1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-16 22:28:57 +00:00
CLK/Machines/Atari2600/TIA.cpp

745 lines
22 KiB
C++
Raw Normal View History

//
// TIA.cpp
// Clock Signal
//
// Created by Thomas Harte on 28/01/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "TIA.hpp"
#include <cassert>
using namespace Atari2600;
namespace {
const int cycles_per_line = 228;
const int first_pixel_cycle = 68;
const int sync_flag = 0x1;
const int blank_flag = 0x2;
uint8_t reverse_table[256];
}
TIA::TIA(bool create_crt) :
horizontal_counter_(0),
pixels_start_location_(0),
output_mode_(0),
pixel_target_(nullptr),
background_{0, 0},
background_half_mask_(0),
horizontal_blank_extend_(false),
collision_flags_(0)
{
if(create_crt)
{
crt_.reset(new Outputs::CRT::CRT(cycles_per_line * 2 + 1, 1, Outputs::CRT::DisplayType::NTSC60, 1));
crt_->set_output_device(Outputs::CRT::Television);
set_output_mode(OutputMode::NTSC);
}
for(int c = 0; c < 256; c++)
{
reverse_table[c] = (uint8_t)(
((c & 0x01) << 7) | ((c & 0x02) << 5) | ((c & 0x04) << 3) | ((c & 0x08) << 1) |
((c & 0x10) >> 1) | ((c & 0x20) >> 3) | ((c & 0x40) >> 5) | ((c & 0x80) >> 7)
);
}
for(int c = 0; c < 64; c++)
{
bool has_playfield = c & (int)(CollisionType::Playfield);
bool has_ball = c & (int)(CollisionType::Ball);
bool has_player0 = c & (int)(CollisionType::Player0);
bool has_player1 = c & (int)(CollisionType::Player1);
bool has_missile0 = c & (int)(CollisionType::Missile0);
bool has_missile1 = c & (int)(CollisionType::Missile1);
uint8_t collision_registers[8];
collision_registers[0] = ((has_missile0 && has_player1) ? 0x80 : 0x00) | ((has_missile0 && has_player0) ? 0x40 : 0x00);
collision_registers[1] = ((has_missile1 && has_player0) ? 0x80 : 0x00) | ((has_missile1 && has_player1) ? 0x40 : 0x00);
collision_registers[2] = ((has_playfield && has_player0) ? 0x80 : 0x00) | ((has_ball && has_player0) ? 0x40 : 0x00);
collision_registers[3] = ((has_playfield && has_player1) ? 0x80 : 0x00) | ((has_ball && has_player1) ? 0x40 : 0x00);
collision_registers[4] = ((has_playfield && has_missile0) ? 0x80 : 0x00) | ((has_ball && has_missile0) ? 0x40 : 0x00);
collision_registers[5] = ((has_playfield && has_missile1) ? 0x80 : 0x00) | ((has_ball && has_missile1) ? 0x40 : 0x00);
collision_registers[6] = ((has_playfield && has_ball) ? 0x80 : 0x00);
collision_registers[7] = ((has_player0 && has_player1) ? 0x80 : 0x00) | ((has_missile0 && has_missile1) ? 0x40 : 0x00);
collision_flags_by_buffer_vaules_[c] =
(collision_registers[0] >> 6) |
(collision_registers[1] >> 4) |
(collision_registers[2] >> 2) |
(collision_registers[3] >> 0) |
(collision_registers[4] << 2) |
(collision_registers[5] << 4) |
(collision_registers[6] << 6) |
(collision_registers[7] << 8);
2017-02-06 23:42:58 +00:00
// all priority modes show the background if nothing else is present
colour_mask_by_mode_collision_flags_[(int)ColourMode::Standard][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::OnTop][c] = (uint8_t)ColourIndex::Background;
2017-02-06 23:42:58 +00:00
// test 1 for standard priority: if there is a playfield or ball pixel, plot that colour
if(has_playfield || has_ball)
{
colour_mask_by_mode_collision_flags_[(int)ColourMode::Standard][c] = (uint8_t)ColourIndex::PlayfieldBall;
}
2017-02-06 23:42:58 +00:00
// test 1 for score mode: if there is a ball pixel, plot that colour
if(has_ball)
{
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] = (uint8_t)ColourIndex::PlayfieldBall;
}
2017-02-06 23:42:58 +00:00
// test 1 for on-top mode, test 2 for everbody else: if there is a player 1 or missile 1 pixel, plot that colour
if(has_player1 || has_missile1)
{
colour_mask_by_mode_collision_flags_[(int)ColourMode::Standard][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::OnTop][c] = (uint8_t)ColourIndex::PlayerMissile1;
}
2017-02-06 23:42:58 +00:00
// in the right-hand side of score mode, the playfield has the same priority as player 1
if(has_playfield)
{
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] = (uint8_t)ColourIndex::PlayerMissile1;
}
2017-02-06 23:42:58 +00:00
// next test for everybody: if there is a player 0 or missile 0 pixel, plot that colour instead
if(has_player0 || has_missile0)
{
colour_mask_by_mode_collision_flags_[(int)ColourMode::Standard][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] =
colour_mask_by_mode_collision_flags_[(int)ColourMode::OnTop][c] = (uint8_t)ColourIndex::PlayerMissile0;
}
2017-02-06 23:42:58 +00:00
// if this is the left-hand side of score mode, the playfield has the same priority as player 0
if(has_playfield)
{
colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] = (uint8_t)ColourIndex::PlayerMissile0;
}
2017-02-06 23:42:58 +00:00
// a final test for 'on top' priority mode: if the playfield or ball are visible, prefer that colour to all others
if(has_playfield || has_ball)
{
colour_mask_by_mode_collision_flags_[(int)ColourMode::OnTop][c] = (uint8_t)ColourIndex::PlayfieldBall;
}
}
}
TIA::TIA() : TIA(true) {}
TIA::TIA(std::function<void(uint8_t *output_buffer)> line_end_function) : TIA(false)
{
line_end_function_ = line_end_function;
}
void TIA::set_output_mode(Atari2600::TIA::OutputMode output_mode)
{
Outputs::CRT::DisplayType display_type;
if(output_mode == OutputMode::NTSC)
{
crt_->set_composite_sampling_function(
"float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)"
"{"
"uint c = texture(texID, coordinate).r;"
"uint y = c & 14u;"
"uint iPhase = (c >> 4);"
"float phaseOffset = 6.283185308 * float(iPhase) / 13.0 + 5.074880441076923;"
"return mix(float(y) / 14.0, step(1, iPhase) * cos(phase + phaseOffset), amplitude);"
"}");
display_type = Outputs::CRT::DisplayType::NTSC60;
}
else
{
crt_->set_composite_sampling_function(
"float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)"
"{"
"uint c = texture(texID, coordinate).r;"
"uint y = c & 14u;"
"uint iPhase = (c >> 4);"
"uint direction = iPhase & 1u;"
"float phaseOffset = float(7u - direction) + (float(direction) - 0.5) * 2.0 * float(iPhase >> 1);"
"phaseOffset *= 6.283185308 / 12.0;"
"return mix(float(y) / 14.0, step(4, (iPhase + 2u) & 15u) * cos(phase + phaseOffset), amplitude);"
"}");
display_type = Outputs::CRT::DisplayType::PAL50;
}
crt_->set_new_display_type(cycles_per_line * 2 + 1, display_type);
2017-01-29 19:00:01 +00:00
/* speaker_->set_input_rate((float)(get_clock_rate() / 38.0));*/
}
void TIA::run_for_cycles(int number_of_cycles)
{
// if part way through a line, definitely perform a partial, at most up to the end of the line
if(horizontal_counter_)
{
int cycles = std::min(number_of_cycles, cycles_per_line - horizontal_counter_);
output_for_cycles(cycles);
number_of_cycles -= cycles;
}
// output full lines for as long as possible
2017-01-29 19:00:01 +00:00
while(number_of_cycles >= cycles_per_line)
{
output_line();
number_of_cycles -= cycles_per_line;
}
// partly start a new line if necessary
if(number_of_cycles)
{
output_for_cycles(number_of_cycles);
}
}
void TIA::set_sync(bool sync)
{
output_mode_ = (output_mode_ & ~sync_flag) | (sync ? sync_flag : 0);
}
void TIA::set_blank(bool blank)
{
output_mode_ = (output_mode_ & ~blank_flag) | (blank ? blank_flag : 0);
}
void TIA::reset_horizontal_counter()
{
}
int TIA::get_cycles_until_horizontal_blank(unsigned int from_offset)
{
return (cycles_per_line - (horizontal_counter_ + (int)from_offset) % cycles_per_line) % cycles_per_line;
}
void TIA::set_background_colour(uint8_t colour)
{
colour_palette_[(int)ColourIndex::Background] = colour;
}
void TIA::set_playfield(uint16_t offset, uint8_t value)
{
assert(offset >= 0 && offset < 3);
switch(offset)
{
case 0:
background_[1] = (background_[1] & 0x0ffff) | ((uint32_t)reverse_table[value & 0xf0] << 16);
background_[0] = (background_[0] & 0xffff0) | (uint32_t)(value >> 4);
break;
case 1:
background_[1] = (background_[1] & 0xf00ff) | ((uint32_t)value << 8);
background_[0] = (background_[0] & 0xff00f) | ((uint32_t)reverse_table[value] << 4);
break;
case 2:
background_[1] = (background_[1] & 0xfff00) | reverse_table[value];
background_[0] = (background_[0] & 0x00fff) | ((uint32_t)value << 12);
break;
}
}
void TIA::set_playfield_control_and_ball_size(uint8_t value)
{
background_half_mask_ = value & 1;
switch(value & 6)
{
case 0:
playfield_priority_ = PlayfieldPriority::Standard;
break;
case 2:
playfield_priority_ = PlayfieldPriority::Score;
break;
case 4:
case 6:
playfield_priority_ = PlayfieldPriority::OnTop;
break;
}
2017-02-19 13:02:54 +00:00
ball_.size = 1 << ((value >> 4)&3);
}
void TIA::set_playfield_ball_colour(uint8_t colour)
{
colour_palette_[(int)ColourIndex::PlayfieldBall] = colour;
}
void TIA::set_player_number_and_size(int player, uint8_t value)
{
assert(player >= 0 && player < 2);
int size = 0;
switch(value & 7)
{
case 0: case 1: case 2: case 3: case 4:
player_[player].copy_flags = value & 7;
break;
case 5:
size = 1;
player_[player].copy_flags = 0;
break;
case 6:
player_[player].copy_flags = 6;
break;
case 7:
size = 2;
player_[player].copy_flags = 0;
break;
}
missile_[player].size = 1 << ((value >> 4)&3);
missile_[player].copy_flags = player_[player].copy_flags;
player_[player].adder = 4 >> size;
}
void TIA::set_player_graphic(int player, uint8_t value)
{
assert(player >= 0 && player < 2);
player_[player].graphic[1] = value;
player_[player^1].graphic[0] = player_[player^1].graphic[1];
2017-02-19 13:02:54 +00:00
if(player) ball_.enabled[0] = ball_.enabled[1];
}
void TIA::set_player_reflected(int player, bool reflected)
{
assert(player >= 0 && player < 2);
player_[player].reverse_mask = reflected ? 7 : 0;
}
void TIA::set_player_delay(int player, bool delay)
{
assert(player >= 0 && player < 2);
player_[player].graphic_index = delay ? 0 : 1;
}
void TIA::set_player_position(int player)
{
assert(player >= 0 && player < 2);
// players have an extra clock of delay before output and don't display upon reset;
// both aims are achieved by setting to -1 because: (i) it causes the clock to be
// one behind its real hardware value, creating the extra delay; and (ii) the player
// code is written to start a draw upon wraparound from 159 to 0, so -1 is the
// correct option rather than 159.
player_[player].position = -1;
}
void TIA::set_player_motion(int player, uint8_t motion)
{
assert(player >= 0 && player < 2);
player_[player].motion = (motion >> 4)&0xf;
}
void TIA::set_player_missile_colour(int player, uint8_t colour)
{
assert(player >= 0 && player < 2);
colour_palette_[(int)ColourIndex::PlayerMissile0 + player] = colour;
}
void TIA::set_missile_enable(int missile, bool enabled)
{
assert(missile >= 0 && missile < 2);
missile_[missile].enabled = enabled;
}
void TIA::set_missile_position(int missile)
{
assert(missile >= 0 && missile < 2);
missile_[missile].position = 0;
}
void TIA::set_missile_position_to_player(int missile, bool lock)
{
assert(missile >= 0 && missile < 2);
// TODO: implement this correctly; should be triggered by player counter hitting the appropriate point, and
// use additional storage position for enabled
if(missile_[missile].locked_to_player && !lock) missile_[missile].position = player_[missile].position + 1 + 16/player_[missile].adder;
missile_[missile].locked_to_player = lock;
}
void TIA::set_missile_motion(int missile, uint8_t motion)
{
assert(missile >= 0 && missile < 2);
missile_[missile].motion = (motion >> 4)&0xf;
}
void TIA::set_ball_enable(bool enabled)
{
2017-02-19 13:02:54 +00:00
ball_.enabled[1] = enabled;
}
void TIA::set_ball_delay(bool delay)
{
2017-02-19 13:02:54 +00:00
ball_.enabled_index = delay ? 0 : 1;
}
void TIA::set_ball_position()
{
ball_.position = 0;
2017-02-19 13:02:54 +00:00
// setting the ball position also triggers a draw
ball_.reset_pixels();
}
void TIA::set_ball_motion(uint8_t motion)
{
ball_.motion = (motion >> 4) & 0xf;
}
void TIA::move()
{
horizontal_blank_extend_ = true;
player_[0].is_moving = player_[1].is_moving = missile_[0].is_moving = missile_[1].is_moving = ball_.is_moving = true;
player_[0].motion_step = player_[1].motion_step = missile_[0].motion_step = missile_[1].motion_step = ball_.motion_step = 15;
player_[0].motion_time = player_[1].motion_time = missile_[0].motion_time = missile_[1].motion_time = ball_.motion_time = (horizontal_counter_ + 3) & ~3;
}
void TIA::clear_motion()
{
player_[0].motion = player_[1].motion = missile_[0].motion = missile_[1].motion = ball_.motion = 0;
}
uint8_t TIA::get_collision_flags(int offset)
{
return (uint8_t)((collision_flags_ >> (offset << 1)) << 6) & 0xc0;
}
void TIA::clear_collision_flags()
{
collision_flags_ = 0;
}
void TIA::output_for_cycles(int number_of_cycles)
{
/*
Line timing is oriented around 0 being the start of the right-hand side vertical blank;
a wsync synchronises the CPU to horizontal_counter_ = 0. All timing below is in terms of the
NTSC colour clock.
Therefore, each line is composed of:
16 cycles: blank ; -> 16
16 cycles: sync ; -> 32
16 cycles: colour burst ; -> 48
20 cycles: blank ; -> 68
8 cycles: blank or pixels, depending on whether the blank extend bit is set
152 cycles: pixels
*/
int output_cursor = horizontal_counter_;
horizontal_counter_ += number_of_cycles;
if(!output_cursor)
{
if(line_end_function_) line_end_function_(collision_buffer_);
memset(collision_buffer_, 0, sizeof(collision_buffer_));
horizontal_blank_extend_ = false;
ball_.motion_time %= 228;
player_[0].motion_time %= 228;
player_[1].motion_time %= 228;
missile_[0].motion_time %= 228;
missile_[1].motion_time %= 228;
}
// accumulate an OR'd version of the output into the collision buffer
int latent_start = output_cursor + 4;
int latent_end = horizontal_counter_ + 4;
draw_playfield(latent_start, latent_end);
2017-02-22 12:14:30 +00:00
draw_object<Player>(player_[0], (uint8_t)CollisionType::Player0, output_cursor, horizontal_counter_);
draw_object<Player>(player_[1], (uint8_t)CollisionType::Player1, output_cursor, horizontal_counter_);
draw_object<Missile>(missile_[0], (uint8_t)CollisionType::Missile0, output_cursor, horizontal_counter_);
draw_object<Missile>(missile_[1], (uint8_t)CollisionType::Missile1, output_cursor, horizontal_counter_);
draw_object<Ball>(ball_, (uint8_t)CollisionType::Ball, output_cursor, horizontal_counter_);
// convert to television signals
#define Period(function, target) \
if(output_cursor < target) \
{ \
if(horizontal_counter_ <= target) \
{ \
if(crt_) crt_->function((unsigned int)((horizontal_counter_ - output_cursor) * 2)); \
horizontal_counter_ %= cycles_per_line; \
return; \
} \
else \
{ \
if(crt_) crt_->function((unsigned int)((target - output_cursor) * 2)); \
output_cursor = target; \
} \
}
switch(output_mode_)
{
default:
Period(output_blank, 16)
Period(output_sync, 32)
Period(output_default_colour_burst, 48)
Period(output_blank, 68)
break;
case sync_flag:
case sync_flag | blank_flag:
Period(output_sync, 16)
Period(output_blank, 32)
Period(output_default_colour_burst, 48)
Period(output_sync, 228)
break;
}
#undef Period
if(output_mode_ & blank_flag)
{
if(pixel_target_)
{
output_pixels(pixels_start_location_, output_cursor);
if(crt_) crt_->output_data((unsigned int)(output_cursor - pixels_start_location_) * 2, 2);
pixel_target_ = nullptr;
pixels_start_location_ = 0;
}
int duration = std::min(228, horizontal_counter_) - output_cursor;
if(crt_) crt_->output_blank((unsigned int)(duration * 2));
}
else
{
if(!pixels_start_location_ && crt_)
{
pixels_start_location_ = output_cursor;
pixel_target_ = crt_->allocate_write_area(160);
}
// convert that into pixels
if(pixel_target_) output_pixels(output_cursor, horizontal_counter_);
// accumulate collision flags
while(output_cursor < horizontal_counter_)
{
2017-02-06 23:42:58 +00:00
collision_flags_ |= collision_flags_by_buffer_vaules_[collision_buffer_[output_cursor - first_pixel_cycle]];
output_cursor++;
}
if(horizontal_counter_ == cycles_per_line && crt_)
{
crt_->output_data((unsigned int)(output_cursor - pixels_start_location_) * 2, 2);
pixel_target_ = nullptr;
pixels_start_location_ = 0;
}
}
horizontal_counter_ %= cycles_per_line;
}
void TIA::output_pixels(int start, int end)
{
start = std::min(start, pixels_start_location_);
int target_position = start - pixels_start_location_;
if(start < first_pixel_cycle+8 && horizontal_blank_extend_)
{
while(start < end && start < first_pixel_cycle+8)
{
pixel_target_[target_position] = 0;
start++;
target_position++;
}
}
if(playfield_priority_ == PlayfieldPriority::Score)
{
while(start < end && start < first_pixel_cycle + 80)
{
uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle];
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][buffer_value]];
start++;
target_position++;
}
while(start < end)
{
uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle];
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][buffer_value]];
start++;
target_position++;
}
}
else
{
int table_index = (int)((playfield_priority_ == PlayfieldPriority::Standard) ? ColourMode::Standard : ColourMode::OnTop);
while(start < end)
{
uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle];
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[table_index][buffer_value]];
start++;
target_position++;
}
}
}
void TIA::output_line()
{
switch(output_mode_)
{
default:
// TODO: optimise special case
output_for_cycles(cycles_per_line);
break;
case sync_flag:
case sync_flag | blank_flag:
if(crt_)
{
crt_->output_sync(32);
crt_->output_blank(32);
crt_->output_sync(392);
}
horizontal_blank_extend_ = false;
break;
case blank_flag:
if(crt_)
{
crt_->output_blank(32);
crt_->output_sync(32);
crt_->output_default_colour_burst(32);
crt_->output_blank(360);
}
horizontal_blank_extend_ = false;
break;
}
}
#pragma mark - Playfield output
void TIA::draw_playfield(int start, int end)
{
// don't do anything if this window ends too early
if(end < first_pixel_cycle) return;
// clip to drawable bounds
start = std::max(start, first_pixel_cycle);
end = std::min(end, 228);
// proceed along four-pixel boundaries, plotting four pixels at a time
int aligned_position = (start + 3)&~3;
while(aligned_position < end)
{
int offset = (aligned_position - first_pixel_cycle) >> 2;
uint32_t value = ((background_[(offset/20)&background_half_mask_] >> (offset%20))&1) * 0x01010101;
*(uint32_t *)&collision_buffer_[aligned_position - first_pixel_cycle] |= value;
aligned_position += 4;
}
}
#pragma mark - Motion
template<class T> void TIA::perform_motion_step(T &object)
{
if((object.motion_step ^ (object.motion ^ 8)) == 0xf)
object.is_moving = false;
else
{
if(object.position == 159) object.reset_pixels();
else if(object.position == 15 && object.copy_flags&1) object.reset_pixels();
else if(object.position == 31 && object.copy_flags&2) object.reset_pixels();
else if(object.position == 63 && object.copy_flags&4) object.reset_pixels();
else object.skip_pixels(1);
object.position = (object.position + 1) % 160;
object.motion_step --;
object.motion_time += 4;
}
}
template<class T> void TIA::perform_border_motion(T &object, int start, int end)
{
while(object.is_moving && object.motion_time < end)
perform_motion_step<T>(object);
}
template<class T> void TIA::draw_object(T &object, const uint8_t collision_identity, int start, int end)
{
int first_pixel = first_pixel_cycle - 4 + (horizontal_blank_extend_ ? 8 : 0);
// movement works across the entire screen, so do work that falls outside of the pixel area
if(start < first_pixel)
{
perform_border_motion<T>(object, start, std::max(end, first_pixel));
}
// don't continue to do any drawing if this window ends too early
if(end < first_pixel) return;
if(start < first_pixel) start = first_pixel;
if(start >= end) return;
// perform the visible part of the line, if any
if(start < 224)
{
draw_object_visible<T>(object, collision_identity, start - first_pixel_cycle + 4, std::min(end - first_pixel_cycle + 4, 160));
}
// move further if required
if(object.is_moving && end >= 224 && object.motion_time < end)
{
perform_motion_step<T>(object);
}
}
template<class T> void TIA::draw_object_visible(T &object, const uint8_t collision_identity, int start, int end)
{
// perform a miniature event loop on (i) triggering draws; (ii) drawing; and (iii) motion
int next_motion_time = object.motion_time - first_pixel_cycle + 4;
while(start < end)
{
int next_event_time = end;
// is the next event a movement tick?
if(object.is_moving && next_motion_time < next_event_time)
{
next_event_time = next_motion_time;
}
// is the next event a graphics trigger?
int next_copy = 160;
if(object.copy_flags)
{
if(object.position < 16 && object.copy_flags&1)
{
next_copy = 16;
} else if(object.position < 32 && object.copy_flags&2)
{
next_copy = 32;
} else if(object.position < 64 && object.copy_flags&4)
{
next_copy = 64;
}
}
int next_copy_time = start + next_copy - object.position;
if(next_copy_time < next_event_time) next_event_time = next_copy_time;
// the decision is to progress by length
const int length = next_event_time - start;
// TODO: the problem with this is that it uses the enabled/pixel state of each object four cycles early;
// an appropriate solution would probably be to capture the drawing request into a queue and honour them outside
// this loop, clipped to the real output parameters. Assuming all state consumed by draw_pixels is captured,
// and mutated now then also queueing resets and skips shouldn't be necessary.
object.enqueue_pixels(&collision_buffer_[start], length, collision_identity);
// the next interesting event is after next_event_time cycles, so progress
object.position = (object.position + length) % 160;
start = next_event_time;
// if the event is a motion tick, apply
if(object.is_moving && start == next_motion_time)
{
perform_motion_step(object);
next_motion_time += 4;
}
// if it's a draw trigger, trigger a draw
else if(start == next_copy_time)
{
object.reset_pixels();
}
}
}