dingusppc/devices/memctrl/mpc106.cpp
joevt 3ee2ea1871 Fix read/write argument names
base class uses reg_start so derived classes should do the same.
Some derived class already uses reg_start for read method.
2022-08-22 17:16:22 -07:00

273 lines
8.9 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-22 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** MPC106 (Grackle) emulation. */
#include <devices/common/hwcomponent.h>
#include <devices/common/mmiodevice.h>
#include <devices/deviceregistry.h>
#include <devices/memctrl/memctrlbase.h>
#include <devices/memctrl/mpc106.h>
#include <memaccess.h>
#include <cinttypes>
#include <cstring>
#include <iostream>
#include <loguru.hpp>
#include <string>
#include <vector>
MPC106::MPC106() : MemCtrlBase(), PCIDevice("Grackle"), PCIHost()
{
this->name = "Grackle";
supports_types(HWCompType::MEM_CTRL | HWCompType::MMIO_DEV |
HWCompType::PCI_HOST | HWCompType::PCI_DEV);
// populate PCI config header
this->vendor_id = PCI_VENDOR_MOTOROLA;
this->device_id = 0x0002;
this->class_rev = 0x06000040;
this->cache_ln_sz = 8;
this->command = 6;
this->status = 0x80;
// add PCI/ISA I/O space, 64K for now
add_mmio_region(0xFE000000, 0x10000, this);
// add memory mapped I/O region for MPC106 registers
add_mmio_region(0xFEC00000, 0x300000, this);
}
int MPC106::device_postinit()
{
std::string pci_dev_name;
static const std::map<std::string, int> pci_slots = {
{"pci_A1", 0xD}, {"pci_B1", 0xE}, {"pci_C1", 0xF}
};
for (auto& slot : pci_slots) {
pci_dev_name = GET_STR_PROP(slot.first);
if (!pci_dev_name.empty()) {
this->attach_pci_device(pci_dev_name, slot.second);
}
}
return 0;
}
uint32_t MPC106::read(uint32_t rgn_start, uint32_t offset, int size) {
uint32_t result;
if (rgn_start == 0xFE000000) {
// broadcast I/O request to devices that support I/O space
// until a device returns true that means "request accepted"
for (auto& dev : this->io_space_devs) {
if (dev->pci_io_read(offset, size, &result)) {
return result;
}
}
LOG_F(ERROR, "Attempt to read from unmapped PCI I/O space, offset=0x%X", offset);
} else {
if (offset >= 0x200000) {
if (this->config_addr & 0x80) // process only if bit E (enable) is set
return pci_read(size);
}
}
// FIXME: reading from CONFIG_ADDR is ignored for now
return 0;
}
void MPC106::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) {
if (rgn_start == 0xFE000000) {
// broadcast I/O request to devices that support I/O space
// until a device returns true that means "request accepted"
for (auto& dev : this->io_space_devs) {
if (dev->pci_io_write(offset, value, size)) {
return;
}
}
LOG_F(ERROR, "Attempt to write to unmapped PCI I/O space, offset=0x%X", offset);
} else {
if (offset < 0x200000) {
this->config_addr = value;
} else {
if (this->config_addr & 0x80) // process only if bit E (enable) is set
return pci_write(value, size);
}
}
}
uint32_t MPC106::pci_read(uint32_t size) {
int bus_num, dev_num, fun_num, reg_offs;
bus_num = (this->config_addr >> 8) & 0xFF;
if (bus_num) {
LOG_F(
ERROR,
"%s err: read attempt from non-local PCI bus, config_addr = %x",
this->name.c_str(),
this->config_addr);
return 0;
}
dev_num = (this->config_addr >> 19) & 0x1F;
fun_num = (this->config_addr >> 16) & 0x07;
reg_offs = (this->config_addr >> 24) & 0xFC;
if (dev_num == 0 && fun_num == 0) { // dev_num 0 is assigned to myself
return this->pci_cfg_read(reg_offs, size);
} else {
if (this->dev_map.count(dev_num)) {
return this->dev_map[dev_num]->pci_cfg_read(reg_offs, size);
} else {
LOG_F(
ERROR,
"%s err: read attempt from non-existing PCI device %02x:%02x.%x @%02x.%c",
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0;
}
}
return 0;
}
void MPC106::pci_write(uint32_t value, uint32_t size) {
int bus_num, dev_num, fun_num, reg_offs;
bus_num = (this->config_addr >> 8) & 0xFF;
if (bus_num) {
LOG_F(
ERROR,
"%s err: write attempt to non-local PCI bus, config_addr = %x",
this->name.c_str(),
this->config_addr);
return;
}
dev_num = (this->config_addr >> 19) & 0x1F;
fun_num = (this->config_addr >> 16) & 0x07;
reg_offs = (this->config_addr >> 24) & 0xFC;
if (dev_num == 0 && fun_num == 0) { // dev_num 0 is assigned to myself
this->pci_cfg_write(reg_offs, value, size);
} else {
if (this->dev_map.count(dev_num)) {
this->dev_map[dev_num]->pci_cfg_write(reg_offs, value, size);
} else {
LOG_F(
ERROR,
"%s err: write attempt to non-existing PCI device %02x:%02x.%x @%02x.%c = %0*x",
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, value
);
}
}
}
uint32_t MPC106::pci_cfg_read(uint32_t reg_offs, uint32_t size) {
#ifdef MPC106_DEBUG
LOG_F(9, "read from Grackle register %08X", reg_offs);
#endif
if (reg_offs < 64) {
return PCIDevice::pci_cfg_read(reg_offs, size);
}
return read_mem(&this->my_pci_cfg_hdr[reg_offs], size);
}
void MPC106::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size) {
#ifdef MPC106_DEBUG
LOG_F(9, "write %08X to Grackle register %08X", value, reg_offs);
#endif
if (reg_offs < 64) {
PCIDevice::pci_cfg_write(reg_offs, value, size);
return;
}
// FIXME: implement write-protection for read-only registers
write_mem(&this->my_pci_cfg_hdr[reg_offs], value, size);
if (this->my_pci_cfg_hdr[0xF2] & 8) {
#ifdef MPC106_DEBUG
LOG_F(9, "MPC106: MCCR1[MEMGO] was set!");
#endif
setup_ram();
}
}
void MPC106::setup_ram() {
uint32_t mem_start, mem_end, ext_mem_start, ext_mem_end, bank_start, bank_end;
uint32_t ram_size = 0;
uint8_t bank_en = this->my_pci_cfg_hdr[0xA0];
for (int bank = 0; bank < 8; bank++) {
if (bank_en & (1 << bank)) {
if (bank < 4) {
mem_start = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x80]);
ext_mem_start = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x88]);
mem_end = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x90]);
ext_mem_end = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x98]);
} else {
mem_start = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x84]);
ext_mem_start = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x8C]);
mem_end = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x94]);
ext_mem_end = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x9C]);
}
bank_start = (((ext_mem_start >> bank * 8) & 3) << 30) |
(((mem_start >> bank * 8) & 0xFF) << 20);
bank_end = (((ext_mem_end >> bank * 8) & 3) << 30) |
(((mem_end >> bank * 8) & 0xFF) << 20) | 0xFFFFFUL;
if (bank && bank_start != ram_size)
LOG_F(WARNING, "MPC106: RAM not contiguous!");
ram_size += bank_end - bank_start + 1;
}
}
if (!this->add_ram_region(0, ram_size)) {
LOG_F(ERROR, "MPC106 RAM allocation failed!");
}
}
static const PropMap Grackle_Properties = {
{"pci_A1",
new StrProperty("")},
{"pci_B1",
new StrProperty("")},
{"pci_C1",
new StrProperty("")},
};
static const DeviceDescription Grackle_Descriptor = {
MPC106::create, {}, Grackle_Properties
};
REGISTER_DEVICE(Grackle, Grackle_Descriptor);