Remove ohare.cpp source.

This commit is contained in:
Maxim Poliakovski
2025-06-04 03:02:19 +02:00
parent 6b50f85bfc
commit 20eec5cdc8
2 changed files with 0 additions and 560 deletions

View File

@@ -316,68 +316,6 @@ private:
uint16_t unsupported_dma_channel_write = 0;
};
class OHare : public PCIDevice, public InterruptCtrl {
public:
OHare();
~OHare() = default;
static std::unique_ptr<HWComponent> create() {
return std::unique_ptr<OHare>(new OHare());
}
// MMIO device methods
uint32_t read(uint32_t rgn_start, uint32_t offset, int size) override;
void write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) override;
// InterruptCtrl methods
uint64_t register_dev_int(IntSrc src_id) override;
uint64_t register_dma_int(IntSrc src_id) override;
void ack_int(uint64_t irq_id, uint8_t irq_line_state) override;
void ack_dma_int(uint64_t irq_id, uint8_t irq_line_state) override;
protected:
void notify_bar_change(int bar_num);
void ack_int_common(uint64_t irq_id, uint8_t irq_line_state);
uint32_t mio_ctrl_read(uint32_t offset, int size);
uint32_t mio_ctrl_read_aligned(uint32_t offset);
void mio_ctrl_write(uint32_t offset, uint32_t value, int size);
uint32_t dma_read(uint32_t offset, int size);
void dma_write(uint32_t offset, uint32_t value, int size);
void feature_control(const uint32_t value);
void signal_cpu_int();
void clear_cpu_int();
private:
uint32_t base_addr = 0;
// interrupt state
uint32_t int_mask = 0;
std::atomic<uint32_t> int_levels{0};
std::atomic<uint32_t> int_events{0};
bool cpu_int_latch = false;
uint32_t feat_ctrl = 0; // features control register
// subdevice objects
MacioSndCodec* snd_codec; // audio codec instance
NVram* nvram; // NVRAM
ViaCuda* viacuda; // VIA cell with Cuda MCU attached to it
MeshController* mesh; // MESH SCSI cell instance
EsccController* escc; // ESCC serial controller
IdeChannel* ide_0; // Internal ATA
Swim3::Swim3Ctrl* swim3; // floppy disk controller
// DMA channels
std::unique_ptr<DMAChannel> mesh_dma;
std::unique_ptr<DMAChannel> floppy_dma;
std::unique_ptr<DMAChannel> snd_out_dma;
uint16_t unsupported_dma_channel_read = 0;
uint16_t unsupported_dma_channel_write = 0;
};
/** O'Hare/Heathrow specific registers. */
enum {
MIO_OHARE_ID = 0x34, // IDs register

View File

@@ -1,498 +0,0 @@
/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-25 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cpu/ppc/ppcemu.h>
#include <devices/deviceregistry.h>
#include <devices/common/ata/idechannel.h>
#include <devices/common/dbdma.h>
#include <devices/common/hwcomponent.h>
#include <devices/common/viacuda.h>
#include <devices/floppy/swim3.h>
#include <devices/ioctrl/macio.h>
#include <devices/serial/escc.h>
#include <devices/sound/awacs.h>
#include <endianswap.h>
#include <loguru.hpp>
#include <machines/machinebase.h>
#include <cinttypes>
#include <functional>
#include <memory>
namespace loguru {
enum : Verbosity {
Verbosity_INTERRUPT = loguru::Verbosity_9,
Verbosity_DBDMA = loguru::Verbosity_9
};
}
OHare::OHare() : PCIDevice("mac-io_ohare"), InterruptCtrl()
{
supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV | HWCompType::INT_CTRL);
// populate my PCI config header
this->vendor_id = PCI_VENDOR_APPLE;
this->device_id = MIO_DEV_ID_OHARE;
this->class_rev = 0xFF000001;
this->cache_ln_sz = 8;
this->setup_bars({{0, 0xFFF80000UL}}); // declare 512Kb of memory-mapped I/O space
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// NVRAM connection
this->nvram = dynamic_cast<NVram*>(gMachineObj->get_comp_by_name("NVRAM"));
// connect Cuda
this->viacuda = dynamic_cast<ViaCuda*>(gMachineObj->get_comp_by_name("ViaCuda"));
// find appropriate sound chip, create a DMA output channel for sound,
// then wire everything together
this->snd_codec = dynamic_cast<MacioSndCodec*>(gMachineObj->get_comp_by_type(HWCompType::SND_CODEC));
this->snd_out_dma = std::unique_ptr<DMAChannel> (new DMAChannel("snd_out"));
this->snd_out_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_DAVBUS_Tx));
this->snd_codec->set_dma_out(this->snd_out_dma.get());
this->snd_out_dma->set_callbacks(
std::bind(&AwacsScreamer::dma_out_start, this->snd_codec),
std::bind(&AwacsScreamer::dma_out_stop, this->snd_codec)
);
// connect SCSI HW and the corresponding DMA channel
this->mesh = dynamic_cast<MeshController*>(gMachineObj->get_comp_by_name("MeshHeathrow"));
this->mesh_dma = std::unique_ptr<DMAChannel> (new DMAChannel("mesh"));
this->mesh_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCSI_MESH));
this->mesh_dma->connect(this->mesh);
this->mesh->connect(this->mesh_dma.get());
// connect IDE HW
this->ide_0 = dynamic_cast<IdeChannel*>(gMachineObj->get_comp_by_name("Ide0"));
//this->ide_1 = dynamic_cast<IdeChannel*>(gMachineObj->get_comp_by_name("Ide1"));
// connect serial HW
this->escc = dynamic_cast<EsccController*>(gMachineObj->get_comp_by_name("Escc"));
// connect floppy disk HW and initialize its DMA channel
this->swim3 = dynamic_cast<Swim3::Swim3Ctrl*>(gMachineObj->get_comp_by_name("Swim3"));
this->floppy_dma = std::unique_ptr<DMAChannel> (new DMAChannel("floppy"));
this->swim3->set_dma_channel(this->floppy_dma.get());
this->floppy_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SWIM3));
// connect Ethernet HW
//this->bmac = dynamic_cast<BigMac*>(gMachineObj->get_comp_by_type(HWCompType::ETHER_MAC));
//this->enet_xmit_dma = std::unique_ptr<DMAChannel> (new DMAChannel("BmacTx"));
//this->enet_rcv_dma = std::unique_ptr<DMAChannel> (new DMAChannel("BmacRx"));
// set EMMO pin status (active low) FIXME: Is there an emmo pin?
//this->emmo_pin = GET_BIN_PROP("emmo") ^ 1;
}
static const char *get_name_dma(unsigned dma_channel) {
switch (dma_channel) {
case MIO_OHARE_DMA_MESH : return "DMA_MESH" ;
case MIO_OHARE_DMA_FLOPPY : return "DMA_FLOPPY" ;
case MIO_OHARE_DMA_ETH_XMIT : return "DMA_ETH_XMIT" ;
case MIO_OHARE_DMA_ETH_RCV : return "DMA_ETH_RCV" ;
case MIO_OHARE_DMA_ESCC_A_XMIT : return "DMA_ESCC_A_XMIT";
case MIO_OHARE_DMA_ESCC_A_RCV : return "DMA_ESCC_A_RCV" ;
case MIO_OHARE_DMA_ESCC_B_XMIT : return "DMA_ESCC_B_XMIT";
case MIO_OHARE_DMA_ESCC_B_RCV : return "DMA_ESCC_B_RCV" ;
case MIO_OHARE_DMA_AUDIO_OUT : return "DMA_AUDIO_OUT" ;
case MIO_OHARE_DMA_AUDIO_IN : return "DMA_AUDIO_IN" ;
case MIO_OHARE_DMA_IDE0 : return "DMA_IDE0" ;
case MIO_OHARE_DMA_IDE1 : return "DMA_IDE1" ;
default : return "unknown" ;
}
}
void OHare::notify_bar_change(int bar_num)
{
if (bar_num) // only BAR0 is supported
return;
if (this->base_addr != (this->bars[bar_num] & 0xFFFFFFF0UL)) {
if (this->base_addr) {
this->host_instance->pci_unregister_mmio_region(this->base_addr, 0x80000, this);
}
this->base_addr = this->bars[0] & 0xFFFFFFF0UL;
this->host_instance->pci_register_mmio_region(this->base_addr, 0x80000, this);
LOG_F(INFO, "%s: base address set to 0x%X", this->get_name().c_str(), this->base_addr);
}
}
uint32_t OHare::read(uint32_t rgn_start, uint32_t offset, int size)
{
uint32_t value;
LOG_F(9, "%s: read @%x.%c", this->get_name().c_str(),
offset, SIZE_ARG(size));
unsigned sub_addr = (offset >> 12) & 0x7F;
switch (sub_addr) {
case 0:
value = mio_ctrl_read(offset, size);
break;
case 8:
value = dma_read(offset & 0x7FFF, size);
break;
case 0x10: // SCSI
value = this->mesh->read((offset >> 4) & 0xF);
break;
case 0x12: // ESCC compatible addressing
if ((offset & 0xFF) < 0x0C) {
value = this->escc->read(compat_to_macrisc[(offset >> 1) & 0xF]);
break;
}
if ((offset & 0xFF) < 0x60) {
value = 0;
LOG_F(ERROR, "%s: ESCC compatible read @%x.%c", this->name.c_str(), offset, SIZE_ARG(size));
break;
}
// fallthrough
case 0x13: // ESCC MacRISC addressing
value = this->escc->read((offset >> 4) & 0xF);
break;
case 0x14:
value = this->snd_codec->snd_ctrl_read(offset & 0xFF, size);
break;
case 0x15: // SWIM3
value = this->swim3->read((offset >> 4) & 0xF);
break;
case 0x16: // VIA-CUDA
case 0x17:
value = this->viacuda->read((offset >> 9) & 0xF);
break;
case 0x20: // IDE 0
value = this->ide_0->read((offset >> 4) & 0x1F, size);
break;
default:
if (sub_addr >= 0x60) {
value = this->nvram->read_byte((offset - 0x60000) >> 4);
} else {
value = 0;
LOG_F(WARNING, "%s: read @%x.%c", this->get_name().c_str(),
offset, SIZE_ARG(size));
}
}
return value;
}
void OHare::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
LOG_F(9, "%s: write @%x.%c = %0*x", this->get_name().c_str(),
offset, SIZE_ARG(size), size * 2, value);
unsigned sub_addr = (offset >> 12) & 0x7F;
switch (sub_addr) {
case 0:
this->mio_ctrl_write(offset, value, size);
break;
case 8:
this->dma_write(offset & 0x7FFF, value, size);
break;
case 0x10: // SCSI
this->mesh->write((offset >> 4) & 0xF, value);
break;
case 0x12: // ESCC compatible addressing
if ((offset & 0xFF) < 0x0C) {
this->escc->write(compat_to_macrisc[(offset >> 1) & 0xF], value);
break;
}
if ((offset & 0xFF) < 0x60) {
LOG_F(ERROR, "%s: SCC write @%x.%c = %0*x", this->name.c_str(),
offset, SIZE_ARG(size), size * 2, value);
break;
}
// fallthrough
case 0x13: // ESCC MacRISC addressing
this->escc->write((offset >> 4) & 0xF, value);
break;
case 0x14:
this->snd_codec->snd_ctrl_write(offset & 0xFF, value, size);
break;
case 0x15: // SWIM3
this->swim3->write((offset >> 4) & 0xF, value);
break;
case 0x16: // VIA-CUDA
case 0x17:
this->viacuda->write((offset >> 9) & 0xF, value);
break;
case 0x20: // IDE 0
this->ide_0->write((offset >> 4) & 0x1F, value, size);
break;
default:
if (sub_addr >= 0x60) {
this->nvram->write_byte((offset - 0x60000) >> 4, value);
} else {
LOG_F(WARNING, "%s: write @%x.%c = %0*x", this->get_name().c_str(),
offset, SIZE_ARG(size), size * 2, value);
}
}
}
uint32_t OHare::mio_ctrl_read(uint32_t offset, int size) {
uint32_t value;
switch (offset & 0xFC) {
case MIO_INT_EVENTS1:
value = this->int_events;
break;
case MIO_INT_MASK1:
value = this->int_mask;
break;
case MIO_INT_LEVELS1:
value = this->int_levels;
break;
case MIO_OHARE_ID: // FIXME: HACK: no clue what this register is supposed to contain
value = ~0x00004000; // 1<<14
LOG_F(ERROR, "%s: read OHARE_ID @%02x.%c = %0*x",
this->get_name().c_str(), offset, SIZE_ARG(size), size * 2, value);
break;
case MIO_OHARE_FEAT_CTRL:
value = this->feat_ctrl;
LOG_F(WARNING, "%s: read FEAT_CTRL @%x.%c = %0*x",
this->get_name().c_str(), offset, SIZE_ARG(size), size * 2, value);
break;
default:
value = 0;
LOG_F(WARNING, "%s: read @%02x.%c",
this->get_name().c_str(), offset, SIZE_ARG(size));
}
return BYTESWAP_32(value);
}
void OHare::mio_ctrl_write(uint32_t offset, uint32_t value, int size) {
switch (offset) {
case MIO_INT_MASK1:
this->int_mask = BYTESWAP_32(value);
LOG_F(INTERRUPT, "%s: int_mask:0x%08x", name.c_str(), this->int_mask);
this->signal_cpu_int();
break;
case MIO_INT_CLEAR1:
if ((this->int_mask & MACIO_INT_MODE) && (value & MACIO_INT_CLR)) {
this->int_events = 0;
} else {
this->int_events &= ~(BYTESWAP_32(value) & 0x7FFFFFFFUL);
}
clear_cpu_int();
break;
case MIO_INT_LEVELS1:
LOG_F(INTERRUPT, "%s: write INT_LEVELS1 @%x.%c = %0*x",
this->get_name().c_str(), offset, SIZE_ARG(size), size * 2, value); // writing 0x100000 happens often
break;
case MIO_OHARE_ID:
LOG_F(ERROR, "%s: write OHARE_ID @%x.%c = %0*x",
this->get_name().c_str(), offset, SIZE_ARG(size), size * 2, value);
break;
case MIO_OHARE_FEAT_CTRL:
LOG_F(WARNING, "%s: write FEAT_CTRL @%x.%c = %0*x",
this->get_name().c_str(), offset, SIZE_ARG(size), size * 2, value);
this->feature_control(BYTESWAP_32(value));
break;
default:
LOG_F(WARNING, "%s: write @%x.%c = %0*x",
this->get_name().c_str(), offset, SIZE_ARG(size), size * 2, value);
}
}
uint32_t OHare::dma_read(uint32_t offset, int size)
{
uint32_t value;
int dma_channel = offset >> 8;
switch (dma_channel) {
case MIO_OHARE_DMA_MESH:
if (this->mesh_dma)
value = this->mesh_dma->reg_read(offset & 0xFF, size);
else
value = 0;
break;
case MIO_OHARE_DMA_FLOPPY:
value = this->floppy_dma->reg_read(offset & 0xFF, size);
break;
case MIO_OHARE_DMA_AUDIO_OUT:
value = this->snd_out_dma->reg_read(offset & 0xFF, size);
break;
default:
if (!(unsupported_dma_channel_read & (1 << dma_channel))) {
unsupported_dma_channel_read |= (1 << dma_channel);
LOG_F(WARNING, "%s: Unsupported DMA channel %d %s read @%02x.%c", this->name.c_str(),
dma_channel, get_name_dma(dma_channel), offset & 0xFF, SIZE_ARG(size));
return 0;
}
value = 0;
}
return value;
}
void OHare::dma_write(uint32_t offset, uint32_t value, int size)
{
int dma_channel = offset >> 8;
switch (dma_channel) {
case MIO_OHARE_DMA_MESH:
if (this->mesh_dma) this->mesh_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_OHARE_DMA_FLOPPY:
this->floppy_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_OHARE_DMA_AUDIO_OUT:
this->snd_out_dma->reg_write(offset & 0xFF, value, size);
break;
default:
if (!(unsupported_dma_channel_write & (1 << dma_channel))) {
unsupported_dma_channel_write |= (1 << dma_channel);
LOG_F(WARNING, "%s: Unsupported DMA channel %d %s write @%02x.%c = %0*x", this->name.c_str(),
dma_channel, get_name_dma(dma_channel), offset & 0xFF, SIZE_ARG(size), size * 2, value);
}
}
}
void OHare::feature_control(const uint32_t value)
{
LOG_F(9, "write %x to MIO:Feat_Ctrl register", value);
this->feat_ctrl = value;
if (!(this->feat_ctrl & 1)) {
LOG_F(9, "%s: Monitor sense enabled", this->get_name().c_str());
} else {
LOG_F(9, "%s: Monitor sense disabled", this->get_name().c_str());
}
}
uint64_t OHare::register_dev_int(IntSrc src_id)
{
switch (src_id) {
case IntSrc::SCSI_MESH : return INT_TO_IRQ_ID(0x0C);
case IntSrc::IDE0 : return INT_TO_IRQ_ID(0x0D);
// case IntSrc::IDE1 : return INT_TO_IRQ_ID(0x0E);
case IntSrc::SCCA : return INT_TO_IRQ_ID(0x0F);
case IntSrc::SCCB : return INT_TO_IRQ_ID(0x10);
case IntSrc::DAVBUS : return INT_TO_IRQ_ID(0x11);
case IntSrc::VIA_CUDA : return INT_TO_IRQ_ID(0x12);
case IntSrc::SWIM3 : return INT_TO_IRQ_ID(0x13);
// case IntSrc::NMI : return INT_TO_IRQ_ID(0x14);
// case IntSrc::EXT1 : return INT_TO_IRQ_ID(0x15);
case IntSrc::BANDIT1 : return INT_TO_IRQ_ID(0x16);
case IntSrc::PCI_E : return INT_TO_IRQ_ID(0x16); // same interrupt as bandit
case IntSrc::PCI_A : return INT_TO_IRQ_ID(0x17);
case IntSrc::PCI_F : return INT_TO_IRQ_ID(0x18);
case IntSrc::PCI_B : return INT_TO_IRQ_ID(0x19);
// case IntSrc::??? : return INT_TO_IRQ_ID(0x1A);
// case IntSrc::??? : return INT_TO_IRQ_ID(0x1B);
case IntSrc::PCI_C : return INT_TO_IRQ_ID(0x1C);
default:
ABORT_F("%s: unknown interrupt source %d", this->name.c_str(), src_id);
}
return 0;
}
uint64_t OHare::register_dma_int(IntSrc src_id)
{
switch (src_id) {
case IntSrc::DMA_SCSI_MESH: return INT_TO_IRQ_ID(0x00);
case IntSrc::DMA_SWIM3 : return INT_TO_IRQ_ID(0x01);
case IntSrc::DMA_IDE0 : return INT_TO_IRQ_ID(0x02);
//
case IntSrc::DMA_SCCA_Tx : return INT_TO_IRQ_ID(0x04);
case IntSrc::DMA_SCCA_Rx : return INT_TO_IRQ_ID(0x05);
case IntSrc::DMA_SCCB_Tx : return INT_TO_IRQ_ID(0x06);
case IntSrc::DMA_SCCB_Rx : return INT_TO_IRQ_ID(0x07);
case IntSrc::DMA_DAVBUS_Tx: return INT_TO_IRQ_ID(0x08);
case IntSrc::DMA_DAVBUS_Rx: return INT_TO_IRQ_ID(0x09);
default:
ABORT_F("%s: unknown DMA interrupt source %d", this->name.c_str(), src_id);
}
return 0;
}
void OHare::ack_int_common(uint64_t irq_id, uint8_t irq_line_state)
{
// native mode: set IRQ bits in int_events on a 0-to-1 transition
// emulated mode: set IRQ bits in int_events on all transitions
#if 0
LOG_F(INTERRUPT, "%s: native interrupt mask:%08x events:%08x levels:%08x change:%08x state:%d",
this->name.c_str(), this->int_mask, this->int_events + 0, this->int_levels + 0, irq_id, irq_line_state
);
#endif
if ((this->int_mask & MACIO_INT_MODE) ||
(irq_line_state && !(this->int_levels & irq_id))) {
this->int_events |= (uint32_t)irq_id;
} else {
this->int_events &= ~(uint32_t)irq_id;
}
// update IRQ line state
if (irq_line_state) {
this->int_levels |= (uint32_t)irq_id;
} else {
this->int_levels &= ~(uint32_t)irq_id;
}
this->signal_cpu_int();
}
void OHare::ack_int(uint64_t irq_id, uint8_t irq_line_state)
{
this->ack_int_common(irq_id, irq_line_state);
}
void OHare::ack_dma_int(uint64_t irq_id, uint8_t irq_line_state)
{
this->ack_int_common(irq_id, irq_line_state);
}
void OHare::signal_cpu_int() {
if (this->int_events & this->int_mask) {
if (!this->cpu_int_latch) {
this->cpu_int_latch = true;
ppc_assert_int();
} else {
LOG_F(5, "%s: CPU INT already latched", this->name.c_str());
}
}
}
void OHare::clear_cpu_int()
{
if (!(this->int_events & this->int_mask) && this->cpu_int_latch) {
this->cpu_int_latch = false;
ppc_release_int();
LOG_F(5, "%s: CPU INT latch cleared", this->name.c_str());
}
}
static const std::vector<std::string> OHare_Subdevices = {
"NVRAM", "ViaCuda", "MeshHeathrow", "Escc", "Swim3", "Ide0"
};
static const DeviceDescription OHare_Descriptor = {
OHare::create, OHare_Subdevices, {},
HWCompType::MMIO_DEV | HWCompType::PCI_DEV | HWCompType::INT_CTRL
};
REGISTER_DEVICE(ohare, OHare_Descriptor);