
|
|
for k := 1; k < blockSize; k++ {
|
|
value, err := d.decodeHuffman(&d.huff[acTable][scan[i].ta])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
val0 := value >> 4
|
|
val1 := value & 0x0f
|
|
if val1 != 0 {
|
|
k += int(val0)
|
|
if k > blockSize {
|
|
return FormatError("bad DCT index")
|
|
}
|
|
ac, err := d.receiveExtend(val1)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
b[unzig[k]] = ac * qt[k]
|
|
} else {
|
|
if val0 != 0x0f {
|
|
break
|
|
}
|
|
k += 0x0f
|
|
}
|
|
}
|
|
|
|
// Perform the inverse DCT and store the MCU component to the image.
|
|
if d.nComp == nGrayComponent {
|
|
idct(d.img1.Pix[8*(my*d.img1.Stride+mx):], d.img1.Stride, &b)
|
|
} else {
|
|
switch i {
|
|
case 0:
|
|
mx0 := h0*mx + (j % 2)
|
|
my0 := v0*my + (j / 2)
|
|
idct(d.img3.Y[8*(my0*d.img3.YStride+mx0):], d.img3.YStride, &b)
|
|
case 1:
|
|
idct(d.img3.Cb[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b)
|
|
case 2:
|
|
idct(d.img3.Cr[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b)
|
|
}
|
|
}
|
|
} // for j
|
|
} // for i
|
|
mcu++
|
|
if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
|
|
// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
|
|
// but this one assumes well-formed input, and hence the restart marker follows immediately.
|
|
_, err := io.ReadFull(d.r, d.tmp[0:2])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
|
|
return FormatError("bad RST marker")
|
|
}
|
|
expectedRST++
|
|
if expectedRST == rst7Marker+1 {
|
|
expectedRST = rst0Marker
|
|
}
|
|
// Reset the Huffman decoder.
|
|
d.b = bits{}
|
|
// Reset the DC components, as per section F.2.1.3.1.
|
|
dc = [nColorComponent]int{}
|
|
}
|
|
} // for mx
|
|
} // for my
|
|
|
|
return nil
|
|
}
|
|
|
|
// Specified in section B.2.4.4.
|
|
func (d *decoder) processDRI(n int) error {
|
|
if n != 2 {
|
|
return FormatError("DRI has wrong length")
|
|
}
|
|
_, err := io.ReadFull(d.r, d.tmp[0:2])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
|
|
return nil
|
|
}
|
|
|
|
// decode reads a JPEG image from r and returns it as an image.Image.
|
|
func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
|
|
if rr, ok := r.(Reader); ok {
|
|
d.r = rr
|
|
} else {
|
|
d.r = bufio.NewReader(r)
|
|
}
|
|
|
|
// Check for the Start Of Image marker.
|
|
_, err := io.ReadFull(d.r, d.tmp[0:2])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
|
|
return nil, FormatError("missing SOI marker")
|
|
}
|
|
|
|
// Process the remaining segments until the End Of Image marker.
|
|
for {
|
|
_, err := io.ReadFull(d.r, d.tmp[0:2])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if d.tmp[0] != 0xff {
|
|
return nil, FormatError("missing 0xff marker start")
|
|
}
|
|
marker := d.tmp[1]
|
|
if marker == eoiMarker { // End Of Image.
|
|
break
|
|
}
|
|
|
|
// Read the 16-bit length of the segment. The value includes the 2 bytes for the
|
|
// length itself, so we subtract 2 to get the number of remaining bytes.
|
|
_, err = io.ReadFull(d.r, d.tmp[0:2])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
|
|
if n < 0 {
|
|
return nil, FormatError("short segment length")
|
|
}
|
|
|
|
switch {
|
|
case marker == sof0Marker: // Start Of Frame (Baseline).
|
|
err = d.processSOF(n)
|
|
if configOnly {
|
|
return nil, err
|
|
}
|
|
case marker == sof2Marker: // Start Of Frame (Progressive).
|
|
err = UnsupportedError("progressive mode")
|
|
case marker == dhtMarker: // Define Huffman Table.
|
|
err = d.processDHT(n)
|
|
case marker == dqtMarker: // Define Quantization Table.
|
|
err = d.processDQT(n)
|
|
case marker == sosMarker: // Start Of Scan.
|
|
err = d.processSOS(n)
|
|
case marker == driMarker: // Define Restart Interval.
|
|
err = d.processDRI(n)
|
|
case marker >= app0Marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment.
|
|
err = d.ignore(n)
|
|
default:
|
|
err = UnsupportedError("unknown marker")
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
if d.img1 != nil {
|
|
return d.img1, nil
|
|
}
|
|
if d.img3 != nil {
|
|
return d.img3, nil
|
|
}
|
|
return nil, FormatError("missing SOS marker")
|
|
}
|
|
|
|
// Decode reads a JPEG image from r and returns it as an image.Image.
|
|
func Decode(r io.Reader) (image.Image, error) {
|
|
var d decoder
|
|
return d.decode(r, false)
|
|
}
|
|
|
|
// DecodeConfig returns the color model and dimensions of a JPEG image without
|
|
// decoding the entire image.
|
|
func DecodeConfig(r io.Reader) (image.Config, error) {
|
|
var d decoder
|
|
if _, err := d.decode(r, true); err != nil {
|
|
return image.Config{}, err
|
|
}
|
|
switch d.nComp {
|
|
case nGrayComponent:
|
|
return image.Config{
|
|
ColorModel: color.GrayModel,
|
|
Width: d.width,
|
|
Height: d.height,
|
|
}, nil
|
|
case nColorComponent:
|
|
return image.Config{
|
|
ColorModel: color.YCbCrModel,
|
|
Width: d.width,
|
|
Height: d.height,
|
|
}, nil
|
|
}
|
|
return image.Config{}, FormatError("missing SOF marker")
|
|
}
|
|
|
|
func init() {
|
|
image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
|
|
}
|