The target util convert.system is to be used in conjunction with GEOS on the Apple II but has to be built as an "ordinary" Apple II program. The way the cc65 library build system is designed there's no way to define dependencies between targets. The solution used so far was to explicitly trigger a build of the target 'apple2enh' from the target 'geos-apple'. However, that approach tends to break parallel builds which may be in the middle of building 'appple2enh' at the time it is triggered by 'geos-apple'.
There might be ways to get this fixed - but the the cc65 library build systrem is already (more than) complex enough, so I really don't want to add anything special to it.
On the other hand there are easier ways (outside the scope of cc65) to archive what convert.system does so I don't presume convert.system to be actually used - it's more a reference type of thing.
Putting all facts together the decision was easy: Just move convert.system from the target it is used with to the target(s) it is built with.
Certain scenarios (e.g. not running any Applesoft program at all since booting DOS 3.3) can make DOS 3.3 consider cc65 device input (e.g. getchar()) that reads a CR interpreting the command in the keyboard buffer. Setting the hibyte of the Applesoft currently executed line number to some value <> $FF (beside setting the input prompt to some value <> ']') makes DOS 3.3 understand that we're not in intermediate mode and that therefore I/O not preceded with ctrl-d mustn't be fiddled with (see DOS 3.3 routine at $A65E).
ca65's logical (Boolean) NOT operator was used where bitwise NOT should be used. The effect was that all sprites were shifted to the left side of a screen when the mouse sprite was put on the left side.
* Docs say that CLK_TCK is an obsolete alias of CLOCKS_PER_SEC so there's no point in individual definitions.
* All targets determining the clock rate at runtime can use a common handling.
* rand() use XOR to break up unwanted pair correlation
This form of rand() cannot return the same value twice in a row.
Two additonal EOR instructions produce a more even distribution of successive pairs.
see comments on #951
* rand.s document purpose of XOR
* suggested srand() optimization: zero fill unnecessary
* test to validate implementation of rand()
* srand() improving behaviour and adding startup test
* srand() with a tail call to rand() for better initial shuffle
* srand() can fall through to rand() instead of tail call