dingusppc/devices/floppy/floppyimg.cpp
joevt 64fec88436 Fix compiler warnings: cast loses precision.
Use explicit cast when converting large integer types to smaller integer types when it is known that the most significant bytes are not required.
For pcidevice, check the ROM file size before casting to int. We'll allow expansion ROM sizes up to 4MB but usually they are 64K, sometimes 128K, rarely 256K.
for machinefactory, change the type to size_t so that it can correctly get the size of files that are larger than 4GB; it already checks the file size is 4MB before we need to cast to uint32_t.
For floppyimg, check the image size before casting to int. For raw images, only allow files up to 2MB. For DiskCopy42 images, it already checks the file size, so do the cast after that.
2023-01-11 01:17:12 -08:00

337 lines
9.4 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-22 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** @file Support for reading and writing of various floppy images. */
#include <devices/floppy/floppyimg.h>
#include <machines/machineproperties.h>
#include <loguru.hpp>
#include <memaccess.h>
#include <cinttypes>
#include <cstring>
#include <fstream>
#include <string>
static FlopImgType identify_image(std::ifstream& img_file)
{
// WOZ images identification strings
static uint8_t WOZ1_SIG[] = {0x57, 0x4F, 0x5A, 0x31, 0xFF, 0x0A, 0x0D, 0x0A};
static uint8_t WOZ2_SIG[] = {0x57, 0x4F, 0x5A, 0x32, 0xFF, 0x0A, 0x0D, 0x0A};
uint8_t buf[8] = { 0 };
img_file.seekg(0, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
// WOZ files are easily identified
if (!std::memcmp(buf, WOZ1_SIG, sizeof(buf))) {
return FlopImgType::WOZ1;
} else if (!std::memcmp(buf, WOZ2_SIG, sizeof(buf))) {
return FlopImgType::WOZ2;
} else {
for (int offset = 0; offset <=84; offset += 84) {
// rewind to logical block 2
img_file.seekg(2*BLOCK_SIZE + offset, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
// check for HFS/MFS signature at the start of the logical block 2
if ((buf[0] == 0x42 && buf[1] == 0x44) ||
(buf[0] == 0xD2 && buf[1] == 0xD7)) {
if (offset) {
return FlopImgType::DC42;
} else {
return FlopImgType::RAW;
}
}
}
}
return FlopImgType::UNKNOWN;
}
//======================= RAW IMAGE CONVERTER ============================
RawFloppyImg::RawFloppyImg(std::string& file_path) : FloppyImgConverter()
{
this->img_path = file_path;
}
/**
For raw images, we'll attempt to guess disk format based on image size.
*/
int RawFloppyImg::calc_phys_params()
{
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "RawFloppyImg: Could not open specified floppy image!");
return -1;
}
// determine image size
img_file.seekg(0, img_file.end);
size_t img_size = img_file.tellg();
if (img_size > 2*1024*1024) {
LOG_F(ERROR, "RawFloppyImg: image size is too large to determine disk format from image size!");
return -1;
}
this->img_size = (int)img_size;
img_file.seekg(0, img_file.beg);
img_file.close();
// verify image size
if (this->img_size < 5*BLOCK_SIZE) {
LOG_F(ERROR, "RawFloppyImg: image too short!");
return -1;
}
if (this->img_size > MFM_HD_SIZE) {
LOG_F(ERROR, "RawFloppyImg: image too big!");
return -1;
}
// raw images don't include anything other than raw disk data
this->data_size = this->img_size;
// see if user has specified disk format manually
std::string fmt = GET_STR_PROP("fdd_fmt");
if (!fmt.empty()) {
if (fmt == "GCR_400K") {
this->img_size = 409600;
} else if (fmt == "GCR_800K") {
this->img_size = 819200;
} else if (fmt == "MFM_720K") {
this->img_size = 737280;
} else if (fmt == "MFM_1440K") {
this->img_size = 1474560;
} else {
LOG_F(WARNING, "Invalid floppy disk format %s", fmt.c_str());
}
}
// guess disk format from image file size
static struct {
int capacity;
int rec_method;
int num_tracks;
int num_sectors;
int num_sides;
int density;
} size_to_params[] = {
{ 409600, 0, 80, 800, 1, 0}, // 400K GCR
{ 819200, 0, 80, 800, 2, 0}, // 800K GCR
{ 737280, 1, 80, 1440, 2, 0}, // 720K MFM
{1474560, 1, 80, 2880, 2, 1}, // 1440K MFM
};
this->rec_method = -1;
for (int i = 0; i < 4; i++) {
if (this->img_size == size_to_params[i].capacity) {
this->rec_method = size_to_params[i].rec_method;
this->num_tracks = size_to_params[i].num_tracks;
this->num_sectors = size_to_params[i].num_sectors;
this->num_sides = size_to_params[i].num_sides;
this->density = size_to_params[i].density;
// fake format byte for GCR disks
if (!this->rec_method) {
this->format_byte = (this->num_sides == 2) ? 0x22 : 0x2;
} else {
// For MFM disks this byte indicates sector size in blocks
this->format_byte = 2;
}
break;
}
}
if (this->rec_method == -1) {
LOG_F(ERROR, "RawFloppyImg: could't determine disk format from image size!");
return -1;
}
return 0;
}
/** Retrieve raw disk data. */
int RawFloppyImg::get_raw_disk_data(char* buf)
{
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "RawFloppyImg: Could not open specified floppy image!");
return -1;
}
img_file.seekg(0, img_file.beg);
img_file.read(buf, this->data_size);
img_file.close();
return 0;
}
/** Convert low-level disk data to high-level image data. */
int RawFloppyImg::export_data()
{
return 0;
}
// ====================== DISK COPY 4.2 IMAGE CONVERTER ======================
DiskCopy42Img::DiskCopy42Img(std::string& file_path) : FloppyImgConverter()
{
this->img_path = file_path;
}
int DiskCopy42Img::calc_phys_params() {
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "DiskCopy42Img: could not open specified floppy image!");
return -1;
}
// determine image size
img_file.seekg(0, img_file.end);
size_t img_size = img_file.tellg();
img_file.seekg(0, img_file.beg);
// get data size from image
uint8_t buf[4];
img_file.seekg(0x40, img_file.beg);
img_file.read((char *)&buf, 4);
this->data_size = READ_DWORD_BE_U(buf);
if (this->data_size > img_size) {
img_file.close();
LOG_F(ERROR, "DiskCopy42Img: invalid data size %d", this->data_size);
return -1;
}
this->img_size = (int)img_size;
uint8_t disk_format = 0xFFU;
img_file.seekg(0x50, img_file.beg);
img_file.read((char *)&disk_format, 1);
img_file.read((char *)&this->format_byte, 1);
img_file.close();
this->density = 0; // assume double density by default
this->num_tracks = 80;
this->num_sides = ((this->format_byte >> 5) & 1) + 1;
switch (disk_format) {
case 0:
case 1:
this->rec_method = 0; // GCR
this->num_sectors = 800;
break;
case 2:
this->rec_method = 1; // MFM
this->num_sectors = 1440;
this->format_byte = 2;
break;
case 3:
this->rec_method = 1; // MFM
this->density = 1; // report high density
this->num_sectors = 2880;
this->format_byte = 2;
break;
default:
LOG_F(ERROR, "DiskCopy42Img: invalid disk format %X", disk_format);
return -1;
}
return 0;
}
int DiskCopy42Img::get_raw_disk_data(char* buf) {
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "DiskCopy42Img: could not open specified floppy image!");
return -1;
}
img_file.seekg(0x54, img_file.beg);
img_file.read(buf, this->data_size);
img_file.close();
return 0;
}
int DiskCopy42Img::export_data(void) {
return 0;
}
FloppyImgConverter* open_floppy_image(std::string& img_path)
{
FloppyImgConverter *fconv = nullptr;
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "Could not open specified floppy image!");
return nullptr;
}
FlopImgType itype = identify_image(img_file);
img_file.close();
switch(itype) {
case FlopImgType::RAW:
LOG_F(INFO, "Raw floppy image");
fconv = new RawFloppyImg(img_path);
break;
case FlopImgType::DC42:
LOG_F(INFO, "Disk Copy 4.2 image");
fconv = new DiskCopy42Img(img_path);
break;
case FlopImgType::WOZ1:
case FlopImgType::WOZ2:
LOG_F(INFO, "WOZ v%s image", (itype == FlopImgType::WOZ2) ? "2" : "1");
break;
default:
LOG_F(WARNING, "Unknown image format - assume RAW");
fconv = new RawFloppyImg(img_path);
}
if (fconv->calc_phys_params()) {
delete fconv;
return nullptr;
}
return fconv;
}