1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-26 09:29:45 +00:00
CLK/Machines/AppleII/AppleII.cpp

854 lines
30 KiB
C++
Raw Normal View History

//
// AppleII.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/04/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#include "AppleII.hpp"
2018-05-11 02:17:13 +00:00
#include "../../Activity/Source.hpp"
#include "../MediaTarget.hpp"
#include "../CRTMachine.hpp"
#include "../JoystickMachine.hpp"
#include "../KeyboardMachine.hpp"
#include "../Utility/MemoryFuzzer.hpp"
#include "../Utility/StringSerialiser.hpp"
#include "../../Processors/6502/6502.hpp"
#include "../../Components/AudioToggle/AudioToggle.hpp"
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
2018-08-12 02:57:54 +00:00
#include "../../Outputs/Log.hpp"
#include "Card.hpp"
#include "DiskIICard.hpp"
#include "Video.hpp"
#include "../../Analyser/Static/AppleII/Target.hpp"
#include "../../ClockReceiver/ForceInline.hpp"
2018-06-10 21:58:16 +00:00
2018-05-24 02:28:00 +00:00
#include <algorithm>
2018-05-11 02:17:13 +00:00
#include <array>
#include <memory>
namespace {
#define is_iie() ((model == Analyser::Static::AppleII::Target::Model::IIe) || (model == Analyser::Static::AppleII::Target::Model::EnhancedIIe))
template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
public CRTMachine::Machine,
public MediaTarget::Machine,
public KeyboardMachine::MappedMachine,
public CPU::MOS6502::BusHandler,
public Inputs::Keyboard,
2018-05-11 02:17:13 +00:00
public AppleII::Machine,
public Activity::Source,
public JoystickMachine::Machine,
public AppleII::Card::Delegate {
private:
struct VideoBusHandler : public AppleII::Video::BusHandler {
public:
2018-07-30 03:02:27 +00:00
VideoBusHandler(uint8_t *ram, uint8_t *aux_ram) : ram_(ram), aux_ram_(aux_ram) {}
void perform_read(uint16_t address, size_t count, uint8_t *base_target, uint8_t *auxiliary_target) {
memcpy(base_target, &ram_[address], count);
memcpy(auxiliary_target, &aux_ram_[address], count);
}
private:
2018-07-30 03:02:27 +00:00
uint8_t *ram_, *aux_ram_;
};
CPU::MOS6502::Processor<(model == Analyser::Static::AppleII::Target::Model::EnhancedIIe) ? CPU::MOS6502::Personality::PSynertek65C02 : CPU::MOS6502::Personality::P6502, ConcreteMachine, false> m6502_;
VideoBusHandler video_bus_handler_;
std::unique_ptr<AppleII::Video::Video<VideoBusHandler, is_iie()>> video_;
int cycles_into_current_line_ = 0;
Cycles cycles_since_video_update_;
void update_video() {
video_->run_for(cycles_since_video_update_.flush());
}
2018-04-21 21:56:50 +00:00
static const int audio_divider = 8;
void update_audio() {
2018-04-21 21:56:50 +00:00
speaker_.run_for(audio_queue_, cycles_since_audio_update_.divide(Cycles(audio_divider)));
}
void update_just_in_time_cards() {
for(const auto &card : just_in_time_cards_) {
card->run_for(cycles_since_card_update_, stretched_cycles_since_card_update_);
}
cycles_since_card_update_ = 0;
stretched_cycles_since_card_update_ = 0;
}
uint8_t ram_[65536], aux_ram_[65536];
std::vector<uint8_t> rom_;
std::vector<uint8_t> character_rom_;
uint8_t keyboard_input_ = 0x00;
2018-08-04 21:57:02 +00:00
bool key_is_down_ = false;
uint8_t get_keyboard_input() {
if(string_serialiser_) {
return string_serialiser_->head() | 0x80;
} else {
return keyboard_input_;
}
}
Concurrency::DeferringAsyncTaskQueue audio_queue_;
Audio::Toggle audio_toggle_;
Outputs::Speaker::LowpassSpeaker<Audio::Toggle> speaker_;
Cycles cycles_since_audio_update_;
// MARK: - Cards
2018-05-11 02:17:13 +00:00
std::array<std::unique_ptr<AppleII::Card>, 7> cards_;
Cycles cycles_since_card_update_;
std::vector<AppleII::Card *> every_cycle_cards_;
std::vector<AppleII::Card *> just_in_time_cards_;
int stretched_cycles_since_card_update_ = 0;
void install_card(std::size_t slot, AppleII::Card *card) {
assert(slot >= 1 && slot < 8);
cards_[slot - 1].reset(card);
card->set_delegate(this);
pick_card_messaging_group(card);
}
bool is_every_cycle_card(AppleII::Card *card) {
return !card->get_select_constraints();
}
void pick_card_messaging_group(AppleII::Card *card) {
const bool is_every_cycle = is_every_cycle_card(card);
std::vector<AppleII::Card *> &intended = is_every_cycle ? every_cycle_cards_ : just_in_time_cards_;
std::vector<AppleII::Card *> &undesired = is_every_cycle ? just_in_time_cards_ : every_cycle_cards_;
if(std::find(intended.begin(), intended.end(), card) != intended.end()) return;
auto old_membership = std::find(undesired.begin(), undesired.end(), card);
if(old_membership != undesired.end()) undesired.erase(old_membership);
intended.push_back(card);
}
void card_did_change_select_constraints(AppleII::Card *card) override {
pick_card_messaging_group(card);
}
AppleII::DiskIICard *diskii_card() {
return dynamic_cast<AppleII::DiskIICard *>(cards_[5].get());
}
// MARK: - Memory Map.
/*
The Apple II's paging mechanisms are byzantine to say the least. Painful is
another appropriate adjective.
On a II and II+ there are five distinct zones of memory:
0000 to c000 : the main block of RAM
c000 to d000 : the IO area, including card ROMs
d000 to e000 : the low ROM area, which can alternatively contain either one of two 4kb blocks of RAM with a language card
e000 onward : the rest of ROM, also potentially replaced with RAM by a language card
On a IIe with auxiliary memory the following orthogonal changes also need to be factored in:
0000 to 0200 : can be paged independently of the rest of RAM, other than part of the language card area which pages with it
0400 to 0800 : the text screen, can be configured to write to auxiliary RAM
2000 to 4000 : the graphics screen, which can be configured to write to auxiliary RAM
c100 to d000 : can be used to page an additional 3.75kb of ROM, replacing the IO area
c300 to c400 : can contain the same 256-byte segment of the ROM as if the whole IO area were switched, but while leaving cards visible in the rest
2018-08-04 21:57:02 +00:00
c800 to d000 : can contain ROM separately from the region below c800
If dealt with as individual blocks in the inner loop, that would therefore imply mapping
2018-08-04 21:57:02 +00:00
an address to one of 13 potential pageable zones. So I've gone reductive and surrendered
to paging every 6502 page of memory independently. It makes the paging events more expensive,
2018-08-04 21:57:02 +00:00
but hopefully more clear.
*/
uint8_t *read_pages_[256]; // each is a pointer to the 256-block of memory the CPU should read when accessing that page of memory
uint8_t *write_pages_[256]; // as per read_pages_, but this is where the CPU should write. If a pointer is nullptr, don't write.
void page(int start, int end, uint8_t *read, uint8_t *write) {
for(int position = start; position < end; ++position) {
read_pages_[position] = read;
if(read) read += 256;
write_pages_[position] = write;
if(write) write += 256;
}
}
// MARK: - The language card.
struct {
bool bank1 = false;
bool read = false;
bool pre_write = false;
bool write = false;
} language_card_;
bool has_language_card_ = true;
void set_language_card_paging() {
uint8_t *const ram = alternative_zero_page_ ? aux_ram_ : ram_;
uint8_t *const rom = is_iie() ? &rom_[3840] : rom_.data();
page(0xd0, 0xe0,
language_card_.read ? &ram[language_card_.bank1 ? 0xd000 : 0xc000] : rom,
language_card_.write ? nullptr : &ram[language_card_.bank1 ? 0xd000 : 0xc000]);
page(0xe0, 0x100,
language_card_.read ? &ram[0xe000] : &rom[0x1000],
language_card_.write ? nullptr : &ram[0xe000]);
}
// MARK - The IIe's ROM controls.
bool internal_CX_rom_ = false;
bool slot_C3_rom_ = false;
bool internal_c8_rom_ = false;
2018-07-28 17:31:25 +00:00
void set_card_paging() {
2018-08-04 16:44:58 +00:00
page(0xc1, 0xc8, internal_CX_rom_ ? rom_.data() : nullptr, nullptr);
if(!internal_CX_rom_) {
if(!slot_C3_rom_) read_pages_[0xc3] = &rom_[0xc300 - 0xc100];
}
page(0xc8, 0xd0, (internal_CX_rom_ || internal_c8_rom_) ? &rom_[0xc800 - 0xc100] : nullptr, nullptr);
2018-07-28 17:31:25 +00:00
}
// MARK - The IIe's auxiliary RAM controls.
bool alternative_zero_page_ = false;
void set_zero_page_paging() {
if(alternative_zero_page_) {
read_pages_[0] = aux_ram_;
} else {
read_pages_[0] = ram_;
}
read_pages_[1] = read_pages_[0] + 256;
write_pages_[0] = read_pages_[0];
write_pages_[1] = read_pages_[1];
}
bool read_auxiliary_memory_ = false;
bool write_auxiliary_memory_ = false;
void set_main_paging() {
page(0x02, 0xc0,
read_auxiliary_memory_ ? &aux_ram_[0x0200] : &ram_[0x0200],
write_auxiliary_memory_ ? &aux_ram_[0x0200] : &ram_[0x0200]);
if(video_ && video_->get_80_store()) {
bool use_aux_ram = video_->get_page2();
page(0x04, 0x08,
use_aux_ram ? &aux_ram_[0x0400] : &ram_[0x0400],
use_aux_ram ? &aux_ram_[0x0400] : &ram_[0x0400]);
if(video_->get_high_resolution()) {
page(0x20, 0x40,
use_aux_ram ? &aux_ram_[0x2000] : &ram_[0x2000],
use_aux_ram ? &aux_ram_[0x2000] : &ram_[0x2000]);
}
}
}
// MARK - typing
std::unique_ptr<Utility::StringSerialiser> string_serialiser_;
// MARK - joysticks
class Joystick: public Inputs::ConcreteJoystick {
public:
Joystick() :
ConcreteJoystick({
Input(Input::Horizontal),
Input(Input::Vertical),
// The Apple II offers three buttons between two joysticks;
// this emulator puts three buttons on each joystick and
// combines them.
Input(Input::Fire, 0),
Input(Input::Fire, 1),
Input(Input::Fire, 2),
}) {}
void did_set_input(const Input &input, float value) override {
if(!input.info.control.index && (input.type == Input::Type::Horizontal || input.type == Input::Type::Vertical))
axes[(input.type == Input::Type::Horizontal) ? 0 : 1] = 1.0f - value;
}
void did_set_input(const Input &input, bool value) override {
if(input.type == Input::Type::Fire && input.info.control.index < 3) {
buttons[input.info.control.index] = value;
}
}
bool buttons[3] = {false, false, false};
float axes[2] = {0.5f, 0.5f};
};
// On an Apple II, the programmer strobes 0xc070 and that causes each analogue input
// to begin a charge and discharge cycle **if they are not already charging**.
// The greater the analogue input, the faster they will charge and therefore the sooner
// they will discharge.
//
// This emulator models that with analogue_charge_ being essentially the amount of time,
// in charge threshold units, since 0xc070 was last strobed. But if any of the analogue
// inputs were already partially charged then they gain a bias in analogue_biases_.
//
// It's a little indirect, but it means only having to increment the one value in the
// main loop.
float analogue_charge_ = 0.0f;
float analogue_biases_[4] = {0.0f, 0.0f, 0.0f, 0.0f};
std::vector<std::unique_ptr<Inputs::Joystick>> joysticks_;
bool analogue_channel_is_discharged(size_t channel) {
return (1.0f - static_cast<Joystick *>(joysticks_[channel >> 1].get())->axes[channel & 1]) < analogue_charge_ + analogue_biases_[channel];
}
// The IIe has three keys that are wired directly to the same input as the joystick buttons.
bool open_apple_is_pressed_ = false;
bool closed_apple_is_pressed_ = false;
public:
ConcreteMachine(const Analyser::Static::AppleII::Target &target, const ROMMachine::ROMFetcher &rom_fetcher):
m6502_(*this),
2018-07-30 03:02:27 +00:00
video_bus_handler_(ram_, aux_ram_),
audio_toggle_(audio_queue_),
speaker_(audio_toggle_) {
// The system's master clock rate.
const float master_clock = 14318180.0;
// This is where things get slightly convoluted: establish the machine as having a clock rate
// equal to the number of cycles of work the 6502 will actually achieve. Which is less than
// the master clock rate divided by 14 because every 65th cycle is extended by one seventh.
set_clock_rate((master_clock / 14.0) * 65.0 / (65.0 + 1.0 / 7.0));
// The speaker, however, should think it is clocked at half the master clock, per a general
// decision to sample it at seven times the CPU clock (plus stretches).
2018-04-21 21:56:50 +00:00
speaker_.set_input_rate(static_cast<float>(master_clock / (2.0 * static_cast<float>(audio_divider))));
2018-05-16 00:43:13 +00:00
// Apply a 6Khz low-pass filter. This was picked by ear and by an attempt to understand the
// Apple II schematic but, well, I don't claim much insight on the latter. This is definitely
// something to review in the future.
speaker_.set_high_frequency_cutoff(6000);
// Also, start with randomised memory contents.
Memory::Fuzz(ram_, sizeof(ram_));
Memory::Fuzz(aux_ram_, sizeof(aux_ram_));
// Add a couple of joysticks.
joysticks_.emplace_back(new Joystick);
joysticks_.emplace_back(new Joystick);
// Pick the required ROMs.
using Target = Analyser::Static::AppleII::Target;
2018-08-04 20:52:29 +00:00
std::vector<std::string> rom_names;
size_t rom_size = 12*1024;
switch(target.model) {
default:
2018-08-04 20:52:29 +00:00
rom_names.push_back("apple2-character.rom");
rom_names.push_back("apple2o.rom");
break;
case Target::Model::IIplus:
2018-08-04 20:52:29 +00:00
rom_names.push_back("apple2-character.rom");
rom_names.push_back("apple2.rom");
break;
case Target::Model::IIe:
rom_size += 3840;
2018-08-04 20:52:29 +00:00
rom_names.push_back("apple2eu-character.rom");
rom_names.push_back("apple2eu.rom");
break;
case Target::Model::EnhancedIIe:
rom_size += 3840;
rom_names.push_back("apple2e-character.rom");
rom_names.push_back("apple2e.rom");
break;
}
const auto roms = rom_fetcher("AppleII", rom_names);
if(!roms[0] || !roms[1]) {
throw ROMMachine::Error::MissingROMs;
}
rom_ = std::move(*roms[1]);
if(rom_.size() > rom_size) {
rom_.erase(rom_.begin(), rom_.end() - static_cast<off_t>(rom_size));
}
character_rom_ = std::move(*roms[0]);
if(target.disk_controller != Target::DiskController::None) {
// Apple recommended slot 6 for the (first) Disk II.
install_card(6, new AppleII::DiskIICard(rom_fetcher, target.disk_controller == Target::DiskController::SixteenSector));
}
// Set up the default memory blocks. On a II or II+ these values will never change.
// On a IIe they'll be affected by selection of auxiliary RAM.
set_main_paging();
set_zero_page_paging();
2018-07-28 17:31:25 +00:00
// Set the whole card area to initially backed by nothing.
page(0xc0, 0xd0, nullptr, nullptr);
// Set proper values for the language card/ROM area.
set_language_card_paging();
insert_media(target.media);
}
~ConcreteMachine() {
audio_queue_.flush();
}
void setup_output(float aspect_ratio) override {
video_.reset(new AppleII::Video::Video<VideoBusHandler, is_iie()>(video_bus_handler_));
video_->set_character_rom(character_rom_);
}
void close_output() override {
video_.reset();
}
Outputs::CRT::CRT *get_crt() override {
return video_->get_crt();
}
Outputs::Speaker::Speaker *get_speaker() override {
return &speaker_;
}
forceinline Cycles perform_bus_operation(const CPU::MOS6502::BusOperation operation, const uint16_t address, uint8_t *const value) {
++ cycles_since_video_update_;
++ cycles_since_card_update_;
cycles_since_audio_update_ += Cycles(7);
// The Apple II has a slightly weird timing pattern: every 65th CPU cycle is stretched
// by an extra 1/7th. That's because one cycle lasts 3.5 NTSC colour clocks, so after
// 65 cycles a full line of 227.5 colour clocks have passed. But the high-rate binary
// signal approximation that produces colour needs to be in phase, so a stretch of exactly
// 0.5 further colour cycles is added. The video class handles that implicitly, but it
// needs to be accumulated here for the audio.
cycles_into_current_line_ = (cycles_into_current_line_ + 1) % 65;
const bool is_stretched_cycle = !cycles_into_current_line_;
if(is_stretched_cycle) {
++ cycles_since_audio_update_;
++ stretched_cycles_since_card_update_;
}
bool has_updated_cards = false;
if(read_pages_[address >> 8]) {
if(isReadOperation(operation)) *value = read_pages_[address >> 8][address & 0xff];
2018-08-11 23:57:39 +00:00
else {
if(address >= 0x200 && address < 0x6000) update_video();
if(write_pages_[address >> 8]) write_pages_[address >> 8][address & 0xff] = *value;
}
if(is_iie() && address >= 0xc300 && address < 0xd000) {
bool internal_c8_rom = internal_c8_rom_;
internal_c8_rom |= ((address >> 8) == 0xc3) && !slot_C3_rom_;
internal_c8_rom &= (address != 0xcfff);
if(internal_c8_rom != internal_c8_rom_) {
internal_c8_rom_ = internal_c8_rom;
set_card_paging();
}
}
} else {
// Assume a vapour read unless it turns out otherwise; this is a little
// wasteful but works for now.
//
// Longer version: like many other machines, when the Apple II reads from
// an address at which no hardware loads the data bus, through a process of
// practical analogue effects it'll end up receiving whatever was last on
// the bus. Which will always be whatever the video circuit fetched because
// that fetches in between every instruction.
//
// So this code assumes that'll happen unless it later determines that it
// doesn't. The call into the video isn't free because it's a just-in-time
// actor, but this will actually be the result most of the time so it's not
// too terrible.
if(isReadOperation(operation) && address != 0xc000) {
*value = video_->get_last_read_value(cycles_since_video_update_);
}
switch(address) {
default:
if(isReadOperation(operation)) {
// Read-only switches.
switch(address) {
default: break;
case 0xc000:
*value = get_keyboard_input();
break;
case 0xc001: case 0xc002: case 0xc003: case 0xc004: case 0xc005: case 0xc006: case 0xc007:
case 0xc008: case 0xc009: case 0xc00a: case 0xc00b: case 0xc00c: case 0xc00d: case 0xc00e: case 0xc00f:
*value = (*value & 0x80) | (get_keyboard_input() & 0x7f);
break;
case 0xc061: // Switch input 0.
*value &= 0x7f;
if(
static_cast<Joystick *>(joysticks_[0].get())->buttons[0] || static_cast<Joystick *>(joysticks_[1].get())->buttons[2] ||
(is_iie() && open_apple_is_pressed_)
)
*value |= 0x80;
break;
case 0xc062: // Switch input 1.
*value &= 0x7f;
if(
static_cast<Joystick *>(joysticks_[0].get())->buttons[1] || static_cast<Joystick *>(joysticks_[1].get())->buttons[1] ||
(is_iie() && closed_apple_is_pressed_)
)
*value |= 0x80;
break;
case 0xc063: // Switch input 2.
*value &= 0x7f;
if(static_cast<Joystick *>(joysticks_[0].get())->buttons[2] || static_cast<Joystick *>(joysticks_[1].get())->buttons[0])
*value |= 0x80;
break;
case 0xc064: // Analogue input 0.
case 0xc065: // Analogue input 1.
case 0xc066: // Analogue input 2.
case 0xc067: { // Analogue input 3.
const size_t input = address - 0xc064;
*value &= 0x7f;
if(!analogue_channel_is_discharged(input)) {
*value |= 0x80;
}
} break;
// The IIe-only state reads follow...
#define IIeSwitchRead(s) *value = get_keyboard_input(); if(is_iie()) *value = (*value & 0x7f) | (s ? 0x80 : 0x00);
case 0xc011: IIeSwitchRead(language_card_.bank1); break;
case 0xc012: IIeSwitchRead(language_card_.read); break;
case 0xc013: IIeSwitchRead(read_auxiliary_memory_); break;
case 0xc014: IIeSwitchRead(write_auxiliary_memory_); break;
case 0xc015: IIeSwitchRead(internal_CX_rom_); break;
case 0xc016: IIeSwitchRead(alternative_zero_page_); break;
case 0xc017: IIeSwitchRead(slot_C3_rom_); break;
case 0xc018: IIeSwitchRead(video_->get_80_store()); break;
case 0xc019: IIeSwitchRead(video_->get_is_vertical_blank(cycles_since_video_update_)); break;
case 0xc01a: IIeSwitchRead(video_->get_text()); break;
case 0xc01b: IIeSwitchRead(video_->get_mixed()); break;
case 0xc01c: IIeSwitchRead(video_->get_page2()); break;
case 0xc01d: IIeSwitchRead(video_->get_high_resolution()); break;
case 0xc01e: IIeSwitchRead(video_->get_alternative_character_set()); break;
case 0xc01f: IIeSwitchRead(video_->get_80_columns()); break;
#undef IIeSwitchRead
case 0xc07f:
if(is_iie()) *value = (*value & 0x7f) | (video_->get_annunciator_3() ? 0x80 : 0x00);
break;
}
} else {
// Write-only switches. All IIe as currently implemented.
if(is_iie()) {
switch(address) {
2018-08-12 02:57:54 +00:00
default: break;
case 0xc000:
case 0xc001:
update_video();
video_->set_80_store(!!(address&1));
set_main_paging();
break;
case 0xc002:
case 0xc003:
read_auxiliary_memory_ = !!(address&1);
set_main_paging();
break;
case 0xc004:
case 0xc005:
write_auxiliary_memory_ = !!(address&1);
set_main_paging();
break;
case 0xc006:
2018-07-28 17:31:25 +00:00
case 0xc007:
internal_CX_rom_ = !!(address&1);
set_card_paging();
break;
case 0xc008:
case 0xc009:
// The alternative zero page setting affects both bank 0 and any RAM
// that's paged as though it were on a language card.
alternative_zero_page_ = !!(address&1);
set_zero_page_paging();
set_language_card_paging();
break;
case 0xc00a:
2018-07-28 17:31:25 +00:00
case 0xc00b:
slot_C3_rom_ = !!(address&1);
set_card_paging();
break;
case 0xc00c:
case 0xc00d:
update_video();
video_->set_80_columns(!!(address&1));
break;
case 0xc00e:
case 0xc00f:
update_video();
video_->set_alternative_character_set(!!(address&1));
break;
}
}
}
break;
case 0xc070: { // Permit analogue inputs that are currently discharged to begin a charge cycle.
// Ensure those that were still charging retain that state.
for(size_t c = 0; c < 4; ++c) {
if(analogue_channel_is_discharged(c)) {
analogue_biases_[c] = 0.0f;
} else {
analogue_biases_[c] += analogue_charge_;
}
}
analogue_charge_ = 0.0f;
} break;
/* Switches triggered by reading or writing. */
case 0xc050:
case 0xc051:
update_video();
video_->set_text(!!(address&1));
break;
case 0xc052: update_video(); video_->set_mixed(false); break;
case 0xc053: update_video(); video_->set_mixed(true); break;
case 0xc054:
case 0xc055:
update_video();
video_->set_page2(!!(address&1));
set_main_paging();
break;
case 0xc056:
case 0xc057:
update_video();
video_->set_high_resolution(!!(address&1));
set_main_paging();
break;
case 0xc05e:
case 0xc05f:
if(is_iie()) {
update_video();
video_->set_annunciator_3(!(address&1));
}
break;
case 0xc010:
keyboard_input_ &= 0x7f;
if(string_serialiser_) {
if(!string_serialiser_->advance())
string_serialiser_.reset();
}
// On the IIe, reading C010 returns additional key info.
if(is_iie() && isReadOperation(operation)) {
2018-08-04 21:57:02 +00:00
*value = (key_is_down_ ? 0x80 : 0x00) | (keyboard_input_ & 0x7f);
}
break;
case 0xc030: case 0xc031: case 0xc032: case 0xc033: case 0xc034: case 0xc035: case 0xc036: case 0xc037:
case 0xc038: case 0xc039: case 0xc03a: case 0xc03b: case 0xc03c: case 0xc03d: case 0xc03e: case 0xc03f:
update_audio();
audio_toggle_.set_output(!audio_toggle_.get_output());
break;
case 0xc080: case 0xc084: case 0xc088: case 0xc08c:
case 0xc081: case 0xc085: case 0xc089: case 0xc08d:
case 0xc082: case 0xc086: case 0xc08a: case 0xc08e:
case 0xc083: case 0xc087: case 0xc08b: case 0xc08f:
// Quotes below taken from Understanding the Apple II, p. 5-28 and 5-29.
// "A3 controls the 4K bank selection"
language_card_.bank1 = (address&8);
// "Access to $C080, $C083, $C084, $0087, $C088, $C08B, $C08C, or $C08F sets the READ ENABLE flip-flop"
// (other accesses reset it)
language_card_.read = !(((address&2) >> 1) ^ (address&1));
// "The WRITE ENABLE' flip-flop is reset by an odd read access to the $C08X range when the PRE-WRITE flip-flop is set."
if(language_card_.pre_write && isReadOperation(operation) && (address&1)) language_card_.write = false;
// "[The WRITE ENABLE' flip-flop] is set by an even access in the $C08X range."
if(!(address&1)) language_card_.write = true;
// ("Any other type of access causes the WRITE ENABLE' flip-flop to hold its current state.")
// "The PRE-WRITE flip-flop is set by an odd read access in the $C08X range. It is reset by an even access or a write access."
language_card_.pre_write = isReadOperation(operation) ? (address&1) : false;
// Apply whatever the net effect of all that is to the memory map.
set_language_card_paging();
break;
}
/*
Communication with cards follows.
*/
if(!read_pages_[address >> 8] && address >= 0xc090 && address < 0xc800) {
// If this is a card access, figure out which card is at play before determining
// the totality of who needs messaging.
2018-07-28 17:31:25 +00:00
size_t card_number = 0;
AppleII::Card::Select select = AppleII::Card::None;
if(address >= 0xc100) {
/*
Decode the area conventionally used by cards for ROMs:
0xCn00 to 0xCnff: card n.
*/
card_number = (address - 0xc100) >> 8;
select = AppleII::Card::Device;
} else {
/*
Decode the area conventionally used by cards for registers:
C0n0 to C0nF: card n - 8.
*/
card_number = (address - 0xc090) >> 4;
select = AppleII::Card::IO;
}
2018-07-28 17:31:25 +00:00
// If the selected card is a just-in-time card, update the just-in-time cards,
// and then message it specifically.
const bool is_read = isReadOperation(operation);
AppleII::Card *const target = cards_[static_cast<size_t>(card_number)].get();
if(target && !is_every_cycle_card(target)) {
update_just_in_time_cards();
target->perform_bus_operation(select, is_read, address, value);
}
2018-07-28 17:31:25 +00:00
// Update all the every-cycle cards regardless, but send them a ::None select if they're
// not the one actually selected.
for(const auto &card: every_cycle_cards_) {
card->run_for(Cycles(1), is_stretched_cycle);
card->perform_bus_operation(
(card == target) ? select : AppleII::Card::None,
is_read, address, value);
}
2018-07-28 17:31:25 +00:00
has_updated_cards = true;
}
}
if(!has_updated_cards && !every_cycle_cards_.empty()) {
// Update all every-cycle cards and give them the cycle.
const bool is_read = isReadOperation(operation);
for(const auto &card: every_cycle_cards_) {
card->run_for(Cycles(1), is_stretched_cycle);
card->perform_bus_operation(AppleII::Card::None, is_read, address, value);
}
}
// Update analogue charge level.
analogue_charge_ = std::min(analogue_charge_ + 1.0f / 2820.0f, 1.1f);
return Cycles(1);
}
void flush() {
update_video();
update_audio();
update_just_in_time_cards();
audio_queue_.perform();
}
void run_for(const Cycles cycles) override {
m6502_.run_for(cycles);
}
void reset_all_keys() override {
open_apple_is_pressed_ = closed_apple_is_pressed_ = key_is_down_ = false;
}
void set_key_pressed(Key key, char value, bool is_pressed) override {
switch(key) {
default: break;
case Key::F12:
m6502_.set_reset_line(is_pressed);
return;
case Key::LeftOption:
open_apple_is_pressed_ = is_pressed;
return;
case Key::RightOption:
closed_apple_is_pressed_ = is_pressed;
return;
}
2018-08-04 21:57:02 +00:00
// If no ASCII value is supplied, look for a few special cases.
if(!value) {
switch(key) {
case Key::Left: value = 0x08; break;
case Key::Right: value = 0x15; break;
case Key::Down: value = 0x0a; break;
case Key::Up: value = 0x0b; break;
case Key::BackSpace: value = 0x7f; break;
default: return;
}
2018-08-04 21:57:02 +00:00
}
// Prior to the IIe, the keyboard could produce uppercase only.
if(!is_iie()) value = static_cast<char>(toupper(value));
2018-08-04 21:57:02 +00:00
if(is_pressed) {
keyboard_input_ = static_cast<uint8_t>(value | 0x80);
key_is_down_ = true;
} else {
if((keyboard_input_ & 0x7f) == value) {
key_is_down_ = false;
}
}
}
Inputs::Keyboard &get_keyboard() override {
return *this;
}
void type_string(const std::string &string) override {
string_serialiser_.reset(new Utility::StringSerialiser(string, true));
}
// MARK: MediaTarget
bool insert_media(const Analyser::Static::Media &media) override {
if(!media.disks.empty()) {
auto diskii = diskii_card();
if(diskii) diskii->set_disk(media.disks[0], 0);
}
return true;
}
2018-05-11 02:17:13 +00:00
// MARK: Activity::Source
void set_activity_observer(Activity::Observer *observer) override {
for(const auto &card: cards_) {
if(card) card->set_activity_observer(observer);
}
}
// MARK: JoystickMachine
std::vector<std::unique_ptr<Inputs::Joystick>> &get_joysticks() override {
return joysticks_;
}
};
}
using namespace AppleII;
Machine *Machine::AppleII(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
using Target = Analyser::Static::AppleII::Target;
const Target *const appleii_target = dynamic_cast<const Target *>(target);
switch(appleii_target->model) {
default: return nullptr;
case Target::Model::II: return new ConcreteMachine<Target::Model::II>(*appleii_target, rom_fetcher);
case Target::Model::IIplus: return new ConcreteMachine<Target::Model::IIplus>(*appleii_target, rom_fetcher);
case Target::Model::IIe: return new ConcreteMachine<Target::Model::IIe>(*appleii_target, rom_fetcher);
case Target::Model::EnhancedIIe: return new ConcreteMachine<Target::Model::EnhancedIIe>(*appleii_target, rom_fetcher);
}
}
Machine::~Machine() {}