1
0
mirror of https://github.com/cc65/cc65.git synced 2024-06-01 13:41:34 +00:00
cc65/src/cc65/codeent.c

1483 lines
34 KiB
C
Raw Normal View History

/*****************************************************************************/
/* */
/* codeent.c */
/* */
/* Code segment entry */
/* */
/* */
/* */
/* (C) 2001-2009, Ullrich von Bassewitz */
/* Roemerstrasse 52 */
/* D-70794 Filderstadt */
/* EMail: uz@cc65.org */
/* */
/* */
/* This software is provided 'as-is', without any expressed or implied */
/* warranty. In no event will the authors be held liable for any damages */
/* arising from the use of this software. */
/* */
/* Permission is granted to anyone to use this software for any purpose, */
/* including commercial applications, and to alter it and redistribute it */
/* freely, subject to the following restrictions: */
/* */
/* 1. The origin of this software must not be misrepresented; you must not */
/* claim that you wrote the original software. If you use this software */
/* in a product, an acknowledgment in the product documentation would be */
/* appreciated but is not required. */
/* 2. Altered source versions must be plainly marked as such, and must not */
/* be misrepresented as being the original software. */
/* 3. This notice may not be removed or altered from any source */
/* distribution. */
/* */
/*****************************************************************************/
#include <stdlib.h>
/* common */
#include "chartype.h"
#include "check.h"
#include "debugflag.h"
#include "xmalloc.h"
#include "xsprintf.h"
/* cc65 */
#include "codeent.h"
#include "codeinfo.h"
#include "error.h"
#include "global.h"
#include "codelab.h"
#include "opcodes.h"
#include "output.h"
/*****************************************************************************/
/* Data */
/*****************************************************************************/
/* Empty argument */
static char EmptyArg[] = "";
/*****************************************************************************/
/* Helper functions */
/*****************************************************************************/
static void FreeArg (char* Arg)
/* Free a code entry argument */
{
if (Arg != EmptyArg) {
xfree (Arg);
}
}
static char* GetArgCopy (const char* Arg)
/* Create an argument copy for assignment */
{
if (Arg && Arg[0] != '\0') {
/* Create a copy */
return xstrdup (Arg);
} else {
/* Use the empty argument string */
return EmptyArg;
}
}
static int NumArg (const char* Arg, unsigned long* Num)
/* If the given argument is numerical, convert it and return true. Otherwise
* set Num to zero and return false.
*/
{
char* End;
unsigned long Val;
/* Determine the base */
int Base = 10;
if (*Arg == '$') {
++Arg;
Base = 16;
} else if (*Arg == '%') {
++Arg;
Base = 2;
}
/* Convert the value. strtol is not exactly what we want here, but it's
* cheap and may be replaced by something fancier later.
*/
Val = strtoul (Arg, &End, Base);
/* Check if the conversion was successful */
if (*End != '\0') {
/* Could not convert */
*Num = 0;
return 0;
} else {
/* Conversion ok */
*Num = Val;
return 1;
}
}
static void SetUseChgInfo (CodeEntry* E, const OPCDesc* D)
/* Set the Use and Chg in E */
{
const ZPInfo* Info;
/* If this is a subroutine call, or a jump to an external function,
* lookup the information about this function and use it. The jump itself
* does not change any registers, so we don't need to use the data from D.
*/
if ((E->Info & (OF_UBRA | OF_CALL)) != 0 && E->JumpTo == 0) {
/* A subroutine call or jump to external symbol (function exit) */
GetFuncInfo (E->Arg, &E->Use, &E->Chg);
} else {
/* Some other instruction. Use the values from the opcode description
* plus addressing mode info.
*/
E->Use = D->Use | GetAMUseInfo (E->AM);
E->Chg = D->Chg;
/* Check for special zero page registers used */
switch (E->AM) {
case AM65_ACC:
if (E->OPC == OP65_ASL || E->OPC == OP65_DEC ||
E->OPC == OP65_INC || E->OPC == OP65_LSR ||
E->OPC == OP65_ROL || E->OPC == OP65_ROR) {
/* A is changed by these insns */
E->Chg |= REG_A;
}
break;
case AM65_ZP:
case AM65_ABS:
/* Be conservative: */
case AM65_ZPX:
case AM65_ABSX:
case AM65_ABSY:
Info = GetZPInfo (E->Arg);
if (Info && Info->ByteUse != REG_NONE) {
if (E->OPC == OP65_ASL || E->OPC == OP65_DEC ||
E->OPC == OP65_INC || E->OPC == OP65_LSR ||
E->OPC == OP65_ROL || E->OPC == OP65_ROR ||
E->OPC == OP65_TRB || E->OPC == OP65_TSB) {
/* The zp loc is both, input and output */
E->Chg |= Info->ByteUse;
E->Use |= Info->ByteUse;
} else if ((E->Info & OF_STORE) != 0) {
/* Just output */
E->Chg |= Info->ByteUse;
} else {
/* Input only */
E->Use |= Info->ByteUse;
}
}
break;
case AM65_ZPX_IND:
case AM65_ZP_INDY:
case AM65_ZP_IND:
Info = GetZPInfo (E->Arg);
if (Info && Info->ByteUse != REG_NONE) {
/* These addressing modes will never change the zp loc */
E->Use |= Info->WordUse;
}
break;
default:
/* Keep gcc silent */
break;
}
}
}
/*****************************************************************************/
/* Code */
/*****************************************************************************/
const char* MakeHexArg (unsigned Num)
/* Convert Num into a string in the form $XY, suitable for passing it as an
* argument to NewCodeEntry, and return a pointer to the string.
* BEWARE: The function returns a pointer to a static buffer, so the value is
* gone if you call it twice (and apart from that it's not thread and signal
* safe).
*/
{
static char Buf[16];
xsprintf (Buf, sizeof (Buf), "$%02X", (unsigned char) Num);
return Buf;
}
CodeEntry* NewCodeEntry (opc_t OPC, am_t AM, const char* Arg,
CodeLabel* JumpTo, LineInfo* LI)
/* Create a new code entry, initialize and return it */
{
/* Get the opcode description */
const OPCDesc* D = GetOPCDesc (OPC);
/* Allocate memory */
CodeEntry* E = xmalloc (sizeof (CodeEntry));
/* Initialize the fields */
E->OPC = D->OPC;
E->AM = AM;
E->Size = GetInsnSize (E->OPC, E->AM);
E->Arg = GetArgCopy (Arg);
E->Flags = NumArg (E->Arg, &E->Num)? CEF_NUMARG : 0; /* Needs E->Arg */
E->Info = D->Info;
E->JumpTo = JumpTo;
E->LI = UseLineInfo (LI);
E->RI = 0;
SetUseChgInfo (E, D);
InitCollection (&E->Labels);
/* If we have a label given, add this entry to the label */
if (JumpTo) {
CollAppend (&JumpTo->JumpFrom, E);
}
/* Return the initialized struct */
return E;
}
void FreeCodeEntry (CodeEntry* E)
/* Free the given code entry */
{
/* Free the string argument if we have one */
FreeArg (E->Arg);
/* Cleanup the collection */
DoneCollection (&E->Labels);
/* Release the line info */
ReleaseLineInfo (E->LI);
/* Delete the register info */
CE_FreeRegInfo (E);
/* Free the entry */
xfree (E);
}
void CE_ReplaceOPC (CodeEntry* E, opc_t OPC)
/* Replace the opcode of the instruction. This will also replace related info,
* Size, Use and Chg, but it will NOT update any arguments or labels.
*/
{
/* Get the opcode descriptor */
const OPCDesc* D = GetOPCDesc (OPC);
/* Replace the opcode */
E->OPC = OPC;
E->Info = D->Info;
E->Size = GetInsnSize (E->OPC, E->AM);
SetUseChgInfo (E, D);
}
int CodeEntriesAreEqual (const CodeEntry* E1, const CodeEntry* E2)
/* Check if both code entries are equal */
{
return (E1->OPC == E2->OPC && E1->AM == E2->AM && strcmp (E1->Arg, E2->Arg) == 0);
}
void CE_AttachLabel (CodeEntry* E, CodeLabel* L)
/* Attach the label to the entry */
{
/* Add it to the entries label list */
CollAppend (&E->Labels, L);
/* Tell the label about it's owner */
L->Owner = E;
}
void CE_ClearJumpTo (CodeEntry* E)
/* Clear the JumpTo entry and the argument (which contained the name of the
* label). Note: The function will not clear the backpointer from the label,
* so use it with care.
*/
{
/* Clear the JumpTo entry */
E->JumpTo = 0;
/* Clear the argument and assign the empty one */
FreeArg (E->Arg);
E->Arg = EmptyArg;
}
void CE_MoveLabel (CodeLabel* L, CodeEntry* E)
/* Move the code label L from it's former owner to the code entry E. */
{
/* Delete the label from the owner */
CollDeleteItem (&L->Owner->Labels, L);
/* Set the new owner */
CollAppend (&E->Labels, L);
L->Owner = E;
}
void CE_SetArg (CodeEntry* E, const char* Arg)
/* Replace the argument by the new one. */
{
/* Free the old argument */
FreeArg (E->Arg);
/* Assign the new one */
E->Arg = GetArgCopy (Arg);
}
void CE_SetNumArg (CodeEntry* E, long Num)
/* Set a new numeric argument for the given code entry that must already
* have a numeric argument.
*/
{
char Buf[16];
/* Check that the entry has a numerical argument */
CHECK (E->Flags & CEF_NUMARG);
/* Make the new argument string */
if (E->Size == 2) {
Num &= 0xFF;
xsprintf (Buf, sizeof (Buf), "$%02X", (unsigned) Num);
} else if (E->Size == 3) {
Num &= 0xFFFF;
xsprintf (Buf, sizeof (Buf), "$%04X", (unsigned) Num);
} else {
Internal ("Invalid instruction size in CE_SetNumArg");
}
/* Replace the argument by the new one */
CE_SetArg (E, Buf);
/* Use the new numerical value */
E->Num = Num;
}
int CE_IsConstImm (const CodeEntry* E)
/* Return true if the argument of E is a constant immediate value */
{
return (E->AM == AM65_IMM && (E->Flags & CEF_NUMARG) != 0);
}
int CE_IsKnownImm (const CodeEntry* E, unsigned long Num)
/* Return true if the argument of E is a constant immediate value that is
* equal to Num.
*/
{
return E->AM == AM65_IMM &&
(E->Flags & CEF_NUMARG) != 0 &&
E->Num == Num;
}
int CE_UseLoadFlags (const CodeEntry* E)
/* Return true if the instruction uses any flags that are set by a load of
* a register (N and Z).
*/
{
/* Follow unconditional branches, but beware of endless loops. After this,
* E will point to the first entry that is not a branch.
*/
if (E->Info & OF_UBRA) {
Collection C = AUTO_COLLECTION_INITIALIZER;
/* Follow the chain */
while (E->Info & OF_UBRA) {
/* Remember the entry so we can detect loops */
CollAppend (&C, (void*) E);
/* Check the target */
if (E->JumpTo == 0 || CollIndex (&C, E->JumpTo->Owner) >= 0) {
/* Unconditional jump to external symbol, or endless loop. */
DoneCollection (&C);
return 0; /* Flags not used */
}
/* Follow the chain */
E = E->JumpTo->Owner;
}
/* Delete the collection */
DoneCollection (&C);
}
/* A branch will use the flags */
if (E->Info & OF_FBRA) {
return 1;
}
/* Call of a boolean transformer routine will also use the flags */
if (E->OPC == OP65_JSR) {
/* Get the condition that is evaluated and check it */
switch (FindBoolCmpCond (E->Arg)) {
case CMP_EQ:
case CMP_NE:
case CMP_GT:
case CMP_GE:
case CMP_LT:
case CMP_LE:
case CMP_UGT:
case CMP_ULE:
/* Will use the N or Z flags */
return 1;
case CMP_UGE: /* Uses only carry */
case CMP_ULT: /* Dito */
default: /* No bool transformer subroutine */
return 0;
}
}
/* Anything else */
return 0;
}
void CE_FreeRegInfo (CodeEntry* E)
/* Free an existing register info struct */
{
if (E->RI) {
FreeRegInfo (E->RI);
E->RI = 0;
}
}
void CE_GenRegInfo (CodeEntry* E, RegContents* InputRegs)
/* Generate register info for this instruction. If an old info exists, it is
* overwritten.
*/
{
/* Pointers to the register contents */
RegContents* In;
RegContents* Out;
/* Function register usage */
unsigned short Use, Chg;
/* If we don't have a register info struct, allocate one. */
if (E->RI == 0) {
E->RI = NewRegInfo (InputRegs);
} else {
if (InputRegs) {
E->RI->In = *InputRegs;
} else {
RC_Invalidate (&E->RI->In);
}
E->RI->Out2 = E->RI->Out = E->RI->In;
}
/* Get pointers to the register contents */
In = &E->RI->In;
Out = &E->RI->Out;
/* Handle the different instructions */
switch (E->OPC) {
case OP65_ADC:
/* We don't know the value of the carry, so the result is
* always unknown.
*/
Out->RegA = UNKNOWN_REGVAL;
break;
case OP65_AND:
if (RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
Out->RegA = In->RegA & (short) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = In->RegA & In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegA = In->RegA & In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegA = In->RegA & In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegA = In->RegA & In->SRegLo;
break;
case REG_SREG_HI:
Out->RegA = In->RegA & In->SRegHi;
break;
default:
Out->RegA = UNKNOWN_REGVAL;
break;
}
} else {
Out->RegA = UNKNOWN_REGVAL;
}
} else if (CE_IsKnownImm (E, 0)) {
/* A and $00 does always give zero */
Out->RegA = 0;
}
break;
case OP65_ASL:
if (E->AM == AM65_ACC && RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA << 1) & 0xFF;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = (In->Tmp1 << 1) & 0xFF;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = (In->Ptr1Lo << 1) & 0xFF;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = (In->Ptr1Hi << 1) & 0xFF;
break;
case REG_SREG_LO:
Out->SRegLo = (In->SRegLo << 1) & 0xFF;
break;
case REG_SREG_HI:
Out->SRegHi = (In->SRegHi << 1) & 0xFF;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_BCC:
break;
case OP65_BCS:
break;
case OP65_BEQ:
break;
case OP65_BIT:
break;
case OP65_BMI:
break;
case OP65_BNE:
break;
case OP65_BPL:
break;
case OP65_BRA:
break;
case OP65_BRK:
break;
case OP65_BVC:
break;
case OP65_BVS:
break;
case OP65_CLC:
break;
case OP65_CLD:
break;
case OP65_CLI:
break;
case OP65_CLV:
break;
case OP65_CMP:
break;
case OP65_CPX:
break;
case OP65_CPY:
break;
case OP65_DEA:
if (RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA - 1) & 0xFF;
}
break;
case OP65_DEC:
if (E->AM == AM65_ACC && RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA - 1) & 0xFF;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = (In->Tmp1 - 1) & 0xFF;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = (In->Ptr1Lo - 1) & 0xFF;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = (In->Ptr1Hi - 1) & 0xFF;
break;
case REG_SREG_LO:
Out->SRegLo = (In->SRegLo - 1) & 0xFF;
break;
case REG_SREG_HI:
Out->SRegHi = (In->SRegHi - 1) & 0xFF;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_DEX:
if (RegValIsKnown (In->RegX)) {
Out->RegX = (In->RegX - 1) & 0xFF;
}
break;
case OP65_DEY:
if (RegValIsKnown (In->RegY)) {
Out->RegY = (In->RegY - 1) & 0xFF;
}
break;
case OP65_EOR:
if (RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
Out->RegA = In->RegA ^ (short) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = In->RegA ^ In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegA = In->RegA ^ In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegA = In->RegA ^ In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegA = In->RegA ^ In->SRegLo;
break;
case REG_SREG_HI:
Out->RegA = In->RegA ^ In->SRegHi;
break;
default:
Out->RegA = UNKNOWN_REGVAL;
break;
}
} else {
Out->RegA = UNKNOWN_REGVAL;
}
}
break;
case OP65_INA:
if (RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA + 1) & 0xFF;
}
break;
case OP65_INC:
if (E->AM == AM65_ACC && RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA + 1) & 0xFF;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = (In->Tmp1 + 1) & 0xFF;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = (In->Ptr1Lo + 1) & 0xFF;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = (In->Ptr1Hi + 1) & 0xFF;
break;
case REG_SREG_LO:
Out->SRegLo = (In->SRegLo + 1) & 0xFF;
break;
case REG_SREG_HI:
Out->SRegHi = (In->SRegHi + 1) & 0xFF;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_INX:
if (RegValIsKnown (In->RegX)) {
Out->RegX = (In->RegX + 1) & 0xFF;
}
break;
case OP65_INY:
if (RegValIsKnown (In->RegY)) {
Out->RegY = (In->RegY + 1) & 0xFF;
}
break;
case OP65_JCC:
break;
case OP65_JCS:
break;
case OP65_JEQ:
break;
case OP65_JMI:
break;
case OP65_JMP:
break;
case OP65_JNE:
break;
case OP65_JPL:
break;
case OP65_JSR:
/* Get the code info for the function */
GetFuncInfo (E->Arg, &Use, &Chg);
if (Chg & REG_A) {
Out->RegA = UNKNOWN_REGVAL;
}
if (Chg & REG_X) {
Out->RegX = UNKNOWN_REGVAL;
}
if (Chg & REG_Y) {
Out->RegY = UNKNOWN_REGVAL;
}
if (Chg & REG_TMP1) {
Out->Tmp1 = UNKNOWN_REGVAL;
}
if (Chg & REG_PTR1_LO) {
Out->Ptr1Lo = UNKNOWN_REGVAL;
}
if (Chg & REG_PTR1_HI) {
Out->Ptr1Hi = UNKNOWN_REGVAL;
}
if (Chg & REG_SREG_LO) {
Out->SRegLo = UNKNOWN_REGVAL;
}
if (Chg & REG_SREG_HI) {
Out->SRegHi = UNKNOWN_REGVAL;
}
/* ## FIXME: Quick hack for some known functions: */
if (strcmp (E->Arg, "tosandax") == 0) {
if (In->RegA == 0) {
Out->RegA = 0;
}
if (In->RegX == 0) {
Out->RegX = 0;
}
} else if (strcmp (E->Arg, "tosorax") == 0) {
if (In->RegA == 0xFF) {
Out->RegA = 0xFF;
}
if (In->RegX == 0xFF) {
Out->RegX = 0xFF;
}
} else if (FindBoolCmpCond (E->Arg) != CMP_INV) {
Out->RegX = 0;
}
break;
case OP65_JVC:
break;
case OP65_JVS:
break;
case OP65_LDA:
if (CE_IsConstImm (E)) {
Out->RegA = (unsigned char) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegA = In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegA = In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegA = In->SRegLo;
break;
case REG_SREG_HI:
Out->RegA = In->SRegHi;
break;
default:
Out->RegA = UNKNOWN_REGVAL;
break;
}
} else {
/* A is now unknown */
Out->RegA = UNKNOWN_REGVAL;
}
break;
case OP65_LDX:
if (CE_IsConstImm (E)) {
Out->RegX = (unsigned char) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegX = In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegX = In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegX = In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegX = In->SRegLo;
break;
case REG_SREG_HI:
Out->RegX = In->SRegHi;
break;
default:
Out->RegX = UNKNOWN_REGVAL;
break;
}
} else {
/* X is now unknown */
Out->RegX = UNKNOWN_REGVAL;
}
break;
case OP65_LDY:
if (CE_IsConstImm (E)) {
Out->RegY = (unsigned char) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegY = In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegY = In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegY = In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegY = In->SRegLo;
break;
case REG_SREG_HI:
Out->RegY = In->SRegHi;
break;
default:
Out->RegY = UNKNOWN_REGVAL;
break;
}
} else {
/* Y is now unknown */
Out->RegY = UNKNOWN_REGVAL;
}
break;
case OP65_LSR:
if (E->AM == AM65_ACC && RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA >> 1) & 0xFF;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = (In->Tmp1 >> 1) & 0xFF;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = (In->Ptr1Lo >> 1) & 0xFF;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = (In->Ptr1Hi >> 1) & 0xFF;
break;
case REG_SREG_LO:
Out->SRegLo = (In->SRegLo >> 1) & 0xFF;
break;
case REG_SREG_HI:
Out->SRegHi = (In->SRegHi >> 1) & 0xFF;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_NOP:
break;
case OP65_ORA:
if (RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
Out->RegA = In->RegA | (short) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = In->RegA | In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegA = In->RegA | In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegA = In->RegA | In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegA = In->RegA | In->SRegLo;
break;
case REG_SREG_HI:
Out->RegA = In->RegA | In->SRegHi;
break;
default:
Out->RegA = UNKNOWN_REGVAL;
break;
}
} else {
/* A is now unknown */
Out->RegA = UNKNOWN_REGVAL;
}
} else if (CE_IsKnownImm (E, 0xFF)) {
/* ORA with 0xFF does always give 0xFF */
Out->RegA = 0xFF;
}
break;
case OP65_PHA:
break;
case OP65_PHP:
break;
case OP65_PHX:
break;
case OP65_PHY:
break;
case OP65_PLA:
Out->RegA = UNKNOWN_REGVAL;
break;
case OP65_PLP:
break;
case OP65_PLX:
Out->RegX = UNKNOWN_REGVAL;
break;
case OP65_PLY:
Out->RegY = UNKNOWN_REGVAL;
break;
case OP65_ROL:
/* We don't know the value of the carry bit */
if (E->AM == AM65_ACC) {
Out->RegA = UNKNOWN_REGVAL;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = UNKNOWN_REGVAL;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = UNKNOWN_REGVAL;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = UNKNOWN_REGVAL;
break;
case REG_SREG_LO:
Out->SRegLo = UNKNOWN_REGVAL;
break;
case REG_SREG_HI:
Out->SRegHi = UNKNOWN_REGVAL;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_ROR:
/* We don't know the value of the carry bit */
if (E->AM == AM65_ACC) {
Out->RegA = UNKNOWN_REGVAL;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = UNKNOWN_REGVAL;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = UNKNOWN_REGVAL;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = UNKNOWN_REGVAL;
break;
case REG_SREG_LO:
Out->SRegLo = UNKNOWN_REGVAL;
break;
case REG_SREG_HI:
Out->SRegHi = UNKNOWN_REGVAL;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_RTI:
break;
case OP65_RTS:
break;
case OP65_SBC:
/* We don't know the value of the carry bit */
Out->RegA = UNKNOWN_REGVAL;
break;
case OP65_SEC:
break;
case OP65_SED:
break;
case OP65_SEI:
break;
case OP65_STA:
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = In->RegA;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = In->RegA;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = In->RegA;
break;
case REG_SREG_LO:
Out->SRegLo = In->RegA;
break;
case REG_SREG_HI:
Out->SRegHi = In->RegA;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_STX:
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = In->RegX;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = In->RegX;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = In->RegX;
break;
case REG_SREG_LO:
Out->SRegLo = In->RegX;
break;
case REG_SREG_HI:
Out->SRegHi = In->RegX;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_STY:
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = In->RegY;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = In->RegY;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = In->RegY;
break;
case REG_SREG_LO:
Out->SRegLo = In->RegY;
break;
case REG_SREG_HI:
Out->SRegHi = In->RegY;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_STZ:
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = 0;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = 0;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = 0;
break;
case REG_SREG_LO:
Out->SRegLo = 0;
break;
case REG_SREG_HI:
Out->SRegHi = 0;
break;
}
} else if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_TAX:
Out->RegX = In->RegA;
break;
case OP65_TAY:
Out->RegY = In->RegA;
break;
case OP65_TRB:
if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
} else if (E->AM == AM65_ZP) {
if (RegValIsKnown (In->RegA)) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 &= ~In->RegA;
break;
case REG_PTR1_LO:
Out->Ptr1Lo &= ~In->RegA;
break;
case REG_PTR1_HI:
Out->Ptr1Hi &= ~In->RegA;
break;
case REG_SREG_LO:
Out->SRegLo &= ~In->RegA;
break;
case REG_SREG_HI:
Out->SRegHi &= ~In->RegA;
break;
}
} else {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = UNKNOWN_REGVAL;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = UNKNOWN_REGVAL;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = UNKNOWN_REGVAL;
break;
case REG_SREG_LO:
Out->SRegLo = UNKNOWN_REGVAL;
break;
case REG_SREG_HI:
Out->SRegHi = UNKNOWN_REGVAL;
break;
}
}
}
break;
case OP65_TSB:
if (E->AM == AM65_ZPX) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
} else if (E->AM == AM65_ZP) {
if (RegValIsKnown (In->RegA)) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 |= In->RegA;
break;
case REG_PTR1_LO:
Out->Ptr1Lo |= In->RegA;
break;
case REG_PTR1_HI:
Out->Ptr1Hi |= In->RegA;
break;
case REG_SREG_LO:
Out->SRegLo |= In->RegA;
break;
case REG_SREG_HI:
Out->SRegHi |= In->RegA;
break;
}
} else {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = UNKNOWN_REGVAL;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = UNKNOWN_REGVAL;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = UNKNOWN_REGVAL;
break;
case REG_SREG_LO:
Out->SRegLo = UNKNOWN_REGVAL;
break;
case REG_SREG_HI:
Out->SRegHi = UNKNOWN_REGVAL;
break;
}
}
}
break;
case OP65_TSX:
Out->RegX = UNKNOWN_REGVAL;
break;
case OP65_TXA:
Out->RegA = In->RegX;
break;
case OP65_TXS:
break;
case OP65_TYA:
Out->RegA = In->RegY;
break;
default:
break;
}
}
static char* RegInfoDesc (unsigned U, char* Buf)
/* Return a string containing register info */
{
Buf[0] = '\0';
strcat (Buf, U & REG_SREG_HI? "H" : "_");
strcat (Buf, U & REG_SREG_LO? "L" : "_");
strcat (Buf, U & REG_A? "A" : "_");
strcat (Buf, U & REG_X? "X" : "_");
strcat (Buf, U & REG_Y? "Y" : "_");
strcat (Buf, U & REG_TMP1? "T1" : "__");
strcat (Buf, U & REG_PTR1? "1" : "_");
strcat (Buf, U & REG_PTR2? "2" : "_");
strcat (Buf, U & REG_SAVE? "V" : "_");
strcat (Buf, U & REG_SP? "S" : "_");
return Buf;
}
static char* RegContentDesc (const RegContents* RC, char* Buf)
/* Return a string containing register contents */
{
char* B = Buf;
if (RegValIsUnknown (RC->RegA)) {
strcpy (B, "A:XX ");
} else {
sprintf (B, "A:%02X ", RC->RegA);
}
B += 5;
if (RegValIsUnknown (RC->RegX)) {
strcpy (B, "X:XX ");
} else {
sprintf (B, "X:%02X ", RC->RegX);
}
B += 5;
if (RegValIsUnknown (RC->RegY)) {
strcpy (B, "Y:XX");
} else {
sprintf (B, "Y:%02X", RC->RegY);
}
B += 4;
return Buf;
}
void CE_Output (const CodeEntry* E)
/* Output the code entry to the output file */
{
const OPCDesc* D;
unsigned Chars;
int Space;
const char* Target;
/* If we have a label, print that */
unsigned LabelCount = CollCount (&E->Labels);
unsigned I;
for (I = 0; I < LabelCount; ++I) {
CL_Output (CollConstAt (&E->Labels, I));
}
/* Get the opcode description */
D = GetOPCDesc (E->OPC);
/* Print the mnemonic */
Chars = WriteOutput ("\t%s", D->Mnemo);
/* Space to leave before the operand */
Space = 9 - Chars;
/* Print the operand */
switch (E->AM) {
case AM65_IMP:
/* implicit */
break;
case AM65_ACC:
/* accumulator */
Chars += WriteOutput ("%*sa", Space, "");
break;
case AM65_IMM:
/* immidiate */
Chars += WriteOutput ("%*s#%s", Space, "", E->Arg);
break;
case AM65_ZP:
case AM65_ABS:
/* zeropage and absolute */
Chars += WriteOutput ("%*s%s", Space, "", E->Arg);
break;
case AM65_ZPX:
case AM65_ABSX:
/* zeropage,X and absolute,X */
Chars += WriteOutput ("%*s%s,x", Space, "", E->Arg);
break;
case AM65_ABSY:
/* absolute,Y */
Chars += WriteOutput ("%*s%s,y", Space, "", E->Arg);
break;
case AM65_ZPX_IND:
/* (zeropage,x) */
Chars += WriteOutput ("%*s(%s,x)", Space, "", E->Arg);
break;
case AM65_ZP_INDY:
/* (zeropage),y */
Chars += WriteOutput ("%*s(%s),y", Space, "", E->Arg);
break;
case AM65_ZP_IND:
/* (zeropage) */
Chars += WriteOutput ("%*s(%s)", Space, "", E->Arg);
break;
case AM65_BRA:
/* branch */
Target = E->JumpTo? E->JumpTo->Name : E->Arg;
Chars += WriteOutput ("%*s%s", Space, "", Target);
break;
default:
Internal ("Invalid addressing mode");
}
/* Print usage info if requested by the debugging flag */
if (Debug) {
char Use [128];
char Chg [128];
WriteOutput ("%*s; USE: %-12s CHG: %-12s SIZE: %u",
(int)(30-Chars), "",
RegInfoDesc (E->Use, Use),
RegInfoDesc (E->Chg, Chg),
E->Size);
if (E->RI) {
char RegIn[32];
char RegOut[32];
WriteOutput (" In %s Out %s",
RegContentDesc (&E->RI->In, RegIn),
RegContentDesc (&E->RI->Out, RegOut));
}
}
/* Terminate the line */
WriteOutput ("\n");
}