macemu/BasiliskII/src/CrossPlatform/sigsegv.cpp

3446 lines
102 KiB
C++

/*
* sigsegv.cpp - SIGSEGV signals support
*
* Derived from Bruno Haible's work on his SIGSEGV library for clisp
* <http://clisp.sourceforge.net/>
*
* MacOS X support derived from the post by Timothy J. Wood to the
* omnigroup macosx-dev list:
* Mach Exception Handlers 101 (Was Re: ptrace, gdb)
* tjw@omnigroup.com Sun, 4 Jun 2000
* www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
*
* Basilisk II (C) 1997-2008 Christian Bauer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <list>
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include "sigsegv.h"
#ifndef NO_STD_NAMESPACE
using std::list;
#endif
// Return value type of a signal handler (standard type if not defined)
#ifndef RETSIGTYPE
#define RETSIGTYPE void
#endif
// Size of an unsigned integer large enough to hold all bits of a pointer
// NOTE: this can be different than SIGSEGV_REGISTER_TYPE. In
// particular, on ILP32 systems with a 64-bit kernel (HP-UX/ia64?)
#if defined(HAVE_WIN32_VM)
// Windows is either ILP32 or LLP64
#include <basetsd.h>
typedef UINT_PTR sigsegv_uintptr_t;
#else
// Other systems are sane enough to follow ILP32 or LP64 models
typedef unsigned long sigsegv_uintptr_t;
#endif
// Type of the system signal handler
typedef RETSIGTYPE (*signal_handler)(int);
// User's SIGSEGV handler
static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
// Function called to dump state if we can't handle the fault
static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
#if defined(HAVE_SIGINFO_T) || defined(HAVE_SIGCONTEXT_SUBTERFUGE)
// Actual SIGSEGV handler installer
static bool sigsegv_do_install_handler(int sig);
#endif
/*
* Instruction decoding aids
*/
// Transfer type
enum transfer_type_t {
SIGSEGV_TRANSFER_UNKNOWN = 0,
SIGSEGV_TRANSFER_LOAD = 1,
SIGSEGV_TRANSFER_STORE = 2
};
// Transfer size
enum transfer_size_t {
SIZE_UNKNOWN,
SIZE_BYTE,
SIZE_WORD, // 2 bytes
SIZE_LONG, // 4 bytes
SIZE_QUAD // 8 bytes
};
#if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
// Addressing mode
enum addressing_mode_t {
MODE_UNKNOWN,
MODE_NORM,
MODE_U,
MODE_X,
MODE_UX
};
// Decoded instruction
struct instruction_t {
transfer_type_t transfer_type;
transfer_size_t transfer_size;
addressing_mode_t addr_mode;
unsigned int addr;
char ra, rd;
};
static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
{
// Get opcode and divide into fields
unsigned int opcode = *((unsigned int *)(unsigned long)nip);
unsigned int primop = opcode >> 26;
unsigned int exop = (opcode >> 1) & 0x3ff;
unsigned int ra = (opcode >> 16) & 0x1f;
unsigned int rb = (opcode >> 11) & 0x1f;
unsigned int rd = (opcode >> 21) & 0x1f;
signed int imm = (signed short)(opcode & 0xffff);
// Analyze opcode
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
transfer_size_t transfer_size = SIZE_UNKNOWN;
addressing_mode_t addr_mode = MODE_UNKNOWN;
switch (primop) {
case 31:
switch (exop) {
case 23: // lwzx
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
case 55: // lwzux
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
case 87: // lbzx
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
case 119: // lbzux
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
case 151: // stwx
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
case 183: // stwux
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
case 215: // stbx
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
case 247: // stbux
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
case 279: // lhzx
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
case 311: // lhzux
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
case 343: // lhax
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
case 375: // lhaux
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
case 407: // sthx
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
case 439: // sthux
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
}
break;
case 32: // lwz
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
case 33: // lwzu
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
case 34: // lbz
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
case 35: // lbzu
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
case 36: // stw
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
case 37: // stwu
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
case 38: // stb
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
case 39: // stbu
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
case 40: // lhz
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
case 41: // lhzu
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
case 42: // lha
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
case 43: // lhau
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
case 44: // sth
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
case 45: // sthu
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
case 58: // ld, ldu, lwa
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_QUAD;
addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
imm &= ~3;
break;
case 62: // std, stdu, stq
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_QUAD;
addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
imm &= ~3;
break;
}
// Calculate effective address
unsigned int addr = 0;
switch (addr_mode) {
case MODE_X:
case MODE_UX:
if (ra == 0)
addr = gpr[rb];
else
addr = gpr[ra] + gpr[rb];
break;
case MODE_NORM:
case MODE_U:
if (ra == 0)
addr = (signed int)(signed short)imm;
else
addr = gpr[ra] + (signed int)(signed short)imm;
break;
default:
break;
}
// Commit decoded instruction
instruction->addr = addr;
instruction->addr_mode = addr_mode;
instruction->transfer_type = transfer_type;
instruction->transfer_size = transfer_size;
instruction->ra = ra;
instruction->rd = rd;
}
#endif
/*
* OS-dependant SIGSEGV signals support section
*/
#if HAVE_SIGINFO_T
// Generic extended signal handler
#if defined(__hpux)
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
#else
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
#endif
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
#define SIGSEGV_FAULT_ADDRESS sip->si_addr
#if (defined(sgi) || defined(__sgi))
#include <ucontext.h>
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
#define SIGSEGV_FAULT_INSTRUCTION (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
#if (defined(mips) || defined(__mips))
#define SIGSEGV_REGISTER_FILE &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
#define SIGSEGV_SKIP_INSTRUCTION mips_skip_instruction
#endif
#endif
#if defined(__sun__)
#if (defined(sparc) || defined(__sparc__))
#include <sys/stack.h>
#include <sys/regset.h>
#include <sys/ucontext.h>
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC]
#define SIGSEGV_SPARC_GWINDOWS (((ucontext_t *)scp)->uc_mcontext.gwins)
#define SIGSEGV_SPARC_RWINDOW (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
#define SIGSEGV_REGISTER_FILE ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
#define SIGSEGV_SKIP_INSTRUCTION sparc_skip_instruction
#endif
#if defined(__i386__)
#include <sys/regset.h>
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[EIP]
#define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#endif
#endif
#if defined(__FreeBSD__) || defined(__OpenBSD__)
#if (defined(i386) || defined(__i386__))
#undef SIGSEGV_ALL_SIGNALS
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
#define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip)
#define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#elif (defined(x86_64) || defined(__x86_64__))
#define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_rip)
#define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&(((struct sigcontext *)scp)->sc_rdi))
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#endif
#endif
#if defined(__NetBSD__)
#if (defined(i386) || defined(__i386__))
#include <sys/ucontext.h>
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.__gregs)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[_REG_EIP]
#define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#endif
#if (defined(powerpc) || defined(__powerpc__))
#include <sys/ucontext.h>
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.__gregs)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[_REG_PC]
#define SIGSEGV_REGISTER_FILE (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
#endif
#endif
#if defined(__linux__)
#if HAVE_ASM_UCONTEXT
#include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
#else
#include <sys/ucontext.h>
#endif
#if (defined(hppa) || defined(__hppa__))
#undef SIGSEGV_FAULT_ADDRESS
#define SIGSEGV_FAULT_ADDRESS sip->si_ptr
#endif
#if (defined(i386) || defined(__i386__))
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
#define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#elif (defined(x86_64) || defined(__x86_64__))
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
#define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#elif (defined(ia64) || defined(__ia64__))
#define SIGSEGV_CONTEXT_REGS ((struct sigcontext *)scp)
#define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
#define SIGSEGV_REGISTER_FILE SIGSEGV_CONTEXT_REGS
#define SIGSEGV_SKIP_INSTRUCTION ia64_skip_instruction
#elif (defined(powerpc) || defined(__powerpc__))
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs)
#define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip)
#define SIGSEGV_REGISTER_FILE (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
#elif (defined(arm) || defined(__arm__))
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext)
#define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS.arm_pc)
#define SIGSEGV_REGISTER_FILE (&SIGSEGV_CONTEXT_REGS.arm_r0)
#define SIGSEGV_SKIP_INSTRUCTION arm_skip_instruction
#elif (defined(aarch64) || defined(__aarch64__))
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext)
#define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS.pc)
#define SIGSEGV_REGISTER_FILE ((unsigned long *)&SIGSEGV_CONTEXT_REGS.regs)
#define SIGSEGV_SKIP_INSTRUCTION aarch64_skip_instruction
#elif (defined(mips) || defined(__mips__))
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext)
#define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS.pc)
#define SIGSEGV_REGISTER_FILE &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
#define SIGSEGV_SKIP_INSTRUCTION mips_skip_instruction
#endif
#endif // defined(__linux__)
#if (defined(__hpux) || defined(__hpux__))
#if (defined(__hppa) || defined(__hppa__))
#define SIGSEGV_CONTEXT_REGS (&((ucontext_t *)scp)->uc_mcontext)
#define SIGSEGV_FAULT_INSTRUCTION_32 (SIGSEGV_CONTEXT_REGS->ss_narrow.ss_pcoq_head & ~3ul)
#define SIGSEGV_FAULT_INSTRUCTION_64 (SIGSEGV_CONTEXT_REGS->ss_wide.ss_64.ss_pcoq_head & ~3ull)
#if defined(__LP64__)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_FAULT_INSTRUCTION_64
#else
#define SIGSEGV_FAULT_INSTRUCTION ((SIGSEGV_CONTEXT_REGS->ss_flags & SS_WIDEREGS) ? \
(uint32_t)SIGSEGV_FAULT_INSTRUCTION_64 : \
SIGSEGV_FAULT_INSTRUCTION_32)
#endif
#endif
#if (defined(__ia64) || defined(__ia64__))
#include <sys/ucontext.h>
#define SIGSEGV_CONTEXT_REGS ((ucontext_t *)scp)
#define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(SIGSEGV_CONTEXT_REGS)
#define SIGSEGV_REGISTER_FILE SIGSEGV_CONTEXT_REGS
#define SIGSEGV_SKIP_INSTRUCTION ia64_skip_instruction
#include <sys/uc_access.h>
static inline sigsegv_address_t get_fault_instruction(const ucontext_t *ucp)
{
uint64_t ip;
if (__uc_get_ip(ucp, &ip) != 0)
return SIGSEGV_INVALID_ADDRESS;
return (sigsegv_address_t)(ip & ~3ULL);
}
#endif
#endif
#endif
#if HAVE_SIGCONTEXT_SUBTERFUGE
// Linux kernels prior to 2.4 ?
#if defined(__linux__)
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
#if (defined(i386) || defined(__i386__))
#include <asm/sigcontext.h>
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS &scs
#define SIGSEGV_FAULT_ADDRESS scp->cr2
#define SIGSEGV_FAULT_INSTRUCTION scp->eip
#define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)scp
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#endif
#if (defined(sparc) || defined(__sparc__))
#include <asm/sigcontext.h>
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
#define SIGSEGV_FAULT_ADDRESS addr
#endif
#if (defined(powerpc) || defined(__powerpc__))
#include <asm/sigcontext.h>
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, scp
#define SIGSEGV_FAULT_ADDRESS scp->regs->dar
#define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip
#define SIGSEGV_REGISTER_FILE (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
#endif
#if (defined(alpha) || defined(__alpha__))
#include <asm/sigcontext.h>
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
#endif
#if (defined(arm) || defined(__arm__))
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int r1, int r2, int r3, struct sigcontext sc
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS &sc
#define SIGSEGV_FAULT_ADDRESS scp->fault_address
#define SIGSEGV_FAULT_INSTRUCTION scp->arm_pc
#define SIGSEGV_REGISTER_FILE &scp->arm_r0
#define SIGSEGV_SKIP_INSTRUCTION arm_skip_instruction
#endif
#endif
// Irix 5 or 6 on MIPS
#if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
#include <ucontext.h>
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_FAULT_ADDRESS (unsigned long)scp->sc_badvaddr
#define SIGSEGV_FAULT_INSTRUCTION (unsigned long)scp->sc_pc
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
#endif
// HP-UX
#if (defined(hpux) || defined(__hpux__))
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
#endif
// OSF/1 on Alpha
#if defined(__osf__)
#include <ucontext.h>
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
#endif
// AIX
#if defined(_AIX)
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
#endif
// NetBSD
#if defined(__NetBSD__)
#if (defined(m68k) || defined(__m68k__))
#include <m68k/frame.h>
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
// Use decoding scheme from BasiliskII/m68k native
static sigsegv_address_t get_fault_address(struct sigcontext *scp)
{
struct sigstate {
int ss_flags;
struct frame ss_frame;
};
struct sigstate *state = (struct sigstate *)scp->sc_ap;
char *fault_addr;
switch (state->ss_frame.f_format) {
case 7: /* 68040 access error */
/* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
fault_addr = state->ss_frame.f_fmt7.f_fa;
break;
default:
fault_addr = (char *)code;
break;
}
return (sigsegv_address_t)fault_addr;
}
#endif
#if (defined(alpha) || defined(__alpha__))
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
#endif
#if (defined(i386) || defined(__i386__))
#error "FIXME: need to decode instruction and compute EA"
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
#endif
#endif
#if defined(__FreeBSD__)
#if (defined(i386) || defined(__i386__))
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr
#define SIGSEGV_FAULT_ADDRESS addr
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip
#define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&scp->sc_edi)
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#endif
#if (defined(alpha) || defined(__alpha__))
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV)
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, char *addr, struct sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, addr, scp
#define SIGSEGV_FAULT_ADDRESS addr
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc
#endif
#endif
// Extract fault address out of a sigcontext
#if (defined(alpha) || defined(__alpha__))
// From Boehm's GC 6.0alpha8
static sigsegv_address_t get_fault_address(struct sigcontext *scp)
{
unsigned int instruction = *((unsigned int *)(scp->sc_pc));
unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
fault_address += (signed long)(signed short)(instruction & 0xffff);
return (sigsegv_address_t)fault_address;
}
#endif
// MacOS X, not sure which version this works in. Under 10.1
// vm_protect does not appear to work from a signal handler. Under
// 10.2 signal handlers get siginfo type arguments but the si_addr
// field is the address of the faulting instruction and not the
// address that caused the SIGBUS. Maybe this works in 10.0? In any
// case with Mach exception handlers there is a way to do what this
// was meant to do.
#ifndef HAVE_MACH_EXCEPTIONS
#if defined(__APPLE__) && defined(__MACH__)
#if (defined(ppc) || defined(__ppc__))
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct __darwin_sigcontext *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp)
#define SIGSEGV_FAULT_INSTRUCTION scp->MACH_FIELD_NAME(sc_ir)
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS)
#define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction
// Use decoding scheme from SheepShaver
static sigsegv_address_t get_fault_address(struct sigcontext *scp)
{
unsigned int nip = (unsigned int) scp->MACH_FIELD_NAME(sc_ir);
unsigned int * gpr = &((unsigned int *) scp->MACH_FIELD_NAME(sc_regs))[2];
instruction_t instr;
powerpc_decode_instruction(&instr, nip, (long unsigned int*)gpr);
return (sigsegv_address_t)instr.addr;
}
#endif
#endif
#endif
#endif
#if HAVE_WIN32_EXCEPTIONS
#define WIN32_LEAN_AND_MEAN /* avoid including junk */
#include <windows.h>
#include <winerror.h>
#define SIGSEGV_FAULT_HANDLER_ARGLIST EXCEPTION_POINTERS *ExceptionInfo
#define SIGSEGV_FAULT_HANDLER_ARGS ExceptionInfo
#define SIGSEGV_FAULT_ADDRESS ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
#define SIGSEGV_CONTEXT_REGS ExceptionInfo->ContextRecord
#if defined(_M_IX86)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS->Eip
#define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Edi)
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#endif
#if defined(_M_X64)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS->Rip
#define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Rax)
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction
#endif
#if defined(_M_IA64)
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS->StIIP
#endif
#endif
#if HAVE_MACH_EXCEPTIONS
// This can easily be extended to other Mach systems, but really who
// uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
// Mach 2.5/3.0?
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
/*
* If you are familiar with MIG then you will understand the frustration
* that was necessary to get these embedded into C++ code by hand.
*/
extern "C" {
#include <mach/mach.h>
#include <mach/mach_error.h>
#ifndef HAVE_MACH64_VM
// Undefine this to prevent a preprocessor warning when compiling on a
// 32-bit machine with Mac OS X 10.5.
#undef MACH_EXCEPTION_CODES
#define MACH_EXCEPTION_CODES 0
#define mach_exception_data_t exception_data_t
#define mach_exception_data_type_t exception_data_type_t
#define mach_exc_server exc_server
#define catch_mach_exception_raise catch_exception_raise
#define mach_exception_raise exception_raise
#define mach_exception_raise_state exception_raise_state
#define mach_exception_raise_state_identity exception_raise_state_identity
#endif
extern boolean_t mach_exc_server(mach_msg_header_t *, mach_msg_header_t *);
extern kern_return_t catch_mach_exception_raise(mach_port_t, mach_port_t,
mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t);
extern kern_return_t catch_mach_exception_raise_state(mach_port_t exception_port,
exception_type_t exception, mach_exception_data_t code, mach_msg_type_number_t code_count,
int *flavor,
thread_state_t old_state, mach_msg_type_number_t old_state_count,
thread_state_t new_state, mach_msg_type_number_t *new_state_count);
extern kern_return_t catch_mach_exception_raise_state_identity(mach_port_t exception_port,
mach_port_t thread_port, mach_port_t task_port, exception_type_t exception,
mach_exception_data_t code, mach_msg_type_number_t code_count,
int *flavor,
thread_state_t old_state, mach_msg_type_number_t old_state_count,
thread_state_t new_state, mach_msg_type_number_t *new_state_count);
extern kern_return_t mach_exception_raise(mach_port_t, mach_port_t, mach_port_t,
exception_type_t, mach_exception_data_t, mach_msg_type_number_t);
extern kern_return_t mach_exception_raise_state(mach_port_t, exception_type_t,
mach_exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
extern kern_return_t mach_exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
exception_type_t, mach_exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
}
// Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
#define HANDLER_COUNT 64
// structure to tuck away existing exception handlers
typedef struct _ExceptionPorts {
mach_msg_type_number_t maskCount;
exception_mask_t masks[HANDLER_COUNT];
exception_handler_t handlers[HANDLER_COUNT];
exception_behavior_t behaviors[HANDLER_COUNT];
thread_state_flavor_t flavors[HANDLER_COUNT];
} ExceptionPorts;
// exception handler thread
static pthread_t exc_thread;
// place where old exception handler info is stored
static ExceptionPorts ports;
// our exception port
static mach_port_t _exceptionPort = MACH_PORT_NULL;
#define MACH_CHECK_ERROR(name,ret) \
if (ret != KERN_SUCCESS) { \
mach_error(#name, ret); \
exit (1); \
}
#ifndef MACH_FIELD_NAME
#define MACH_FIELD_NAME(X) X
#endif
// Since there can only be one exception thread running at any time
// this is not a problem.
#define MSG_SIZE 512
static char msgbuf[MSG_SIZE];
static char replybuf[MSG_SIZE];
/*
* This is the entry point for the exception handler thread. The job
* of this thread is to wait for exception messages on the exception
* port that was setup beforehand and to pass them on to exc_server.
* exc_server is a MIG generated function that is a part of Mach.
* Its job is to decide what to do with the exception message. In our
* case exc_server calls catch_exception_raise on our behalf. After
* exc_server returns, it is our responsibility to send the reply.
*/
static void *
handleExceptions(void *priv)
{
mach_msg_header_t *msg, *reply;
kern_return_t krc;
msg = (mach_msg_header_t *)msgbuf;
reply = (mach_msg_header_t *)replybuf;
for (;;) {
krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
_exceptionPort, 0, MACH_PORT_NULL);
MACH_CHECK_ERROR(mach_msg, krc);
if (!mach_exc_server(msg, reply)) {
fprintf(stderr, "exc_server hated the message\n");
exit(1);
}
krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
msg->msgh_local_port, 0, MACH_PORT_NULL);
if (krc != KERN_SUCCESS) {
fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
krc, mach_error_string(krc));
exit(1);
}
}
}
#endif
#endif
/*
* Instruction skipping
*/
#ifndef SIGSEGV_REGISTER_TYPE
#define SIGSEGV_REGISTER_TYPE sigsegv_uintptr_t
#endif
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
// Decode and skip X86 instruction
#if (defined(i386) || defined(__i386__) || defined(_M_IX86)) || (defined(__x86_64__) || defined(_M_X64))
#if defined(__linux__)
enum {
#if (defined(i386) || defined(__i386__))
X86_REG_EIP = 14,
X86_REG_EAX = 11,
X86_REG_ECX = 10,
X86_REG_EDX = 9,
X86_REG_EBX = 8,
X86_REG_ESP = 7,
X86_REG_EBP = 6,
X86_REG_ESI = 5,
X86_REG_EDI = 4
#endif
#if defined(__x86_64__)
X86_REG_R8 = 0,
X86_REG_R9 = 1,
X86_REG_R10 = 2,
X86_REG_R11 = 3,
X86_REG_R12 = 4,
X86_REG_R13 = 5,
X86_REG_R14 = 6,
X86_REG_R15 = 7,
X86_REG_EDI = 8,
X86_REG_ESI = 9,
X86_REG_EBP = 10,
X86_REG_EBX = 11,
X86_REG_EDX = 12,
X86_REG_EAX = 13,
X86_REG_ECX = 14,
X86_REG_ESP = 15,
X86_REG_EIP = 16
#endif
};
#endif
#if defined(__NetBSD__)
enum {
#if (defined(i386) || defined(__i386__))
X86_REG_EIP = _REG_EIP,
X86_REG_EAX = _REG_EAX,
X86_REG_ECX = _REG_ECX,
X86_REG_EDX = _REG_EDX,
X86_REG_EBX = _REG_EBX,
X86_REG_ESP = _REG_ESP,
X86_REG_EBP = _REG_EBP,
X86_REG_ESI = _REG_ESI,
X86_REG_EDI = _REG_EDI
#endif
};
#endif
#if defined(__FreeBSD__)
enum {
#if (defined(i386) || defined(__i386__))
X86_REG_EIP = 10,
X86_REG_EAX = 7,
X86_REG_ECX = 6,
X86_REG_EDX = 5,
X86_REG_EBX = 4,
X86_REG_ESP = 13,
X86_REG_EBP = 2,
X86_REG_ESI = 1,
X86_REG_EDI = 0
#endif
#if (defined(x86_64) || defined(__x86_64__))
X86_REG_EDI = 0,
X86_REG_ESI = 1,
X86_REG_EDX = 2,
X86_REG_ECX = 3,
X86_REG_R8 = 4,
X86_REG_R9 = 5,
X86_REG_EAX = 6,
X86_REG_EBX = 7,
X86_REG_EBP = 8,
X86_REG_R10 = 9,
X86_REG_R11 = 10,
X86_REG_R12 = 11,
X86_REG_R13 = 12,
X86_REG_R14 = 13,
X86_REG_R15 = 14,
X86_REG_EIP = 19,
X86_REG_ESP = 22,
#endif
};
#endif
#if defined(__OpenBSD__)
enum {
#if defined(__i386__)
// EDI is the first register we consider
#define OREG(REG) offsetof(struct sigcontext, sc_##REG)
#define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
X86_REG_EIP = DREG(eip), // 7
X86_REG_EAX = DREG(eax), // 6
X86_REG_ECX = DREG(ecx), // 5
X86_REG_EDX = DREG(edx), // 4
X86_REG_EBX = DREG(ebx), // 3
X86_REG_ESP = DREG(esp), // 10
X86_REG_EBP = DREG(ebp), // 2
X86_REG_ESI = DREG(esi), // 1
X86_REG_EDI = DREG(edi) // 0
#undef DREG
#undef OREG
#endif
};
#endif
#if defined(__sun__)
// Same as for Linux, need to check for x86-64
enum {
#if defined(__i386__)
X86_REG_EIP = EIP,
X86_REG_EAX = EAX,
X86_REG_ECX = ECX,
X86_REG_EDX = EDX,
X86_REG_EBX = EBX,
X86_REG_ESP = ESP,
X86_REG_EBP = EBP,
X86_REG_ESI = ESI,
X86_REG_EDI = EDI
#endif
};
#endif
#if defined(__APPLE__) && defined(__MACH__)
enum {
#if (defined(i386) || defined(__i386__))
#ifdef i386_SAVED_STATE
// same as FreeBSD (in Open Darwin 8.0.1)
X86_REG_EIP = 10,
X86_REG_EAX = 7,
X86_REG_ECX = 6,
X86_REG_EDX = 5,
X86_REG_EBX = 4,
X86_REG_ESP = 13,
X86_REG_EBP = 2,
X86_REG_ESI = 1,
X86_REG_EDI = 0
#else
// new layout (MacOS X 10.4.4 for x86)
X86_REG_EIP = 10,
X86_REG_EAX = 0,
X86_REG_ECX = 2,
X86_REG_EDX = 3,
X86_REG_EBX = 1,
X86_REG_ESP = 7,
X86_REG_EBP = 6,
X86_REG_ESI = 5,
X86_REG_EDI = 4
#endif
#endif
#if defined(__x86_64__)
X86_REG_R8 = 8,
X86_REG_R9 = 9,
X86_REG_R10 = 10,
X86_REG_R11 = 11,
X86_REG_R12 = 12,
X86_REG_R13 = 13,
X86_REG_R14 = 14,
X86_REG_R15 = 15,
X86_REG_EDI = 4,
X86_REG_ESI = 5,
X86_REG_EBP = 6,
X86_REG_EBX = 1,
X86_REG_EDX = 3,
X86_REG_EAX = 0,
X86_REG_ECX = 2,
X86_REG_ESP = 7,
X86_REG_EIP = 16
#endif
};
#endif
#if defined(_WIN32)
enum {
#if defined(_M_IX86)
X86_REG_EIP = 7,
X86_REG_EAX = 5,
X86_REG_ECX = 4,
X86_REG_EDX = 3,
X86_REG_EBX = 2,
X86_REG_ESP = 10,
X86_REG_EBP = 6,
X86_REG_ESI = 1,
X86_REG_EDI = 0
#endif
#if defined(_M_X64)
X86_REG_EAX = 0,
X86_REG_ECX = 1,
X86_REG_EDX = 2,
X86_REG_EBX = 3,
X86_REG_ESP = 4,
X86_REG_EBP = 5,
X86_REG_ESI = 6,
X86_REG_EDI = 7,
X86_REG_R8 = 8,
X86_REG_R9 = 9,
X86_REG_R10 = 10,
X86_REG_R11 = 11,
X86_REG_R12 = 12,
X86_REG_R13 = 13,
X86_REG_R14 = 14,
X86_REG_R15 = 15,
X86_REG_EIP = 16
#endif
};
#endif
// FIXME: this is partly redundant with the instruction decoding phase
// to discover transfer type and register number
static inline int ix86_step_over_modrm(unsigned char * p)
{
int mod = (p[0] >> 6) & 3;
int rm = p[0] & 7;
int offset = 0;
// ModR/M Byte
switch (mod) {
case 0: // [reg]
if (rm == 5) return 4; // disp32
break;
case 1: // disp8[reg]
offset = 1;
break;
case 2: // disp32[reg]
offset = 4;
break;
case 3: // register
return 0;
}
// SIB Byte
if (rm == 4) {
if (mod == 0 && (p[1] & 7) == 5)
offset = 5; // disp32[index]
else
offset++;
}
return offset;
}
static bool ix86_skip_instruction(SIGSEGV_REGISTER_TYPE * regs)
{
unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
if (eip == 0)
return false;
#ifdef _WIN32
if (IsBadCodePtr((FARPROC)eip))
return false;
#endif
enum instruction_type_t {
i_MOV,
i_ADD
};
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
transfer_size_t transfer_size = SIZE_LONG;
instruction_type_t instruction_type = i_MOV;
int reg = -1;
int len = 0;
#if DEBUG
printf("IP: %p [%02x %02x %02x %02x...]\n",
eip, eip[0], eip[1], eip[2], eip[3]);
#endif
// Operand size prefix
if (*eip == 0x66) {
eip++;
len++;
transfer_size = SIZE_WORD;
}
#if defined(__x86_64__) || defined(_M_X64)
// Address size override
if (*eip == 0x67) {
// 32-bit address
eip++;
len++;
}
#endif
// REX prefix
#if defined(__x86_64__) || defined(_M_X64)
struct rex_t {
unsigned char W;
unsigned char R;
unsigned char X;
unsigned char B;
};
rex_t rex = { 0, 0, 0, 0 };
bool has_rex = false;
if ((*eip & 0xf0) == 0x40) {
has_rex = true;
const unsigned char b = *eip;
rex.W = b & (1 << 3);
rex.R = b & (1 << 2);
rex.X = b & (1 << 1);
rex.B = b & (1 << 0);
#if DEBUG
printf("REX: %c,%c,%c,%c\n",
rex.W ? 'W' : '_',
rex.R ? 'R' : '_',
rex.X ? 'X' : '_',
rex.B ? 'B' : '_');
#endif
eip++;
len++;
if (rex.W)
transfer_size = SIZE_QUAD;
}
#else
const bool has_rex = false;
#endif
// Decode instruction
int op_len = 1;
int target_size = SIZE_UNKNOWN;
switch (eip[0]) {
case 0x0f:
target_size = transfer_size;
switch (eip[1]) {
case 0xbe: // MOVSX r32, r/m8
case 0xb6: // MOVZX r32, r/m8
transfer_size = SIZE_BYTE;
goto do_mov_extend;
case 0xbf: // MOVSX r32, r/m16
case 0xb7: // MOVZX r32, r/m16
transfer_size = SIZE_WORD;
goto do_mov_extend;
do_mov_extend:
op_len = 2;
goto do_transfer_load;
}
break;
#if defined(__x86_64__) || defined(_M_X64)
case 0x63: // MOVSXD r64, r/m32
if (has_rex && rex.W) {
transfer_size = SIZE_LONG;
target_size = SIZE_QUAD;
}
else if (transfer_size != SIZE_WORD) {
transfer_size = SIZE_LONG;
target_size = SIZE_QUAD;
}
goto do_transfer_load;
#endif
case 0x02: // ADD r8, r/m8
transfer_size = SIZE_BYTE;
// fall through
case 0x03: // ADD r32, r/m32
instruction_type = i_ADD;
goto do_transfer_load;
case 0x8a: // MOV r8, r/m8
transfer_size = SIZE_BYTE;
// fall through
case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
do_transfer_load:
switch (eip[op_len] & 0xc0) {
case 0x80:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_LOAD;
break;
case 0x40:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_LOAD;
break;
case 0x00:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_LOAD;
break;
}
len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
break;
case 0x00: // ADD r/m8, r8
transfer_size = SIZE_BYTE;
// fall through
case 0x01: // ADD r/m32, r32
instruction_type = i_ADD;
goto do_transfer_store;
case 0x88: // MOV r/m8, r8
transfer_size = SIZE_BYTE;
// fall through
case 0x89: // MOV r/m32, r32 (or 16-bit operation)
do_transfer_store:
switch (eip[op_len] & 0xc0) {
case 0x80:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_STORE;
break;
case 0x40:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_STORE;
break;
case 0x00:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_STORE;
break;
}
len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
break;
}
if (target_size == SIZE_UNKNOWN)
target_size = transfer_size;
if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
// Unknown machine code, let it crash. Then patch the decoder
return false;
}
#if defined(__x86_64__) || defined(_M_X64)
if (rex.R)
reg += 8;
#endif
if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
static const int x86_reg_map[] = {
X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
#if defined(__x86_64__) || defined(_M_X64)
X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11,
X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
#endif
};
if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
return false;
// Set 0 to the relevant register part
// NOTE: this is only valid for MOV alike instructions
int rloc = x86_reg_map[reg];
switch (target_size) {
case SIZE_BYTE:
if (has_rex || reg < 4)
regs[rloc] = (regs[rloc] & ~0x00ffL);
else {
rloc = x86_reg_map[reg - 4];
regs[rloc] = (regs[rloc] & ~0xff00L);
}
break;
case SIZE_WORD:
regs[rloc] = (regs[rloc] & ~0xffffL);
break;
case SIZE_LONG:
case SIZE_QUAD: // zero-extension
regs[rloc] = 0;
break;
}
}
#if DEBUG
printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
transfer_size == SIZE_BYTE ? "byte" :
transfer_size == SIZE_WORD ? "word" :
transfer_size == SIZE_LONG ? "long" :
transfer_size == SIZE_QUAD ? "quad" : "unknown",
transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
if (reg != -1) {
static const char * x86_byte_reg_str_map[] = {
"al", "cl", "dl", "bl",
"spl", "bpl", "sil", "dil",
"r8b", "r9b", "r10b", "r11b",
"r12b", "r13b", "r14b", "r15b",
"ah", "ch", "dh", "bh",
};
static const char * x86_word_reg_str_map[] = {
"ax", "cx", "dx", "bx",
"sp", "bp", "si", "di",
"r8w", "r9w", "r10w", "r11w",
"r12w", "r13w", "r14w", "r15w",
};
static const char *x86_long_reg_str_map[] = {
"eax", "ecx", "edx", "ebx",
"esp", "ebp", "esi", "edi",
"r8d", "r9d", "r10d", "r11d",
"r12d", "r13d", "r14d", "r15d",
};
static const char *x86_quad_reg_str_map[] = {
"rax", "rcx", "rdx", "rbx",
"rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11",
"r12", "r13", "r14", "r15",
};
const char * reg_str = NULL;
switch (target_size) {
case SIZE_BYTE:
reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
break;
case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
}
if (reg_str)
printf(" %s register %%%s",
transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
reg_str);
}
printf(", %d bytes instruction\n", len);
#endif
regs[X86_REG_EIP] += len;
return true;
}
#endif
// Decode and skip IA-64 instruction
#if defined(__ia64) || defined(__ia64__)
typedef uint64_t ia64_bundle_t[2];
#if defined(__linux__)
// We can directly patch the slot number
#define IA64_CAN_PATCH_IP_SLOT 1
// Helper macros to access the machine context
#define IA64_CONTEXT_TYPE struct sigcontext *
#define IA64_CONTEXT scp
#define IA64_GET_IP() (IA64_CONTEXT->sc_ip)
#define IA64_SET_IP(V) (IA64_CONTEXT->sc_ip = (V))
#define IA64_GET_PR(P) ((IA64_CONTEXT->sc_pr >> (P)) & 1)
#define IA64_GET_NAT(I) ((IA64_CONTEXT->sc_nat >> (I)) & 1)
#define IA64_GET_GR(R) (IA64_CONTEXT->sc_gr[(R)])
#define _IA64_SET_GR(R,V) (IA64_CONTEXT->sc_gr[(R)] = (V))
#define _IA64_SET_NAT(I,V) (IA64_CONTEXT->sc_nat = (IA64_CONTEXT->sc_nat & ~(1ull << (I))) | (((uint64_t)!!(V)) << (I)))
#define IA64_SET_GR(R,V,N) (_IA64_SET_GR(R,V), _IA64_SET_NAT(R,N))
// Load bundle (in little-endian)
static inline void ia64_load_bundle(ia64_bundle_t bundle, uint64_t raw_ip)
{
uint64_t *ip = (uint64_t *)(raw_ip & ~3ull);
bundle[0] = ip[0];
bundle[1] = ip[1];
}
#endif
#if defined(__hpux) || defined(__hpux__)
// We can directly patch the slot number
#define IA64_CAN_PATCH_IP_SLOT 1
// Helper macros to access the machine context
#define IA64_CONTEXT_TYPE ucontext_t *
#define IA64_CONTEXT ucp
#define IA64_GET_IP() ia64_get_ip(IA64_CONTEXT)
#define IA64_SET_IP(V) ia64_set_ip(IA64_CONTEXT, V)
#define IA64_GET_PR(P) ia64_get_pr(IA64_CONTEXT, P)
#define IA64_GET_NAT(I) ia64_get_nat(IA64_CONTEXT, I)
#define IA64_GET_GR(R) ia64_get_gr(IA64_CONTEXT, R)
#define IA64_SET_GR(R,V,N) ia64_set_gr(IA64_CONTEXT, R, V, N)
#define UC_ACCESS(FUNC,ARGS) do { if (__uc_##FUNC ARGS != 0) abort(); } while (0)
static inline uint64_t ia64_get_ip(IA64_CONTEXT_TYPE IA64_CONTEXT)
{ uint64_t v; UC_ACCESS(get_ip,(IA64_CONTEXT, &v)); return v; }
static inline void ia64_set_ip(IA64_CONTEXT_TYPE IA64_CONTEXT, uint64_t v)
{ UC_ACCESS(set_ip,(IA64_CONTEXT, v)); }
static inline unsigned int ia64_get_pr(IA64_CONTEXT_TYPE IA64_CONTEXT, int pr)
{ uint64_t v; UC_ACCESS(get_prs,(IA64_CONTEXT, &v)); return (v >> pr) & 1; }
static inline unsigned int ia64_get_nat(IA64_CONTEXT_TYPE IA64_CONTEXT, int r)
{ uint64_t v; unsigned int nat; UC_ACCESS(get_grs,(IA64_CONTEXT, r, 1, &v, &nat)); return (nat >> r) & 1; }
static inline uint64_t ia64_get_gr(IA64_CONTEXT_TYPE IA64_CONTEXT, int r)
{ uint64_t v; unsigned int nat; UC_ACCESS(get_grs,(IA64_CONTEXT, r, 1, &v, &nat)); return v; }
static void ia64_set_gr(IA64_CONTEXT_TYPE IA64_CONTEXT, int r, uint64_t v, unsigned int nat)
{
if (r == 0)
return;
if (r > 0 && r < 32)
UC_ACCESS(set_grs,(IA64_CONTEXT, r, 1, &v, (!!nat) << r));
else {
uint64_t bsp, bspstore;
UC_ACCESS(get_ar_bsp,(IA64_CONTEXT, &bsp));
UC_ACCESS(get_ar_bspstore,(IA64_CONTEXT, &bspstore));
abort(); /* XXX: use libunwind, this is not fun... */
}
}
// Byte-swapping
#if defined(__GNUC__)
#define BSWAP64(V) ({ uint64_t r; __asm__ __volatile__("mux1 %0=%1,@rev;;" : "=r" (r) : "r" (V)); r; })
#elif defined (__HP_aCC)
#define BSWAP64(V) _Asm_mux1(_MBTYPE_REV, V)
#else
#error "Define byte-swap instruction"
#endif
// Load bundle (in little-endian)
static inline void ia64_load_bundle(ia64_bundle_t bundle, uint64_t raw_ip)
{
uint64_t *ip = (uint64_t *)(raw_ip & ~3ull);
bundle[0] = BSWAP64(ip[0]);
bundle[1] = BSWAP64(ip[1]);
}
#endif
// Instruction operations
enum {
IA64_INST_UNKNOWN = 0,
IA64_INST_LD1, // ld1 op0=[op1]
IA64_INST_LD1_UPDATE, // ld1 op0=[op1],op2
IA64_INST_LD2, // ld2 op0=[op1]
IA64_INST_LD2_UPDATE, // ld2 op0=[op1],op2
IA64_INST_LD4, // ld4 op0=[op1]
IA64_INST_LD4_UPDATE, // ld4 op0=[op1],op2
IA64_INST_LD8, // ld8 op0=[op1]
IA64_INST_LD8_UPDATE, // ld8 op0=[op1],op2
IA64_INST_ST1, // st1 [op0]=op1
IA64_INST_ST1_UPDATE, // st1 [op0]=op1,op2
IA64_INST_ST2, // st2 [op0]=op1
IA64_INST_ST2_UPDATE, // st2 [op0]=op1,op2
IA64_INST_ST4, // st4 [op0]=op1
IA64_INST_ST4_UPDATE, // st4 [op0]=op1,op2
IA64_INST_ST8, // st8 [op0]=op1
IA64_INST_ST8_UPDATE, // st8 [op0]=op1,op2
IA64_INST_ADD, // add op0=op1,op2,op3
IA64_INST_SUB, // sub op0=op1,op2,op3
IA64_INST_SHLADD, // shladd op0=op1,op3,op2
IA64_INST_AND, // and op0=op1,op2
IA64_INST_ANDCM, // andcm op0=op1,op2
IA64_INST_OR, // or op0=op1,op2
IA64_INST_XOR, // xor op0=op1,op2
IA64_INST_SXT1, // sxt1 op0=op1
IA64_INST_SXT2, // sxt2 op0=op1
IA64_INST_SXT4, // sxt4 op0=op1
IA64_INST_ZXT1, // zxt1 op0=op1
IA64_INST_ZXT2, // zxt2 op0=op1
IA64_INST_ZXT4, // zxt4 op0=op1
IA64_INST_NOP // nop op0
};
const int IA64_N_OPERANDS = 4;
// Decoded operand type
struct ia64_operand_t {
uint8_t commit; // commit result of operation to register file?
uint8_t valid; // XXX: not really used, can be removed (debug)
int8_t index; // index of GPR, or -1 if immediate value
uint8_t nat; // NaT state before operation
uint64_t value; // register contents or immediate value
};
// Decoded instruction type
struct ia64_instruction_t {
uint8_t mnemo; // operation to perform
uint8_t pred; // predicate register to check
uint8_t no_memory; // used to emulated main fault instruction
uint64_t inst; // the raw instruction bits (41-bit wide)
ia64_operand_t operands[IA64_N_OPERANDS];
};
// Get immediate sign-bit
static inline int ia64_inst_get_sbit(uint64_t inst)
{
return (inst >> 36) & 1;
}
// Get 8-bit immediate value (A3, A8, I27, M30)
static inline uint64_t ia64_inst_get_imm8(uint64_t inst)
{
uint64_t value = (inst >> 13) & 0x7full;
if (ia64_inst_get_sbit(inst))
value |= ~0x7full;
return value;
}
// Get 9-bit immediate value (M3)
static inline uint64_t ia64_inst_get_imm9b(uint64_t inst)
{
uint64_t value = (((inst >> 27) & 1) << 7) | ((inst >> 13) & 0x7f);
if (ia64_inst_get_sbit(inst))
value |= ~0xffull;
return value;
}
// Get 9-bit immediate value (M5)
static inline uint64_t ia64_inst_get_imm9a(uint64_t inst)
{
uint64_t value = (((inst >> 27) & 1) << 7) | ((inst >> 6) & 0x7f);
if (ia64_inst_get_sbit(inst))
value |= ~0xffull;
return value;
}
// Get 14-bit immediate value (A4)
static inline uint64_t ia64_inst_get_imm14(uint64_t inst)
{
uint64_t value = (((inst >> 27) & 0x3f) << 7) | (inst & 0x7f);
if (ia64_inst_get_sbit(inst))
value |= ~0x1ffull;
return value;
}
// Get 22-bit immediate value (A5)
static inline uint64_t ia64_inst_get_imm22(uint64_t inst)
{
uint64_t value = ((((inst >> 22) & 0x1f) << 16) |
(((inst >> 27) & 0x1ff) << 7) |
(inst & 0x7f));
if (ia64_inst_get_sbit(inst))
value |= ~0x1fffffull;
return value;
}
// Get 21-bit immediate value (I19)
static inline uint64_t ia64_inst_get_imm21(uint64_t inst)
{
return (((inst >> 36) & 1) << 20) | ((inst >> 6) & 0xfffff);
}
// Get 2-bit count value (A2)
static inline int ia64_inst_get_count2(uint64_t inst)
{
return (inst >> 27) & 0x3;
}
// Get bundle template
static inline unsigned int ia64_get_template(uint64_t ip)
{
ia64_bundle_t bundle;
ia64_load_bundle(bundle, ip);
return bundle[0] & 0x1f;
}
// Get specified instruction in bundle
static uint64_t ia64_get_instruction(uint64_t ip, int slot)
{
uint64_t inst;
ia64_bundle_t bundle;
ia64_load_bundle(bundle, ip);
#if DEBUG
printf("Bundle: %016llx%016llx\n", bundle[1], bundle[0]);
#endif
switch (slot) {
case 0:
inst = (bundle[0] >> 5) & 0x1ffffffffffull;
break;
case 1:
inst = ((bundle[1] & 0x7fffffull) << 18) | ((bundle[0] >> 46) & 0x3ffffull);
break;
case 2:
inst = (bundle[1] >> 23) & 0x1ffffffffffull;
break;
case 3:
fprintf(stderr, "ERROR: ia64_get_instruction(), invalid slot number %d\n", slot);
abort();
break;
}
#if DEBUG
printf(" Instruction %d: 0x%016llx\n", slot, inst);
#endif
return inst;
}
// Decode group 0 instructions
static bool ia64_decode_instruction_0(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
{
const int r1 = (inst->inst >> 6) & 0x7f;
const int r3 = (inst->inst >> 20) & 0x7f;
const int x3 = (inst->inst >> 33) & 0x07;
const int x6 = (inst->inst >> 27) & 0x3f;
const int x2 = (inst->inst >> 31) & 0x03;
const int x4 = (inst->inst >> 27) & 0x0f;
if (x3 == 0) {
switch (x6) {
case 0x01: // nop.i (I19)
inst->mnemo = IA64_INST_NOP;
inst->operands[0].valid = true;
inst->operands[0].index = -1;
inst->operands[0].value = ia64_inst_get_imm21(inst->inst);
return true;
case 0x14: // sxt1 (I29)
case 0x15: // sxt2 (I29)
case 0x16: // sxt4 (I29)
case 0x10: // zxt1 (I29)
case 0x11: // zxt2 (I29)
case 0x12: // zxt4 (I29)
switch (x6) {
case 0x14: inst->mnemo = IA64_INST_SXT1; break;
case 0x15: inst->mnemo = IA64_INST_SXT2; break;
case 0x16: inst->mnemo = IA64_INST_SXT4; break;
case 0x10: inst->mnemo = IA64_INST_ZXT1; break;
case 0x11: inst->mnemo = IA64_INST_ZXT2; break;
case 0x12: inst->mnemo = IA64_INST_ZXT4; break;
default: abort();
}
inst->operands[0].valid = true;
inst->operands[0].index = r1;
inst->operands[1].valid = true;
inst->operands[1].index = r3;
inst->operands[1].value = IA64_GET_GR(r3);
inst->operands[1].nat = IA64_GET_NAT(r3);
return true;
}
}
return false;
}
// Decode group 4 instructions (load/store instructions)
static bool ia64_decode_instruction_4(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
{
const int r1 = (inst->inst >> 6) & 0x7f;
const int r2 = (inst->inst >> 13) & 0x7f;
const int r3 = (inst->inst >> 20) & 0x7f;
const int m = (inst->inst >> 36) & 1;
const int x = (inst->inst >> 27) & 1;
const int x6 = (inst->inst >> 30) & 0x3f;
switch (x6) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
if (x == 0) {
inst->operands[0].valid = true;
inst->operands[0].index = r1;
inst->operands[1].valid = true;
inst->operands[1].index = r3;
inst->operands[1].value = IA64_GET_GR(r3);
inst->operands[1].nat = IA64_GET_NAT(r3);
if (m == 0) {
switch (x6) {
case 0x00: inst->mnemo = IA64_INST_LD1; break;
case 0x01: inst->mnemo = IA64_INST_LD2; break;
case 0x02: inst->mnemo = IA64_INST_LD4; break;
case 0x03: inst->mnemo = IA64_INST_LD8; break;
}
}
else {
inst->operands[2].valid = true;
inst->operands[2].index = r2;
inst->operands[2].value = IA64_GET_GR(r2);
inst->operands[2].nat = IA64_GET_NAT(r2);
switch (x6) {
case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
}
}
return true;
}
break;
case 0x30:
case 0x31:
case 0x32:
case 0x33:
if (m == 0 && x == 0) {
inst->operands[0].valid = true;
inst->operands[0].index = r3;
inst->operands[0].value = IA64_GET_GR(r3);
inst->operands[0].nat = IA64_GET_NAT(r3);
inst->operands[1].valid = true;
inst->operands[1].index = r2;
inst->operands[1].value = IA64_GET_GR(r2);
inst->operands[1].nat = IA64_GET_NAT(r2);
switch (x6) {
case 0x30: inst->mnemo = IA64_INST_ST1; break;
case 0x31: inst->mnemo = IA64_INST_ST2; break;
case 0x32: inst->mnemo = IA64_INST_ST4; break;
case 0x33: inst->mnemo = IA64_INST_ST8; break;
}
return true;
}
break;
}
return false;
}
// Decode group 5 instructions (load/store instructions)
static bool ia64_decode_instruction_5(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
{
const int r1 = (inst->inst >> 6) & 0x7f;
const int r2 = (inst->inst >> 13) & 0x7f;
const int r3 = (inst->inst >> 20) & 0x7f;
const int x6 = (inst->inst >> 30) & 0x3f;
switch (x6) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
inst->operands[0].valid = true;
inst->operands[0].index = r1;
inst->operands[1].valid = true;
inst->operands[1].index = r3;
inst->operands[1].value = IA64_GET_GR(r3);
inst->operands[1].nat = IA64_GET_NAT(r3);
inst->operands[2].valid = true;
inst->operands[2].index = -1;
inst->operands[2].value = ia64_inst_get_imm9b(inst->inst);
inst->operands[2].nat = 0;
switch (x6) {
case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
}
return true;
case 0x30:
case 0x31:
case 0x32:
case 0x33:
inst->operands[0].valid = true;
inst->operands[0].index = r3;
inst->operands[0].value = IA64_GET_GR(r3);
inst->operands[0].nat = IA64_GET_NAT(r3);
inst->operands[1].valid = true;
inst->operands[1].index = r2;
inst->operands[1].value = IA64_GET_GR(r2);
inst->operands[1].nat = IA64_GET_NAT(r2);
inst->operands[2].valid = true;
inst->operands[2].index = -1;
inst->operands[2].value = ia64_inst_get_imm9a(inst->inst);
inst->operands[2].nat = 0;
switch (x6) {
case 0x30: inst->mnemo = IA64_INST_ST1_UPDATE; break;
case 0x31: inst->mnemo = IA64_INST_ST2_UPDATE; break;
case 0x32: inst->mnemo = IA64_INST_ST4_UPDATE; break;
case 0x33: inst->mnemo = IA64_INST_ST8_UPDATE; break;
}
return true;
}
return false;
}
// Decode group 8 instructions (ALU integer)
static bool ia64_decode_instruction_8(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
{
const int r1 = (inst->inst >> 6) & 0x7f;
const int r2 = (inst->inst >> 13) & 0x7f;
const int r3 = (inst->inst >> 20) & 0x7f;
const int x2a = (inst->inst >> 34) & 0x3;
const int x2b = (inst->inst >> 27) & 0x3;
const int x4 = (inst->inst >> 29) & 0xf;
const int ve = (inst->inst >> 33) & 0x1;
// destination register (r1) is always valid in this group
inst->operands[0].valid = true;
inst->operands[0].index = r1;
// source register (r3) is always valid in this group
inst->operands[2].valid = true;
inst->operands[2].index = r3;
inst->operands[2].value = IA64_GET_GR(r3);
inst->operands[2].nat = IA64_GET_NAT(r3);
if (x2a == 0 && ve == 0) {
inst->operands[1].valid = true;
inst->operands[1].index = r2;
inst->operands[1].value = IA64_GET_GR(r2);
inst->operands[1].nat = IA64_GET_NAT(r2);
switch (x4) {
case 0x0: // add (A1)
inst->mnemo = IA64_INST_ADD;
inst->operands[3].valid = true;
inst->operands[3].index = -1;
inst->operands[3].value = x2b == 1;
return true;
case 0x1: // add (A1)
inst->mnemo = IA64_INST_SUB;
inst->operands[3].valid = true;
inst->operands[3].index = -1;
inst->operands[3].value = x2b == 0;
return true;
case 0x4: // shladd (A2)
inst->mnemo = IA64_INST_SHLADD;
inst->operands[3].valid = true;
inst->operands[3].index = -1;
inst->operands[3].value = ia64_inst_get_count2(inst->inst);
return true;
case 0x9:
if (x2b == 1) {
inst->mnemo = IA64_INST_SUB;
inst->operands[1].index = -1;
inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
inst->operands[1].nat = 0;
return true;
}
break;
case 0xb:
inst->operands[1].index = -1;
inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
inst->operands[1].nat = 0;
// fall-through
case 0x3:
switch (x2b) {
case 0: inst->mnemo = IA64_INST_AND; break;
case 1: inst->mnemo = IA64_INST_ANDCM; break;
case 2: inst->mnemo = IA64_INST_OR; break;
case 3: inst->mnemo = IA64_INST_XOR; break;
}
return true;
}
}
return false;
}
// Decode instruction
static bool ia64_decode_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
{
const int major = (inst->inst >> 37) & 0xf;
inst->mnemo = IA64_INST_UNKNOWN;
inst->pred = inst->inst & 0x3f;
memset(&inst->operands[0], 0, sizeof(inst->operands));
switch (major) {
case 0x0: return ia64_decode_instruction_0(inst, IA64_CONTEXT);
case 0x4: return ia64_decode_instruction_4(inst, IA64_CONTEXT);
case 0x5: return ia64_decode_instruction_5(inst, IA64_CONTEXT);
case 0x8: return ia64_decode_instruction_8(inst, IA64_CONTEXT);
}
return false;
}
static bool ia64_emulate_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
{
// XXX: handle Register NaT Consumption fault?
// XXX: this simple emulator assumes instructions in a bundle
// don't depend on effects of other instructions in the same
// bundle. It probably would be simpler to JIT-generate code to be
// executed natively but probably more costly (inject/extract CPU state)
if (inst->mnemo == IA64_INST_UNKNOWN)
return false;
if (inst->pred && !IA64_GET_PR(inst->pred))
return true;
uint8_t nat, nat2;
uint64_t dst, dst2, src1, src2, src3;
switch (inst->mnemo) {
case IA64_INST_NOP:
break;
case IA64_INST_ADD:
case IA64_INST_SUB:
case IA64_INST_SHLADD:
src3 = inst->operands[3].value;
// fall-through
case IA64_INST_AND:
case IA64_INST_ANDCM:
case IA64_INST_OR:
case IA64_INST_XOR:
src1 = inst->operands[1].value;
src2 = inst->operands[2].value;
switch (inst->mnemo) {
case IA64_INST_ADD: dst = src1 + src2 + src3; break;
case IA64_INST_SUB: dst = src1 - src2 - src3; break;
case IA64_INST_SHLADD: dst = (src1 << src3) + src2; break;
case IA64_INST_AND: dst = src1 & src2; break;
case IA64_INST_ANDCM: dst = src1 &~ src2; break;
case IA64_INST_OR: dst = src1 | src2; break;
case IA64_INST_XOR: dst = src1 ^ src2; break;
}
inst->operands[0].commit = true;
inst->operands[0].value = dst;
inst->operands[0].nat = inst->operands[1].nat | inst->operands[2].nat;
break;
case IA64_INST_SXT1:
case IA64_INST_SXT2:
case IA64_INST_SXT4:
case IA64_INST_ZXT1:
case IA64_INST_ZXT2:
case IA64_INST_ZXT4:
src1 = inst->operands[1].value;
switch (inst->mnemo) {
case IA64_INST_SXT1: dst = (int64_t)(int8_t)src1; break;
case IA64_INST_SXT2: dst = (int64_t)(int16_t)src1; break;
case IA64_INST_SXT4: dst = (int64_t)(int32_t)src1; break;
case IA64_INST_ZXT1: dst = (uint8_t)src1; break;
case IA64_INST_ZXT2: dst = (uint16_t)src1; break;
case IA64_INST_ZXT4: dst = (uint32_t)src1; break;
}
inst->operands[0].commit = true;
inst->operands[0].value = dst;
inst->operands[0].nat = inst->operands[1].nat;
break;
case IA64_INST_LD1_UPDATE:
case IA64_INST_LD2_UPDATE:
case IA64_INST_LD4_UPDATE:
case IA64_INST_LD8_UPDATE:
inst->operands[1].commit = true;
dst2 = inst->operands[1].value + inst->operands[2].value;
nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
// fall-through
case IA64_INST_LD1:
case IA64_INST_LD2:
case IA64_INST_LD4:
case IA64_INST_LD8:
src1 = inst->operands[1].value;
if (inst->no_memory)
dst = 0;
else {
switch (inst->mnemo) {
case IA64_INST_LD1: case IA64_INST_LD1_UPDATE: dst = *((uint8_t *)src1); break;
case IA64_INST_LD2: case IA64_INST_LD2_UPDATE: dst = *((uint16_t *)src1); break;
case IA64_INST_LD4: case IA64_INST_LD4_UPDATE: dst = *((uint32_t *)src1); break;
case IA64_INST_LD8: case IA64_INST_LD8_UPDATE: dst = *((uint64_t *)src1); break;
}
}
inst->operands[0].commit = true;
inst->operands[0].value = dst;
inst->operands[0].nat = 0;
inst->operands[1].value = dst2;
inst->operands[1].nat = nat2;
break;
case IA64_INST_ST1_UPDATE:
case IA64_INST_ST2_UPDATE:
case IA64_INST_ST4_UPDATE:
case IA64_INST_ST8_UPDATE:
inst->operands[0].commit = 0;
dst2 = inst->operands[0].value + inst->operands[2].value;
nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
// fall-through
case IA64_INST_ST1:
case IA64_INST_ST2:
case IA64_INST_ST4:
case IA64_INST_ST8:
dst = inst->operands[0].value;
src1 = inst->operands[1].value;
if (!inst->no_memory) {
switch (inst->mnemo) {
case IA64_INST_ST1: case IA64_INST_ST1_UPDATE: *((uint8_t *)dst) = src1; break;
case IA64_INST_ST2: case IA64_INST_ST2_UPDATE: *((uint16_t *)dst) = src1; break;
case IA64_INST_ST4: case IA64_INST_ST4_UPDATE: *((uint32_t *)dst) = src1; break;
case IA64_INST_ST8: case IA64_INST_ST8_UPDATE: *((uint64_t *)dst) = src1; break;
}
}
inst->operands[0].value = dst2;
inst->operands[0].nat = nat2;
break;
default:
return false;
}
for (int i = 0; i < IA64_N_OPERANDS; i++) {
ia64_operand_t const & op = inst->operands[i];
if (!op.commit)
continue;
if (op.index == -1)
return false; // XXX: internal error
IA64_SET_GR(op.index, op.value, op.nat);
}
return true;
}
static bool ia64_emulate_instruction(uint64_t raw_inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
{
ia64_instruction_t inst;
memset(&inst, 0, sizeof(inst));
inst.inst = raw_inst;
if (!ia64_decode_instruction(&inst, IA64_CONTEXT))
return false;
return ia64_emulate_instruction(&inst, IA64_CONTEXT);
}
static bool ia64_skip_instruction(IA64_CONTEXT_TYPE IA64_CONTEXT)
{
uint64_t ip = IA64_GET_IP();
#if DEBUG
printf("IP: 0x%016llx\n", ip);
#if 0
printf(" Template 0x%02x\n", ia64_get_template(ip));
ia64_get_instruction(ip, 0);
ia64_get_instruction(ip, 1);
ia64_get_instruction(ip, 2);
#endif
#endif
// Select which decode switch to use
ia64_instruction_t inst;
inst.inst = ia64_get_instruction(ip, ip & 3);
if (!ia64_decode_instruction(&inst, IA64_CONTEXT)) {
fprintf(stderr, "ERROR: ia64_skip_instruction(): could not decode instruction\n");
return false;
}
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
transfer_size_t transfer_size = SIZE_UNKNOWN;
switch (inst.mnemo) {
case IA64_INST_LD1:
case IA64_INST_LD2:
case IA64_INST_LD4:
case IA64_INST_LD8:
case IA64_INST_LD1_UPDATE:
case IA64_INST_LD2_UPDATE:
case IA64_INST_LD4_UPDATE:
case IA64_INST_LD8_UPDATE:
transfer_type = SIGSEGV_TRANSFER_LOAD;
break;
case IA64_INST_ST1:
case IA64_INST_ST2:
case IA64_INST_ST4:
case IA64_INST_ST8:
case IA64_INST_ST1_UPDATE:
case IA64_INST_ST2_UPDATE:
case IA64_INST_ST4_UPDATE:
case IA64_INST_ST8_UPDATE:
transfer_type = SIGSEGV_TRANSFER_STORE;
break;
}
if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
// Unknown machine code, let it crash. Then patch the decoder
fprintf(stderr, "ERROR: ia64_skip_instruction(): not a load/store instruction\n");
return false;
}
switch (inst.mnemo) {
case IA64_INST_LD1:
case IA64_INST_LD1_UPDATE:
case IA64_INST_ST1:
case IA64_INST_ST1_UPDATE:
transfer_size = SIZE_BYTE;
break;
case IA64_INST_LD2:
case IA64_INST_LD2_UPDATE:
case IA64_INST_ST2:
case IA64_INST_ST2_UPDATE:
transfer_size = SIZE_WORD;
break;
case IA64_INST_LD4:
case IA64_INST_LD4_UPDATE:
case IA64_INST_ST4:
case IA64_INST_ST4_UPDATE:
transfer_size = SIZE_LONG;
break;
case IA64_INST_LD8:
case IA64_INST_LD8_UPDATE:
case IA64_INST_ST8:
case IA64_INST_ST8_UPDATE:
transfer_size = SIZE_QUAD;
break;
}
if (transfer_size == SIZE_UNKNOWN) {
// Unknown machine code, let it crash. Then patch the decoder
fprintf(stderr, "ERROR: ia64_skip_instruction(): unknown transfer size\n");
return false;
}
inst.no_memory = true;
if (!ia64_emulate_instruction(&inst, IA64_CONTEXT)) {
fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate fault instruction\n");
return false;
}
int slot = ip & 3;
bool emulate_next = false;
switch (slot) {
case 0:
switch (ia64_get_template(ip)) {
case 0x2: // MI;I
case 0x3: // MI;I;
emulate_next = true;
slot = 2;
break;
case 0xa: // M;MI
case 0xb: // M;MI;
emulate_next = true;
slot = 1;
break;
}
break;
}
if (emulate_next && !IA64_CAN_PATCH_IP_SLOT) {
while (slot < 3) {
if (!ia64_emulate_instruction(ia64_get_instruction(ip, slot), IA64_CONTEXT)) {
fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate instruction\n");
return false;
}
++slot;
}
}
#if IA64_CAN_PATCH_IP_SLOT
if ((slot = ip & 3) < 2)
IA64_SET_IP((ip & ~3ull) + (slot + 1));
else
#endif
IA64_SET_IP((ip & ~3ull) + 16);
#if DEBUG
printf("IP: 0x%016llx\n", IA64_GET_IP());
#endif
return true;
}
#endif
// Decode and skip PPC instruction
#if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
{
instruction_t instr;
powerpc_decode_instruction(&instr, *nip_p, regs);
if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
// Unknown machine code, let it crash. Then patch the decoder
return false;
}
#if DEBUG
printf("%08x: %s %s access", *nip_p,
instr.transfer_size == SIZE_BYTE ? "byte" :
instr.transfer_size == SIZE_WORD ? "word" :
instr.transfer_size == SIZE_LONG ? "long" : "quad",
instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
printf(" r%d (rd = 0)\n", instr.rd);
#endif
if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
regs[instr.ra] = instr.addr;
if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
regs[instr.rd] = 0;
*nip_p += 4;
return true;
}
#endif
// Decode and skip MIPS instruction
#if (defined(mips) || defined(__mips))
static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
{
unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
if (epc == 0)
return false;
#if DEBUG
printf("IP: %p [%08x]\n", epc, epc[0]);
#endif
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
transfer_size_t transfer_size = SIZE_LONG;
int direction = 0;
const unsigned int opcode = epc[0];
switch (opcode >> 26) {
case 32: // Load Byte
case 36: // Load Byte Unsigned
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_BYTE;
break;
case 33: // Load Halfword
case 37: // Load Halfword Unsigned
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_WORD;
break;
case 35: // Load Word
case 39: // Load Word Unsigned
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_LONG;
break;
case 34: // Load Word Left
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_LONG;
direction = -1;
break;
case 38: // Load Word Right
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_LONG;
direction = 1;
break;
case 55: // Load Doubleword
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_QUAD;
break;
case 26: // Load Doubleword Left
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_QUAD;
direction = -1;
break;
case 27: // Load Doubleword Right
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_QUAD;
direction = 1;
break;
case 40: // Store Byte
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_BYTE;
break;
case 41: // Store Halfword
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_WORD;
break;
case 43: // Store Word
case 42: // Store Word Left
case 46: // Store Word Right
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_LONG;
break;
case 63: // Store Doubleword
case 44: // Store Doubleword Left
case 45: // Store Doubleword Right
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_QUAD;
break;
/* Misc instructions unlikely to be used within CPU emulators */
case 48: // Load Linked Word
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_LONG;
break;
case 52: // Load Linked Doubleword
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_QUAD;
break;
case 56: // Store Conditional Word
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_LONG;
break;
case 60: // Store Conditional Doubleword
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_QUAD;
break;
}
if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
// Unknown machine code, let it crash. Then patch the decoder
return false;
}
// Zero target register in case of a load operation
const int reg = (opcode >> 16) & 0x1f;
if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
if (direction == 0)
regs[reg] = 0;
else {
// FIXME: untested code
unsigned long ea = regs[(opcode >> 21) & 0x1f];
ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
unsigned long value;
if (direction > 0) {
const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
value = regs[reg] & rmask;
}
else {
const unsigned long lmask = (1L << (offset * 8)) - 1;
value = regs[reg] & lmask;
}
// restore most significant bits
if (transfer_size == SIZE_LONG)
value = (signed long)(signed int)value;
regs[reg] = value;
}
}
#if DEBUG
#if (defined(_ABIN32) || defined(_ABI64))
static const char * mips_gpr_names[32] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
};
#else
static const char * mips_gpr_names[32] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
};
#endif
printf("%s %s register %s\n",
transfer_size == SIZE_BYTE ? "byte" :
transfer_size == SIZE_WORD ? "word" :
transfer_size == SIZE_LONG ? "long" :
transfer_size == SIZE_QUAD ? "quad" : "unknown",
transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
mips_gpr_names[reg]);
#endif
*pc_p += 4;
return true;
}
#endif
// Decode and skip SPARC instruction
#if (defined(sparc) || defined(__sparc__))
enum {
#if (defined(__sun__))
SPARC_REG_G1 = REG_G1,
SPARC_REG_O0 = REG_O0,
SPARC_REG_PC = REG_PC,
SPARC_REG_nPC = REG_nPC
#endif
};
static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
{
unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
if (pc == 0)
return false;
#if DEBUG
printf("IP: %p [%08x]\n", pc, pc[0]);
#endif
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
transfer_size_t transfer_size = SIZE_LONG;
bool register_pair = false;
const unsigned int opcode = pc[0];
if ((opcode >> 30) != 3)
return false;
switch ((opcode >> 19) & 0x3f) {
case 9: // Load Signed Byte
case 1: // Load Unsigned Byte
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_BYTE;
break;
case 10:// Load Signed Halfword
case 2: // Load Unsigned Word
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_WORD;
break;
case 8: // Load Word
case 0: // Load Unsigned Word
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_LONG;
break;
case 11:// Load Extended Word
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_QUAD;
break;
case 3: // Load Doubleword
transfer_type = SIGSEGV_TRANSFER_LOAD;
transfer_size = SIZE_LONG;
register_pair = true;
break;
case 5: // Store Byte
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_BYTE;
break;
case 6: // Store Halfword
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_WORD;
break;
case 4: // Store Word
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_LONG;
break;
case 14:// Store Extended Word
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_QUAD;
break;
case 7: // Store Doubleword
transfer_type = SIGSEGV_TRANSFER_STORE;
transfer_size = SIZE_LONG;
register_pair = true;
break;
}
if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
// Unknown machine code, let it crash. Then patch the decoder
return false;
}
const int reg = (opcode >> 25) & 0x1f;
#if DEBUG
static const char * reg_names[] = {
"g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
};
printf("%s %s register %s\n",
transfer_size == SIZE_BYTE ? "byte" :
transfer_size == SIZE_WORD ? "word" :
transfer_size == SIZE_LONG ? "long" :
transfer_size == SIZE_QUAD ? "quad" : "unknown",
transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
reg_names[reg]);
#endif
// Zero target register in case of a load operation
if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
// FIXME: code to handle local & input registers is not tested
if (reg >= 1 && reg < 8) {
// global registers
regs[reg - 1 + SPARC_REG_G1] = 0;
}
else if (reg >= 8 && reg < 16) {
// output registers
regs[reg - 8 + SPARC_REG_O0] = 0;
}
else if (reg >= 16 && reg < 24) {
// local registers (in register windows)
if (gwins)
gwins->wbuf->rw_local[reg - 16] = 0;
else
rwin->rw_local[reg - 16] = 0;
}
else {
// input registers (in register windows)
if (gwins)
gwins->wbuf->rw_in[reg - 24] = 0;
else
rwin->rw_in[reg - 24] = 0;
}
}
regs[SPARC_REG_PC] += 4;
regs[SPARC_REG_nPC] += 4;
return true;
}
#endif
#endif
// Decode and skip ARM instruction
#if (defined(arm) || defined(__arm__))
enum {
#if (defined(__linux__))
ARM_REG_PC = 15,
ARM_REG_CPSR = 16
#endif
};
static bool arm_skip_instruction(unsigned long * regs)
{
unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
if (pc == 0)
return false;
#if DEBUG
printf("IP: %p [%08x]\n", pc, pc[0]);
#endif
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
transfer_size_t transfer_size = SIZE_UNKNOWN;
enum { op_sdt = 1, op_sdth = 2 };
int op = 0;
// Handle load/store instructions only
const unsigned int opcode = pc[0];
switch ((opcode >> 25) & 7) {
case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
op = op_sdth;
// Determine transfer size (S/H bits)
switch ((opcode >> 5) & 3) {
case 0: // SWP instruction
break;
case 1: // Unsigned halfwords
case 3: // Signed halfwords
transfer_size = SIZE_WORD;
break;
case 2: // Signed byte
transfer_size = SIZE_BYTE;
break;
}
break;
case 2:
case 3: // Single Data Transfer (LDR, STR)
op = op_sdt;
// Determine transfer size (B bit)
if (((opcode >> 22) & 1) == 1)
transfer_size = SIZE_BYTE;
else
transfer_size = SIZE_LONG;
break;
default:
// FIXME: support load/store mutliple?
return false;
}
// Check for invalid transfer size (SWP instruction?)
if (transfer_size == SIZE_UNKNOWN)
return false;
// Determine transfer type (L bit)
if (((opcode >> 20) & 1) == 1)
transfer_type = SIGSEGV_TRANSFER_LOAD;
else
transfer_type = SIGSEGV_TRANSFER_STORE;
// Compute offset
int offset;
if (((opcode >> 25) & 1) == 0) {
if (op == op_sdt)
offset = opcode & 0xfff;
else if (op == op_sdth) {
int rm = opcode & 0xf;
if (((opcode >> 22) & 1) == 0) {
// register offset
offset = regs[rm];
}
else {
// immediate offset
offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
}
}
}
else {
const int rm = opcode & 0xf;
const int sh = (opcode >> 7) & 0x1f;
if (((opcode >> 4) & 1) == 1) {
// we expect only legal load/store instructions
printf("FATAL: invalid shift operand\n");
return false;
}
const unsigned int v = regs[rm];
switch ((opcode >> 5) & 3) {
case 0: // logical shift left
offset = sh ? v << sh : v;
break;
case 1: // logical shift right
offset = sh ? v >> sh : 0;
break;
case 2: // arithmetic shift right
if (sh)
offset = ((signed int)v) >> sh;
else
offset = (v & 0x80000000) ? 0xffffffff : 0;
break;
case 3: // rotate right
if (sh)
offset = (v >> sh) | (v << (32 - sh));
else
offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
break;
}
}
if (((opcode >> 23) & 1) == 0)
offset = -offset;
int rd = (opcode >> 12) & 0xf;
int rn = (opcode >> 16) & 0xf;
#if DEBUG
static const char * reg_names[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
};
printf("%s %s register %s\n",
transfer_size == SIZE_BYTE ? "byte" :
transfer_size == SIZE_WORD ? "word" :
transfer_size == SIZE_LONG ? "long" : "unknown",
transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
reg_names[rd]);
#endif
unsigned int base = regs[rn];
if (((opcode >> 24) & 1) == 1)
base += offset;
if (transfer_type == SIGSEGV_TRANSFER_LOAD)
regs[rd] = 0;
if (((opcode >> 24) & 1) == 0) // post-index addressing
regs[rn] += offset;
else if (((opcode >> 21) & 1) == 1) // write-back address into base
regs[rn] = base;
regs[ARM_REG_PC] += 4;
return true;
}
#endif
#ifdef _STRUCT_ARM_THREAD_STATE64
static bool aarch64_skip_instruction(unsigned long *regs) {
_STRUCT_ARM_THREAD_STATE64 *ts = (_STRUCT_ARM_THREAD_STATE64 *)regs;
if (!ts->__pc) return false;
ts->__pc += 4;
return true;
}
#endif
#ifdef __linux__
static bool aarch64_skip_instruction(unsigned long *regs) {
unsigned long long *r = (unsigned long long *)regs;
if (!r[32]) return false;
r[32] += 4;
return true;
}
#endif
// Fallbacks
#ifndef SIGSEGV_FAULT_ADDRESS_FAST
#define SIGSEGV_FAULT_ADDRESS_FAST SIGSEGV_FAULT_ADDRESS
#endif
#ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
#define SIGSEGV_FAULT_INSTRUCTION_FAST SIGSEGV_FAULT_INSTRUCTION
#endif
#ifndef SIGSEGV_FAULT_INSTRUCTION
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_ADDRESS
#endif
#ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
#endif
#ifndef SIGSEGV_FAULT_HANDLER_INVOKE
#define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
#endif
// SIGSEGV recovery supported ?
#if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
#define HAVE_SIGSEGV_RECOVERY
#endif
/*
* SIGSEGV global handler
*/
#ifdef HAVE_MACH_EXCEPTIONS
#ifdef EMULATED_PPC
static void mach_get_exception_state(sigsegv_info_t *SIP)
{
SIP->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
kern_return_t krc = thread_get_state(SIP->thread,
SIGSEGV_EXCEPTION_STATE_FLAVOR,
(natural_t *)&SIP->exc_state,
&SIP->exc_state_count);
MACH_CHECK_ERROR(thread_get_state, krc);
SIP->has_exc_state = true;
}
#endif
static void mach_get_thread_state(sigsegv_info_t *SIP)
{
SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
kern_return_t krc = thread_get_state(SIP->thread,
SIGSEGV_THREAD_STATE_FLAVOR,
(natural_t *)&SIP->thr_state,
&SIP->thr_state_count);
MACH_CHECK_ERROR(thread_get_state, krc);
SIP->has_thr_state = true;
}
static void mach_set_thread_state(sigsegv_info_t *SIP)
{
kern_return_t krc = thread_set_state(SIP->thread,
SIGSEGV_THREAD_STATE_FLAVOR,
(natural_t *)&SIP->thr_state,
SIP->thr_state_count);
MACH_CHECK_ERROR(thread_set_state, krc);
}
#endif
// Return the address of the invalid memory reference
sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP)
{
#ifdef HAVE_MACH_EXCEPTIONS
#ifdef EMULATED_PPC
static int use_fast_path = -1;
if (use_fast_path != 1 && !SIP->has_exc_state) {
mach_get_exception_state(SIP);
sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
if (use_fast_path < 0) {
const char *machfault = getenv("SIGSEGV_MACH_FAULT");
if (machfault) {
if (strcmp(machfault, "fast") == 0)
use_fast_path = 1;
else if (strcmp(machfault, "slow") == 0)
use_fast_path = 0;
}
if (use_fast_path < 0)
use_fast_path = addr == SIP->addr;
}
SIP->addr = addr;
}
#endif
#endif
return SIP->addr;
}
// Return the address of the instruction that caused the fault, or
// SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP)
{
#ifdef HAVE_MACH_EXCEPTIONS
#ifdef EMULATED_PPC
if (!SIP->has_thr_state) {
mach_get_thread_state(SIP);
SIP->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
}
#endif
#endif
return SIP->pc;
}
// This function handles the badaccess to memory.
// It is called from the signal handler or the exception handler.
static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
{
sigsegv_info_t SI;
SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
#ifdef HAVE_MACH_EXCEPTIONS
SI.thread = thread;
SI.has_exc_state = false;
SI.has_thr_state = false;
#endif
sigsegv_info_t * const SIP = &SI;
// Call user's handler and reinstall the global handler, if required
switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) {
case SIGSEGV_RETURN_SUCCESS:
return true;
#if HAVE_SIGSEGV_SKIP_INSTRUCTION
case SIGSEGV_RETURN_SKIP_INSTRUCTION:
// Call the instruction skipper with the register file
// available
#ifdef HAVE_MACH_EXCEPTIONS
if (!SIP->has_thr_state)
mach_get_thread_state(SIP);
#endif
if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
#ifdef HAVE_MACH_EXCEPTIONS
// Unlike UNIX signals where the thread state
// is modified off of the stack, in Mach we
// need to actually call thread_set_state to
// have the register values updated.
mach_set_thread_state(SIP);
#endif
return true;
}
break;
#endif
case SIGSEGV_RETURN_FAILURE:
// We can't do anything with the fault_address, dump state?
if (sigsegv_state_dumper != 0)
sigsegv_state_dumper(SIP);
break;
}
return false;
}
/*
* There are two mechanisms for handling a bad memory access,
* Mach exceptions and UNIX signals. The implementation specific
* code appears below. Its reponsibility is to call handle_badaccess
* which is the routine that handles the fault in an implementation
* agnostic manner. The implementation specific code below is then
* reponsible for checking whether handle_badaccess was able
* to handle the memory access error and perform any implementation
* specific tasks necessary afterwards.
*/
#ifdef HAVE_MACH_EXCEPTIONS
/*
* We need to forward all exceptions that we do not handle.
* This is important, there are many exceptions that may be
* handled by other exception handlers. For example debuggers
* use exceptions and the exception hander is in another
* process in such a case. (Timothy J. Wood states in his
* message to the list that he based this code on that from
* gdb for Darwin.)
*/
static inline kern_return_t
forward_exception(mach_port_t thread_port,
mach_port_t task_port,
exception_type_t exception_type,
mach_exception_data_t exception_data,
mach_msg_type_number_t data_count,
ExceptionPorts *oldExceptionPorts)
{
kern_return_t kret;
unsigned int portIndex;
mach_port_t port;
exception_behavior_t behavior;
thread_state_flavor_t flavor;
thread_state_data_t thread_state;
mach_msg_type_number_t thread_state_count;
for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
// This handler wants the exception
break;
}
}
if (portIndex >= oldExceptionPorts->maskCount) {
fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
return KERN_FAILURE;
}
port = oldExceptionPorts->handlers[portIndex];
behavior = oldExceptionPorts->behaviors[portIndex];
flavor = oldExceptionPorts->flavors[portIndex];
if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
return KERN_FAILURE;
}
/*
fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
*/
if (behavior != EXCEPTION_DEFAULT) {
thread_state_count = THREAD_STATE_MAX;
kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
&thread_state_count);
MACH_CHECK_ERROR (thread_get_state, kret);
}
switch (behavior) {
case EXCEPTION_DEFAULT:
// fprintf(stderr, "forwarding to exception_raise\n");
kret = mach_exception_raise(port, thread_port, task_port, exception_type,
exception_data, data_count);
MACH_CHECK_ERROR (mach_exception_raise, kret);
break;
case EXCEPTION_STATE:
// fprintf(stderr, "forwarding to exception_raise_state\n");
kret = mach_exception_raise_state(port, exception_type, exception_data,
data_count, &flavor,
(natural_t *)&thread_state, thread_state_count,
(natural_t *)&thread_state, &thread_state_count);
MACH_CHECK_ERROR (mach_exception_raise_state, kret);
break;
case EXCEPTION_STATE_IDENTITY:
// fprintf(stderr, "forwarding to exception_raise_state_identity\n");
kret = mach_exception_raise_state_identity(port, thread_port, task_port,
exception_type, exception_data,
data_count, &flavor,
(natural_t *)&thread_state, thread_state_count,
(natural_t *)&thread_state, &thread_state_count);
MACH_CHECK_ERROR (mach_exception_raise_state_identity, kret);
break;
default:
fprintf(stderr, "forward_exception got unknown behavior\n");
kret = KERN_FAILURE;
break;
}
if (behavior != EXCEPTION_DEFAULT) {
kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
thread_state_count);
MACH_CHECK_ERROR (thread_set_state, kret);
}
return kret;
}
/*
* This is the code that actually handles the exception.
* It is called by exc_server. For Darwin 5 Apple changed
* this a bit from how this family of functions worked in
* Mach. If you are familiar with that it is a little
* different. The main variation that concerns us here is
* that code is an array of exception specific codes and
* codeCount is a count of the number of codes in the code
* array. In typical Mach all exceptions have a code
* and sub-code. It happens to be the case that for a
* EXC_BAD_ACCESS exception the first entry is the type of
* bad access that occurred and the second entry is the
* faulting address so these entries correspond exactly to
* how the code and sub-code are used on Mach.
*
* This is a MIG interface. No code in Basilisk II should
* call this directley. This has to have external C
* linkage because that is what exc_server expects.
*/
kern_return_t
catch_mach_exception_raise(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
exception_type_t exception,
mach_exception_data_t code,
mach_msg_type_number_t code_count)
{
kern_return_t krc;
if (exception == EXC_BAD_ACCESS) {
switch (code[0]) {
case KERN_PROTECTION_FAILURE:
case KERN_INVALID_ADDRESS:
if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
return KERN_SUCCESS;
break;
}
}
// In Mach we do not need to remove the exception handler.
// If we forward the exception, eventually some exception handler
// will take care of this exception.
krc = forward_exception(thread, task, exception, code, code_count, &ports);
return krc;
}
/* XXX: borrowed from launchd and gdb */
kern_return_t
catch_mach_exception_raise_state(mach_port_t exception_port,
exception_type_t exception,
mach_exception_data_t code,
mach_msg_type_number_t code_count,
int *flavor,
thread_state_t old_state,
mach_msg_type_number_t old_state_count,
thread_state_t new_state,
mach_msg_type_number_t *new_state_count)
{
memcpy(new_state, old_state, old_state_count * sizeof(old_state[0]));
*new_state_count = old_state_count;
return KERN_SUCCESS;
}
/* XXX: borrowed from launchd and gdb */
kern_return_t
catch_mach_exception_raise_state_identity(mach_port_t exception_port,
mach_port_t thread_port,
mach_port_t task_port,
exception_type_t exception,
mach_exception_data_t code,
mach_msg_type_number_t code_count,
int *flavor,
thread_state_t old_state,
mach_msg_type_number_t old_state_count,
thread_state_t new_state,
mach_msg_type_number_t *new_state_count)
{
kern_return_t kret;
memcpy(new_state, old_state, old_state_count * sizeof(old_state[0]));
*new_state_count = old_state_count;
kret = mach_port_deallocate(mach_task_self(), task_port);
MACH_CHECK_ERROR(mach_port_deallocate, kret);
kret = mach_port_deallocate(mach_task_self(), thread_port);
MACH_CHECK_ERROR(mach_port_deallocate, kret);
return KERN_SUCCESS;
}
#endif
#ifdef HAVE_SIGSEGV_RECOVERY
// Handle bad memory accesses with signal handler
static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
{
// Call handler and reinstall the global handler, if required
if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
#if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
sigsegv_do_install_handler(sig);
#endif
return;
}
// Failure: reinstall default handler for "safe" crash
#define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
SIGSEGV_ALL_SIGNALS
#undef FAULT_HANDLER
}
#endif
/*
* SIGSEGV handler initialization
*/
#if defined(HAVE_SIGINFO_T)
static bool sigsegv_do_install_handler(int sig)
{
// Setup SIGSEGV handler to process writes to frame buffer
#ifdef HAVE_SIGACTION
struct sigaction sigsegv_sa;
memset(&sigsegv_sa, 0, sizeof(struct sigaction));
sigemptyset(&sigsegv_sa.sa_mask);
sigsegv_sa.sa_sigaction = sigsegv_handler;
sigsegv_sa.sa_flags = SA_SIGINFO;
return (sigaction(sig, &sigsegv_sa, 0) == 0);
#else
return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
#endif
}
#endif
#if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
static bool sigsegv_do_install_handler(int sig)
{
// Setup SIGSEGV handler to process writes to frame buffer
#ifdef HAVE_SIGACTION
struct sigaction sigsegv_sa;
memset(&sigsegv_sa, 0, sizeof(struct sigaction));
sigemptyset(&sigsegv_sa.sa_mask);
sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
sigsegv_sa.sa_flags = 0;
#if !EMULATED_68K && defined(__NetBSD__)
sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
sigsegv_sa.sa_flags |= SA_ONSTACK;
#endif
return (sigaction(sig, &sigsegv_sa, 0) == 0);
#else
return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
#endif
}
#endif
#if defined(HAVE_MACH_EXCEPTIONS)
static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
{
/*
* Except for the exception port functions, this should be
* pretty much stock Mach. If later you choose to support
* other Mach's besides Darwin, just check for __MACH__
* here and __APPLE__ where the actual differences are.
*/
#if defined(__APPLE__) && defined(__MACH__)
if (sigsegv_fault_handler != NULL) {
sigsegv_fault_handler = handler;
return true;
}
kern_return_t krc;
// create the the exception port
krc = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
if (krc != KERN_SUCCESS) {
mach_error("mach_port_allocate", krc);
return false;
}
// add a port send right
krc = mach_port_insert_right(mach_task_self(),
_exceptionPort, _exceptionPort,
MACH_MSG_TYPE_MAKE_SEND);
if (krc != KERN_SUCCESS) {
mach_error("mach_port_insert_right", krc);
return false;
}
// get the old exception ports
ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
&ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
if (krc != KERN_SUCCESS) {
mach_error("thread_get_exception_ports", krc);
return false;
}
// set the new exception port
//
// We could have used EXCEPTION_STATE_IDENTITY instead of
// EXCEPTION_DEFAULT to get the thread state in the initial
// message, but it turns out that in the common case this is not
// neccessary. If we need it we can later ask for it from the
// suspended thread.
//
// Even with THREAD_STATE_NONE, Darwin provides the program
// counter in the thread state. The comments in the header file
// seem to imply that you can count on the GPR's on an exception
// as well but just to be safe I use MACHINE_THREAD_STATE because
// you have to ask for all of the GPR's anyway just to get the
// program counter. In any case because of update effective
// address from immediate and update address from effective
// addresses of ra and rb modes (as good an name as any for these
// addressing modes) used in PPC instructions, you will need the
// GPR state anyway.
krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES, SIGSEGV_THREAD_STATE_FLAVOR);
if (krc != KERN_SUCCESS) {
mach_error("thread_set_exception_ports", krc);
return false;
}
// create the exception handler thread
if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
(void)fprintf(stderr, "creation of exception thread failed\n");
return false;
}
// do not care about the exception thread any longer, let is run standalone
(void)pthread_detach(exc_thread);
sigsegv_fault_handler = handler;
return true;
#else
return false;
#endif
}
#endif
#ifdef HAVE_WIN32_EXCEPTIONS
static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
{
if (sigsegv_fault_handler != NULL
&& ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
&& ExceptionInfo->ExceptionRecord->NumberParameters >= 2
&& handle_badaccess(ExceptionInfo))
return EXCEPTION_CONTINUE_EXECUTION;
return EXCEPTION_CONTINUE_SEARCH;
}
#if defined __CYGWIN__ && defined __i386__
/* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
installs a global exception handler. We have to dig deep in order to install
our main_exception_filter. */
/* Data structures for the current thread's exception handler chain.
On the x86 Windows uses register fs, offset 0 to point to the current
exception handler; Cygwin mucks with it, so we must do the same... :-/ */
/* Magic taken from winsup/cygwin/include/exceptions.h. */
struct exception_list {
struct exception_list *prev;
int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
};
typedef struct exception_list exception_list;
/* Magic taken from winsup/cygwin/exceptions.cc. */
__asm__ (".equ __except_list,0");
extern exception_list *_except_list __asm__ ("%fs:__except_list");
/* For debugging. _except_list is not otherwise accessible from gdb. */
static exception_list *
debug_get_except_list ()
{
return _except_list;
}
/* Cygwin's original exception handler. */
static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
/* Our exception handler. */
static int
libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
{
EXCEPTION_POINTERS ExceptionInfo;
ExceptionInfo.ExceptionRecord = exception;
ExceptionInfo.ContextRecord = context;
if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
return cygwin_exception_handler (exception, frame, context, dispatch);
else
return 0;
}
static void
do_install_main_exception_filter ()
{
/* We cannot insert any handler into the chain, because such handlers
must lie on the stack (?). Instead, we have to replace(!) Cygwin's
global exception handler. */
cygwin_exception_handler = _except_list->handler;
_except_list->handler = libsigsegv_exception_handler;
}
#else
static void
do_install_main_exception_filter ()
{
SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
}
#endif
static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
{
static bool main_exception_filter_installed = false;
if (!main_exception_filter_installed) {
do_install_main_exception_filter();
main_exception_filter_installed = true;
}
sigsegv_fault_handler = handler;
return true;
}
#endif
bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
{
#if defined(HAVE_SIGSEGV_RECOVERY)
bool success = true;
#define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
SIGSEGV_ALL_SIGNALS
#undef FAULT_HANDLER
if (success)
sigsegv_fault_handler = handler;
return success;
#elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
return sigsegv_do_install_handler(handler);
#else
// FAIL: no siginfo_t nor sigcontext subterfuge is available
return false;
#endif
}
/*
* SIGSEGV handler deinitialization
*/
void sigsegv_deinstall_handler(void)
{
// We do nothing for Mach exceptions, the thread would need to be
// suspended if not already so, and we might mess with other
// exception handlers that came after we registered ours. There is
// no need to remove the exception handler, in fact this function is
// not called anywhere in Basilisk II.
#ifdef HAVE_SIGSEGV_RECOVERY
sigsegv_fault_handler = 0;
#define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
SIGSEGV_ALL_SIGNALS
#undef FAULT_HANDLER
#endif
#ifdef HAVE_WIN32_EXCEPTIONS
sigsegv_fault_handler = NULL;
#endif
}
/*
* Set callback function when we cannot handle the fault
*/
void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
{
sigsegv_state_dumper = handler;
}
/*
* Test program used for configure/test
*/
#ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#include "vm_alloc.h"
const int REF_INDEX = 123;
const int REF_VALUE = 45;
static sigsegv_uintptr_t page_size;
static volatile char * page = 0;
static volatile int handler_called = 0;
/* Barriers */
#ifdef __GNUC__
#define BARRIER() asm volatile ("" : : : "memory")
#else
#define BARRIER() /* nothing */
#endif
#ifdef __GNUC__
// Code range where we expect the fault to come from
static void *b_region, *e_region;
#endif
static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
{
const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
#if DEBUG
printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
printf("expected fault at %p\n", page + REF_INDEX);
#ifdef __GNUC__
printf("expected instruction address range: %p-%p\n", b_region, e_region);
#endif
#endif
handler_called++;
if ((fault_address - REF_INDEX) != page)
exit(10);
#ifdef __GNUC__
// Make sure reported fault instruction address falls into
// expected code range
if (instruction_address != SIGSEGV_INVALID_ADDRESS
&& ((instruction_address < (sigsegv_address_t)b_region) ||
(instruction_address >= (sigsegv_address_t)e_region)))
exit(11);
#endif
if (vm_protect((char *)((sigsegv_uintptr_t)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
exit(12);
return SIGSEGV_RETURN_SUCCESS;
}
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
{
const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
#if DEBUG
printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
printf("expected instruction address range: %p-%p\n", b_region, e_region);
#endif
if (((sigsegv_uintptr_t)fault_address - (sigsegv_uintptr_t)page) < page_size) {
#ifdef __GNUC__
// Make sure reported fault instruction address falls into
// expected code range
if (instruction_address != SIGSEGV_INVALID_ADDRESS
&& ((instruction_address < (sigsegv_address_t)b_region) ||
(instruction_address >= (sigsegv_address_t)e_region)))
return SIGSEGV_RETURN_FAILURE;
#endif
return SIGSEGV_RETURN_SKIP_INSTRUCTION;
}
return SIGSEGV_RETURN_FAILURE;
}
// More sophisticated tests for instruction skipper
static bool arch_insn_skipper_tests()
{
#if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64))
static const unsigned char code[] = {
0x8a, 0x00, // mov (%eax),%al
0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch
0x88, 0x20, // mov %ah,(%eax)
0x88, 0x08, // mov %cl,(%eax)
0x66, 0x8b, 0x00, // mov (%eax),%ax
0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx
0x66, 0x89, 0x00, // mov %ax,(%eax)
0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1)
0x8b, 0x00, // mov (%eax),%eax
0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx
0x89, 0x00, // mov %eax,(%eax)
0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1)
#if defined(__x86_64__) || defined(_M_X64)
0x44, 0x8a, 0x00, // mov (%rax),%r8b
0x44, 0x8a, 0x20, // mov (%rax),%r12b
0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil
0x44, 0x88, 0x00, // mov %r8b,(%rax)
0x44, 0x88, 0x20, // mov %r12b,(%rax)
0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1)
0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w
0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx
0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax)
0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1)
0x44, 0x8b, 0x00, // mov (%rax),%r8d
0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx
0x44, 0x89, 0x00, // mov %r8d,(%rax)
0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1)
0x48, 0x8b, 0x08, // mov (%rax),%rcx
0x4c, 0x8b, 0x18, // mov (%rax),%r11
0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx
0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11
0x48, 0x89, 0x08, // mov %rcx,(%rax)
0x4c, 0x89, 0x18, // mov %r11,(%rax)
0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1)
0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1)
0x63, 0x47, 0x04, // movslq 4(%rdi),%eax
0x48, 0x63, 0x47, 0x04, // movslq 4(%rdi),%rax
#endif
0 // end
};
const int N_REGS = 20;
SIGSEGV_REGISTER_TYPE regs[N_REGS];
for (int i = 0; i < N_REGS; i++)
regs[i] = i;
const sigsegv_uintptr_t start_code = (sigsegv_uintptr_t)&code;
regs[X86_REG_EIP] = start_code;
while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
&& ix86_skip_instruction(regs))
; /* simply iterate */
return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
#endif
return true;
}
#endif
int main(void)
{
if (vm_init() < 0)
return 1;
page_size = vm_get_page_size();
if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
return 2;
memset((void *)page, 0, page_size);
if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
return 3;
if (!sigsegv_install_handler(sigsegv_test_handler))
return 4;
#ifdef __GNUC__
b_region = &&L_b_region1;
e_region = &&L_e_region1;
#endif
/* This is a really awful hack but otherwise gcc is smart enough
* (or bug'ous enough?) to optimize the labels and place them
* e.g. at the "main" entry point, which is wrong.
*/
volatile int label_hack = 3;
switch (label_hack) {
case 3:
L_b_region1:
page[REF_INDEX] = REF_VALUE;
if (page[REF_INDEX] != REF_VALUE)
exit(20);
page[REF_INDEX] = REF_VALUE;
BARRIER();
// fall-through
case 2:
L_e_region1:
BARRIER();
break;
}
if (handler_called != 1)
return 5;
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
if (!sigsegv_install_handler(sigsegv_insn_handler))
return 6;
if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
return 7;
for (int i = 0; i < page_size; i++)
page[i] = (i + 1) % page_size;
if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
return 8;
#define TEST_SKIP_INSTRUCTION(TYPE) do { \
const unsigned long TAG = 0x12345678 | \
(sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \
TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
volatile unsigned long effect = data + TAG; \
if (effect != TAG) \
return 9; \
} while (0)
#ifdef __GNUC__
b_region = &&L_b_region2;
e_region = &&L_e_region2;
#ifdef DEBUG
printf("switch footage : \n");
printf(" 4 : %p\n", &&L_b_4_region2);
printf(" 5 : %p\n", &&L_b_5_region2);
printf(" 8 : %p\n", &&L_b_8_region2);
printf(" 6 : %p\n", &&L_b_6_region2);
printf(" 7 : %p\n", &&L_b_7_region2);
printf(" 9 : %p\n", &&L_b_9_region2);
printf(" 1 : %p\n", &&L_b_1_region2);
#endif
#endif
switch (label_hack) {
case 3:
L_b_region2:
TEST_SKIP_INSTRUCTION(unsigned char);
BARRIER();
case 4:
L_b_4_region2:
TEST_SKIP_INSTRUCTION(unsigned short);
BARRIER();
case 5:
L_b_5_region2:
TEST_SKIP_INSTRUCTION(unsigned int);
BARRIER();
case 8:
L_b_8_region2:
TEST_SKIP_INSTRUCTION(unsigned long);
BARRIER();
case 6:
L_b_6_region2:
TEST_SKIP_INSTRUCTION(signed char);
BARRIER();
case 7:
L_b_7_region2:
TEST_SKIP_INSTRUCTION(signed short);
BARRIER();
case 9:
L_b_9_region2:
TEST_SKIP_INSTRUCTION(signed int);
BARRIER();
case 1:
L_b_1_region2:
TEST_SKIP_INSTRUCTION(signed long);
BARRIER();
// fall-through
case 2:
L_e_region2:
BARRIER();
break;
}
if (!arch_insn_skipper_tests())
return 20;
#endif
vm_exit();
return 0;
}
#endif