llvm-6502/include/llvm/CodeGen/MachineBasicBlock.h

791 lines
31 KiB
C
Raw Permalink Normal View History

//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/DataTypes.h"
#include <functional>
namespace llvm {
class Pass;
class BasicBlock;
class MachineFunction;
class MCSymbol;
class SlotIndexes;
class StringRef;
class raw_ostream;
class MachineBranchProbabilityInfo;
template <>
struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
private:
mutable ilist_half_node<MachineInstr> Sentinel;
// this is only set by the MachineBasicBlock owning the LiveList
friend class MachineBasicBlock;
MachineBasicBlock* Parent;
public:
MachineInstr *createSentinel() const {
return static_cast<MachineInstr*>(&Sentinel);
}
void destroySentinel(MachineInstr *) const {}
MachineInstr *provideInitialHead() const { return createSentinel(); }
MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
static void noteHead(MachineInstr*, MachineInstr*) {}
void addNodeToList(MachineInstr* N);
void removeNodeFromList(MachineInstr* N);
void transferNodesFromList(ilist_traits &SrcTraits,
ilist_iterator<MachineInstr> first,
ilist_iterator<MachineInstr> last);
void deleteNode(MachineInstr *N);
private:
void createNode(const MachineInstr &);
};
class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
typedef ilist<MachineInstr> Instructions;
Instructions Insts;
const BasicBlock *BB;
int Number;
MachineFunction *xParent;
/// Predecessors/Successors - Keep track of the predecessor / successor
/// basicblocks.
std::vector<MachineBasicBlock *> Predecessors;
std::vector<MachineBasicBlock *> Successors;
/// Weights - Keep track of the weights to the successors. This vector
/// has the same order as Successors, or it is empty if we don't use it
/// (disable optimization).
std::vector<uint32_t> Weights;
typedef std::vector<uint32_t>::iterator weight_iterator;
typedef std::vector<uint32_t>::const_iterator const_weight_iterator;
/// LiveIns - Keep track of the physical registers that are livein of
/// the basicblock.
std::vector<unsigned> LiveIns;
/// Alignment - Alignment of the basic block. Zero if the basic block does
/// not need to be aligned.
/// The alignment is specified as log2(bytes).
unsigned Alignment;
/// IsLandingPad - Indicate that this basic block is entered via an
/// exception handler.
bool IsLandingPad;
/// AddressTaken - Indicate that this basic block is potentially the
/// target of an indirect branch.
bool AddressTaken;
/// \brief since getSymbol is a relatively heavy-weight operation, the symbol
/// is only computed once and is cached.
mutable MCSymbol *CachedMCSymbol;
// Intrusive list support
MachineBasicBlock() {}
explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
~MachineBasicBlock();
// MachineBasicBlocks are allocated and owned by MachineFunction.
friend class MachineFunction;
public:
/// getBasicBlock - Return the LLVM basic block that this instance
/// corresponded to originally. Note that this may be NULL if this instance
/// does not correspond directly to an LLVM basic block.
///
const BasicBlock *getBasicBlock() const { return BB; }
/// getName - Return the name of the corresponding LLVM basic block, or
/// "(null)".
StringRef getName() const;
/// getFullName - Return a formatted string to identify this block and its
/// parent function.
std::string getFullName() const;
/// hasAddressTaken - Test whether this block is potentially the target
/// of an indirect branch.
bool hasAddressTaken() const { return AddressTaken; }
/// setHasAddressTaken - Set this block to reflect that it potentially
/// is the target of an indirect branch.
void setHasAddressTaken() { AddressTaken = true; }
/// getParent - Return the MachineFunction containing this basic block.
///
const MachineFunction *getParent() const { return xParent; }
MachineFunction *getParent() { return xParent; }
/// bundle_iterator - MachineBasicBlock iterator that automatically skips over
/// MIs that are inside bundles (i.e. walk top level MIs only).
template<typename Ty, typename IterTy>
class bundle_iterator
: public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
IterTy MII;
public:
bundle_iterator(IterTy mii) : MII(mii) {}
bundle_iterator(Ty &mi) : MII(mi) {
assert(!mi.isBundledWithPred() &&
"It's not legal to initialize bundle_iterator with a bundled MI");
}
bundle_iterator(Ty *mi) : MII(mi) {
assert((!mi || !mi->isBundledWithPred()) &&
"It's not legal to initialize bundle_iterator with a bundled MI");
}
// Template allows conversion from const to nonconst.
template<class OtherTy, class OtherIterTy>
bundle_iterator(const bundle_iterator<OtherTy, OtherIterTy> &I)
: MII(I.getInstrIterator()) {}
bundle_iterator() : MII(nullptr) {}
Ty &operator*() const { return *MII; }
Ty *operator->() const { return &operator*(); }
operator Ty*() const { return MII; }
bool operator==(const bundle_iterator &x) const {
return MII == x.MII;
}
bool operator!=(const bundle_iterator &x) const {
return !operator==(x);
}
// Increment and decrement operators...
bundle_iterator &operator--() { // predecrement - Back up
do --MII;
while (MII->isBundledWithPred());
return *this;
}
bundle_iterator &operator++() { // preincrement - Advance
while (MII->isBundledWithSucc())
++MII;
++MII;
return *this;
}
bundle_iterator operator--(int) { // postdecrement operators...
bundle_iterator tmp = *this;
--*this;
return tmp;
}
bundle_iterator operator++(int) { // postincrement operators...
bundle_iterator tmp = *this;
++*this;
return tmp;
}
IterTy getInstrIterator() const {
return MII;
}
};
typedef Instructions::iterator instr_iterator;
typedef Instructions::const_iterator const_instr_iterator;
typedef std::reverse_iterator<instr_iterator> reverse_instr_iterator;
typedef
std::reverse_iterator<const_instr_iterator> const_reverse_instr_iterator;
typedef
bundle_iterator<MachineInstr,instr_iterator> iterator;
typedef
bundle_iterator<const MachineInstr,const_instr_iterator> const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
unsigned size() const { return (unsigned)Insts.size(); }
bool empty() const { return Insts.empty(); }
MachineInstr &instr_front() { return Insts.front(); }
MachineInstr &instr_back() { return Insts.back(); }
const MachineInstr &instr_front() const { return Insts.front(); }
const MachineInstr &instr_back() const { return Insts.back(); }
MachineInstr &front() { return Insts.front(); }
MachineInstr &back() { return *--end(); }
const MachineInstr &front() const { return Insts.front(); }
const MachineInstr &back() const { return *--end(); }
instr_iterator instr_begin() { return Insts.begin(); }
const_instr_iterator instr_begin() const { return Insts.begin(); }
instr_iterator instr_end() { return Insts.end(); }
const_instr_iterator instr_end() const { return Insts.end(); }
reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); }
const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
reverse_instr_iterator instr_rend () { return Insts.rend(); }
const_reverse_instr_iterator instr_rend () const { return Insts.rend(); }
iterator begin() { return instr_begin(); }
const_iterator begin() const { return instr_begin(); }
iterator end () { return instr_end(); }
const_iterator end () const { return instr_end(); }
reverse_iterator rbegin() { return instr_rbegin(); }
const_reverse_iterator rbegin() const { return instr_rbegin(); }
reverse_iterator rend () { return instr_rend(); }
const_reverse_iterator rend () const { return instr_rend(); }
inline iterator_range<iterator> terminators() {
return iterator_range<iterator>(getFirstTerminator(), end());
}
inline iterator_range<const_iterator> terminators() const {
return iterator_range<const_iterator>(getFirstTerminator(), end());
}
// Machine-CFG iterators
typedef std::vector<MachineBasicBlock *>::iterator pred_iterator;
typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
typedef std::vector<MachineBasicBlock *>::iterator succ_iterator;
typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
typedef std::vector<MachineBasicBlock *>::reverse_iterator
pred_reverse_iterator;
typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
const_pred_reverse_iterator;
typedef std::vector<MachineBasicBlock *>::reverse_iterator
succ_reverse_iterator;
typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
const_succ_reverse_iterator;
pred_iterator pred_begin() { return Predecessors.begin(); }
const_pred_iterator pred_begin() const { return Predecessors.begin(); }
pred_iterator pred_end() { return Predecessors.end(); }
const_pred_iterator pred_end() const { return Predecessors.end(); }
pred_reverse_iterator pred_rbegin()
{ return Predecessors.rbegin();}
const_pred_reverse_iterator pred_rbegin() const
{ return Predecessors.rbegin();}
pred_reverse_iterator pred_rend()
{ return Predecessors.rend(); }
const_pred_reverse_iterator pred_rend() const
{ return Predecessors.rend(); }
unsigned pred_size() const {
return (unsigned)Predecessors.size();
}
bool pred_empty() const { return Predecessors.empty(); }
succ_iterator succ_begin() { return Successors.begin(); }
const_succ_iterator succ_begin() const { return Successors.begin(); }
succ_iterator succ_end() { return Successors.end(); }
const_succ_iterator succ_end() const { return Successors.end(); }
succ_reverse_iterator succ_rbegin()
{ return Successors.rbegin(); }
const_succ_reverse_iterator succ_rbegin() const
{ return Successors.rbegin(); }
succ_reverse_iterator succ_rend()
{ return Successors.rend(); }
const_succ_reverse_iterator succ_rend() const
{ return Successors.rend(); }
unsigned succ_size() const {
return (unsigned)Successors.size();
}
bool succ_empty() const { return Successors.empty(); }
inline iterator_range<pred_iterator> predecessors() {
return iterator_range<pred_iterator>(pred_begin(), pred_end());
}
inline iterator_range<const_pred_iterator> predecessors() const {
return iterator_range<const_pred_iterator>(pred_begin(), pred_end());
}
inline iterator_range<succ_iterator> successors() {
return iterator_range<succ_iterator>(succ_begin(), succ_end());
}
inline iterator_range<const_succ_iterator> successors() const {
return iterator_range<const_succ_iterator>(succ_begin(), succ_end());
}
// LiveIn management methods.
/// addLiveIn - Add the specified register as a live in. Note that it
/// is an error to add the same register to the same set more than once.
void addLiveIn(unsigned Reg) { LiveIns.push_back(Reg); }
/// Add PhysReg as live in to this block, and ensure that there is a copy of
/// PhysReg to a virtual register of class RC. Return the virtual register
/// that is a copy of the live in PhysReg.
unsigned addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC);
/// removeLiveIn - Remove the specified register from the live in set.
///
void removeLiveIn(unsigned Reg);
/// isLiveIn - Return true if the specified register is in the live in set.
///
bool isLiveIn(unsigned Reg) const;
// Iteration support for live in sets. These sets are kept in sorted
// order by their register number.
typedef std::vector<unsigned>::const_iterator livein_iterator;
livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_iterator livein_end() const { return LiveIns.end(); }
bool livein_empty() const { return LiveIns.empty(); }
/// getAlignment - Return alignment of the basic block.
/// The alignment is specified as log2(bytes).
///
unsigned getAlignment() const { return Alignment; }
/// setAlignment - Set alignment of the basic block.
/// The alignment is specified as log2(bytes).
///
void setAlignment(unsigned Align) { Alignment = Align; }
/// isLandingPad - Returns true if the block is a landing pad. That is
/// this basic block is entered via an exception handler.
bool isLandingPad() const { return IsLandingPad; }
/// setIsLandingPad - Indicates the block is a landing pad. That is
/// this basic block is entered via an exception handler.
void setIsLandingPad(bool V = true) { IsLandingPad = V; }
/// getLandingPadSuccessor - If this block has a successor that is a landing
/// pad, return it. Otherwise return NULL.
const MachineBasicBlock *getLandingPadSuccessor() const;
// Code Layout methods.
/// moveBefore/moveAfter - move 'this' block before or after the specified
/// block. This only moves the block, it does not modify the CFG or adjust
/// potential fall-throughs at the end of the block.
void moveBefore(MachineBasicBlock *NewAfter);
void moveAfter(MachineBasicBlock *NewBefore);
/// updateTerminator - Update the terminator instructions in block to account
/// for changes to the layout. If the block previously used a fallthrough,
/// it may now need a branch, and if it previously used branching it may now
/// be able to use a fallthrough.
void updateTerminator();
// Machine-CFG mutators
/// addSuccessor - Add succ as a successor of this MachineBasicBlock.
/// The Predecessors list of succ is automatically updated. WEIGHT
/// parameter is stored in Weights list and it may be used by
/// MachineBranchProbabilityInfo analysis to calculate branch probability.
///
/// Note that duplicate Machine CFG edges are not allowed.
///
void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0);
/// Set successor weight of a given iterator.
void setSuccWeight(succ_iterator I, uint32_t weight);
/// removeSuccessor - Remove successor from the successors list of this
/// MachineBasicBlock. The Predecessors list of succ is automatically updated.
///
void removeSuccessor(MachineBasicBlock *succ);
/// removeSuccessor - Remove specified successor from the successors list of
/// this MachineBasicBlock. The Predecessors list of succ is automatically
/// updated. Return the iterator to the element after the one removed.
///
succ_iterator removeSuccessor(succ_iterator I);
/// replaceSuccessor - Replace successor OLD with NEW and update weight info.
///
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
/// transferSuccessors - Transfers all the successors from MBB to this
/// machine basic block (i.e., copies all the successors fromMBB and
/// remove all the successors from fromMBB).
void transferSuccessors(MachineBasicBlock *fromMBB);
/// transferSuccessorsAndUpdatePHIs - Transfers all the successors, as
/// in transferSuccessors, and update PHI operands in the successor blocks
/// which refer to fromMBB to refer to this.
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB);
/// isPredecessor - Return true if the specified MBB is a predecessor of this
/// block.
bool isPredecessor(const MachineBasicBlock *MBB) const;
/// isSuccessor - Return true if the specified MBB is a successor of this
/// block.
bool isSuccessor(const MachineBasicBlock *MBB) const;
/// isLayoutSuccessor - Return true if the specified MBB will be emitted
/// immediately after this block, such that if this block exits by
/// falling through, control will transfer to the specified MBB. Note
/// that MBB need not be a successor at all, for example if this block
/// ends with an unconditional branch to some other block.
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
/// canFallThrough - Return true if the block can implicitly transfer
/// control to the block after it by falling off the end of it. This should
/// return false if it can reach the block after it, but it uses an explicit
/// branch to do so (e.g., a table jump). True is a conservative answer.
bool canFallThrough();
/// Returns a pointer to the first instruction in this block that is not a
/// PHINode instruction. When adding instructions to the beginning of the
/// basic block, they should be added before the returned value, not before
/// the first instruction, which might be PHI.
/// Returns end() is there's no non-PHI instruction.
iterator getFirstNonPHI();
/// SkipPHIsAndLabels - Return the first instruction in MBB after I that is
/// not a PHI or a label. This is the correct point to insert copies at the
/// beginning of a basic block.
iterator SkipPHIsAndLabels(iterator I);
/// getFirstTerminator - returns an iterator to the first terminator
/// instruction of this basic block. If a terminator does not exist,
/// it returns end()
iterator getFirstTerminator();
const_iterator getFirstTerminator() const;
/// getFirstInstrTerminator - Same getFirstTerminator but it ignores bundles
/// and return an instr_iterator instead.
instr_iterator getFirstInstrTerminator();
/// getLastNonDebugInstr - returns an iterator to the last non-debug
/// instruction in the basic block, or end()
iterator getLastNonDebugInstr();
const_iterator getLastNonDebugInstr() const;
/// SplitCriticalEdge - Split the critical edge from this block to the
/// given successor block, and return the newly created block, or null
/// if splitting is not possible.
///
/// This function updates LiveVariables, MachineDominatorTree, and
/// MachineLoopInfo, as applicable.
MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
void pop_front() { Insts.pop_front(); }
void pop_back() { Insts.pop_back(); }
void push_back(MachineInstr *MI) { Insts.push_back(MI); }
/// Insert MI into the instruction list before I, possibly inside a bundle.
///
/// If the insertion point is inside a bundle, MI will be added to the bundle,
/// otherwise MI will not be added to any bundle. That means this function
/// alone can't be used to prepend or append instructions to bundles. See
/// MIBundleBuilder::insert() for a more reliable way of doing that.
instr_iterator insert(instr_iterator I, MachineInstr *M);
/// Insert a range of instructions into the instruction list before I.
template<typename IT>
void insert(iterator I, IT S, IT E) {
Insts.insert(I.getInstrIterator(), S, E);
}
/// Insert MI into the instruction list before I.
iterator insert(iterator I, MachineInstr *MI) {
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
"Cannot insert instruction with bundle flags");
return Insts.insert(I.getInstrIterator(), MI);
}
/// Insert MI into the instruction list after I.
iterator insertAfter(iterator I, MachineInstr *MI) {
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
"Cannot insert instruction with bundle flags");
return Insts.insertAfter(I.getInstrIterator(), MI);
}
/// Remove an instruction from the instruction list and delete it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle will still be bundled after removing the single instruction.
instr_iterator erase(instr_iterator I);
/// Remove an instruction from the instruction list and delete it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle will still be bundled after removing the single instruction.
instr_iterator erase_instr(MachineInstr *I) {
return erase(instr_iterator(I));
}
/// Remove a range of instructions from the instruction list and delete them.
iterator erase(iterator I, iterator E) {
return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
}
/// Remove an instruction or bundle from the instruction list and delete it.
///
/// If I points to a bundle of instructions, they are all erased.
iterator erase(iterator I) {
return erase(I, std::next(I));
}
/// Remove an instruction from the instruction list and delete it.
///
/// If I is the head of a bundle of instructions, the whole bundle will be
/// erased.
iterator erase(MachineInstr *I) {
return erase(iterator(I));
}
/// Remove the unbundled instruction from the instruction list without
/// deleting it.
///
/// This function can not be used to remove bundled instructions, use
/// remove_instr to remove individual instructions from a bundle.
MachineInstr *remove(MachineInstr *I) {
assert(!I->isBundled() && "Cannot remove bundled instructions");
return Insts.remove(I);
}
/// Remove the possibly bundled instruction from the instruction list
/// without deleting it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle will still be bundled after removing the single instruction.
MachineInstr *remove_instr(MachineInstr *I);
void clear() {
Insts.clear();
}
/// Take an instruction from MBB 'Other' at the position From, and insert it
/// into this MBB right before 'Where'.
///
/// If From points to a bundle of instructions, the whole bundle is moved.
void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
// The range splice() doesn't allow noop moves, but this one does.
if (Where != From)
splice(Where, Other, From, std::next(From));
}
/// Take a block of instructions from MBB 'Other' in the range [From, To),
/// and insert them into this MBB right before 'Where'.
///
/// The instruction at 'Where' must not be included in the range of
/// instructions to move.
void splice(iterator Where, MachineBasicBlock *Other,
iterator From, iterator To) {
Insts.splice(Where.getInstrIterator(), Other->Insts,
From.getInstrIterator(), To.getInstrIterator());
}
/// removeFromParent - This method unlinks 'this' from the containing
/// function, and returns it, but does not delete it.
MachineBasicBlock *removeFromParent();
/// eraseFromParent - This method unlinks 'this' from the containing
/// function and deletes it.
void eraseFromParent();
/// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
/// 'Old', change the code and CFG so that it branches to 'New' instead.
void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
/// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in
/// the CFG to be inserted. If we have proven that MBB can only branch to
/// DestA and DestB, remove any other MBB successors from the CFG. DestA and
/// DestB can be null. Besides DestA and DestB, retain other edges leading
/// to LandingPads (currently there can be only one; we don't check or require
/// that here). Note it is possible that DestA and/or DestB are LandingPads.
bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
MachineBasicBlock *DestB,
bool isCond);
/// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
/// any DBG_VALUE instructions. Return UnknownLoc if there is none.
DebugLoc findDebugLoc(instr_iterator MBBI);
DebugLoc findDebugLoc(iterator MBBI) {
return findDebugLoc(MBBI.getInstrIterator());
}
/// Possible outcome of a register liveness query to computeRegisterLiveness()
enum LivenessQueryResult {
LQR_Live, ///< Register is known to be live.
LQR_OverlappingLive, ///< Register itself is not live, but some overlapping
///< register is.
LQR_Dead, ///< Register is known to be dead.
LQR_Unknown ///< Register liveness not decidable from local
///< neighborhood.
};
/// computeRegisterLiveness - Return whether (physical) register \c Reg
/// has been <def>ined and not <kill>ed as of just before \c MI.
///
/// Search is localised to a neighborhood of
/// \c Neighborhood instructions before (searching for defs or kills) and
/// Neighborhood instructions after (searching just for defs) MI.
///
/// \c Reg must be a physical register.
LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
unsigned Reg, MachineInstr *MI,
unsigned Neighborhood=10);
// Debugging methods.
void dump() const;
void print(raw_ostream &OS, SlotIndexes* = nullptr) const;
// Printing method used by LoopInfo.
void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
/// getNumber - MachineBasicBlocks are uniquely numbered at the function
/// level, unless they're not in a MachineFunction yet, in which case this
/// will return -1.
///
int getNumber() const { return Number; }
void setNumber(int N) { Number = N; }
/// getSymbol - Return the MCSymbol for this basic block.
///
MCSymbol *getSymbol() const;
private:
/// getWeightIterator - Return weight iterator corresponding to the I
/// successor iterator.
weight_iterator getWeightIterator(succ_iterator I);
const_weight_iterator getWeightIterator(const_succ_iterator I) const;
friend class MachineBranchProbabilityInfo;
/// getSuccWeight - Return weight of the edge from this block to MBB. This
/// method should NOT be called directly, but by using getEdgeWeight method
/// from MachineBranchProbabilityInfo class.
uint32_t getSuccWeight(const_succ_iterator Succ) const;
// Methods used to maintain doubly linked list of blocks...
friend struct ilist_traits<MachineBasicBlock>;
// Machine-CFG mutators
/// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock.
/// Don't do this unless you know what you're doing, because it doesn't
/// update pred's successors list. Use pred->addSuccessor instead.
///
void addPredecessor(MachineBasicBlock *pred);
/// removePredecessor - Remove pred as a predecessor of this
/// MachineBasicBlock. Don't do this unless you know what you're
/// doing, because it doesn't update pred's successors list. Use
/// pred->removeSuccessor instead.
///
void removePredecessor(MachineBasicBlock *pred);
};
raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
// This is useful when building IndexedMaps keyed on basic block pointers.
struct MBB2NumberFunctor :
public std::unary_function<const MachineBasicBlock*, unsigned> {
unsigned operator()(const MachineBasicBlock *MBB) const {
return MBB->getNumber();
}
};
//===--------------------------------------------------------------------===//
// GraphTraits specializations for machine basic block graphs (machine-CFGs)
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a
// MachineFunction as a graph of MachineBasicBlocks...
//
template <> struct GraphTraits<MachineBasicBlock *> {
typedef MachineBasicBlock NodeType;
typedef MachineBasicBlock::succ_iterator ChildIteratorType;
static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->succ_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->succ_end();
}
};
template <> struct GraphTraits<const MachineBasicBlock *> {
typedef const MachineBasicBlock NodeType;
typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->succ_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->succ_end();
}
};
// Provide specializations of GraphTraits to be able to treat a
// MachineFunction as a graph of MachineBasicBlocks... and to walk it
// in inverse order. Inverse order for a function is considered
// to be when traversing the predecessor edges of a MBB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
typedef MachineBasicBlock NodeType;
typedef MachineBasicBlock::pred_iterator ChildIteratorType;
static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
return G.Graph;
}
static inline ChildIteratorType child_begin(NodeType *N) {
return N->pred_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->pred_end();
}
};
template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
typedef const MachineBasicBlock NodeType;
typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
return G.Graph;
}
static inline ChildIteratorType child_begin(NodeType *N) {
return N->pred_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->pred_end();
}
};
/// MachineInstrSpan provides an interface to get an iteration range
/// containing the instruction it was initialized with, along with all
/// those instructions inserted prior to or following that instruction
/// at some point after the MachineInstrSpan is constructed.
class MachineInstrSpan {
MachineBasicBlock &MBB;
MachineBasicBlock::iterator I, B, E;
public:
MachineInstrSpan(MachineBasicBlock::iterator I)
: MBB(*I->getParent()),
I(I),
B(I == MBB.begin() ? MBB.end() : std::prev(I)),
E(std::next(I)) {}
MachineBasicBlock::iterator begin() {
return B == MBB.end() ? MBB.begin() : std::next(B);
}
MachineBasicBlock::iterator end() { return E; }
bool empty() { return begin() == end(); }
MachineBasicBlock::iterator getInitial() { return I; }
};
} // End llvm namespace
#endif