1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-06 01:28:57 +00:00
CLK/Machines/AmstradCPC/AmstradCPC.cpp

162 lines
4.8 KiB
C++
Raw Normal View History

//
// AmstradCPC.cpp
// Clock Signal
//
// Created by Thomas Harte on 30/07/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "AmstradCPC.hpp"
using namespace AmstradCPC;
Machine::Machine() :
crtc_counter_(HalfCycles(4)), // This starts the CRTC exactly out of phase with the memory accesses
crtc_(crtc_bus_handler_) {
// primary clock is 4Mhz
set_clock_rate(4000000);
}
HalfCycles Machine::perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) {
// Amstrad CPC timing scheme: assert WAIT for three out of four cycles
clock_offset_ = (clock_offset_ + cycle.length) & HalfCycles(7);
set_wait_line(clock_offset_ >= HalfCycles(2));
// Update the CRTC once every eight half cycles; aiming for half-cycle 4 as
// per the initial seed to the crtc_counter_, but any time in the final four
// will do as it's safe to conclude that nobody else has touched video RAM
// during that whole window
crtc_counter_ += cycle.length;
int crtc_cycles = crtc_counter_.divide(HalfCycles(8)).as_int();
if(crtc_cycles) crtc_.run_for(Cycles(1));
// Stop now if no action is strictly required.
if(!cycle.is_terminal()) return HalfCycles(0);
uint16_t address = cycle.address ? *cycle.address : 0x0000;
switch(cycle.operation) {
case CPU::Z80::PartialMachineCycle::ReadOpcode:
case CPU::Z80::PartialMachineCycle::Read:
*cycle.value = read_pointers_[address >> 14][address & 16383];
break;
case CPU::Z80::PartialMachineCycle::Write:
write_pointers_[address >> 14][address & 16383] = *cycle.value;
break;
case CPU::Z80::PartialMachineCycle::Output:
// Check for a gate array access.
if((address & 0xc000) == 0x4000) {
switch(*cycle.value >> 6) {
case 0: printf("Select pen %02x\n", *cycle.value & 0x1f); break;
case 1: printf("Select colour %02x\n", *cycle.value & 0x1f); break;
case 2:
printf("Set mode %d, other flags %02x\n", *cycle.value & 3, (*cycle.value >> 2)&7);
read_pointers_[0] = (*cycle.value & 4) ? &ram_[0] : os_.data();
read_pointers_[3] = (*cycle.value & 8) ? &ram_[49152] : basic_.data();
break;
case 3: printf("RAM paging?\n"); break;
}
}
// Check for a CRTC access
if(!(address & 0x4000)) {
switch((address >> 8) & 3) {
case 0: crtc_.select_register(*cycle.value); break;
case 1: crtc_.set_register(*cycle.value); break;
case 2: case 3: printf("Illegal CRTC write?\n"); break;
}
}
// Check for a PIO access
if(!(address & 0x800)) {
switch((address >> 8) & 3) {
case 0: printf("PSG data: %d\n", *cycle.value); break;
case 1: printf("Vsync, etc: %02x\n", *cycle.value); break;
case 2: printf("Key row, etc: %02x\n", *cycle.value); break;
case 3: printf("PIO control: %02x\n", *cycle.value); break;
}
}
break;
case CPU::Z80::PartialMachineCycle::Input:
// Check for a CRTC access
if(!(address & 0x4000)) {
switch((address >> 8) & 3) {
case 0: case 1: printf("Illegal CRTC read?\n"); break;
case 2: *cycle.value = crtc_.get_status(); break;
case 3: *cycle.value = crtc_.get_register(); break;
}
}
// Check for a PIO access
if(!(address & 0x800)) {
switch((address >> 8) & 3) {
case 0: printf("[In] PSG data\n"); break;
case 1: printf("[In] Vsync, etc\n"); break;
case 2: printf("[In] Key row, etc\n"); break;
case 3: printf("[In] PIO control\n"); break;
}
}
*cycle.value = 0xff;
break;
case CPU::Z80::PartialMachineCycle::Interrupt:
*cycle.value = 0xff;
break;
default: break;
}
return HalfCycles(0);
}
void Machine::flush() {
}
void Machine::set_rom(ROMType type, std::vector<uint8_t> data) {
// Keep only the two ROMs that are currently of interest.
switch(type) {
case ROMType::OS464: os_ = data; break;
case ROMType::BASIC464: basic_ = data; break;
default: break;
}
}
void Machine::setup_output(float aspect_ratio) {
crtc_bus_handler_.crt_.reset(new Outputs::CRT::CRT(1024, 8, Outputs::CRT::DisplayType::PAL50, 1));
crtc_bus_handler_.crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"return vec3(float(texture(texID, coordinate).r) / 255.0);"
"}");
}
void Machine::close_output() {
crtc_bus_handler_.crt_.reset();
}
std::shared_ptr<Outputs::CRT::CRT> Machine::get_crt() {
return crtc_bus_handler_.crt_;
}
std::shared_ptr<Outputs::Speaker> Machine::get_speaker() {
return nullptr;
}
void Machine::run_for(const Cycles cycles) {
CPU::Z80::Processor<Machine>::run_for(cycles);
}
void Machine::configure_as_target(const StaticAnalyser::Target &target) {
read_pointers_[0] = os_.data();
read_pointers_[1] = &ram_[16384];
read_pointers_[2] = &ram_[32768];
read_pointers_[3] = basic_.data();
write_pointers_[0] = &ram_[0];
write_pointers_[1] = &ram_[16384];
write_pointers_[2] = &ram_[32768];
write_pointers_[3] = &ram_[49152];
}